UDC:004.63
Original scientific paper

REVERSE ENGINEERING BASED APPROACH FOR
TRANSFERRING LEGACY RELATIONAL DATABASES
INTO XML!

Chunyan Wang, Anthony Lo, Reda Alhajj, Ken Barker
Advanced Database Systems and Applications Lab
Department of Computer Science
University of Calgary, Alberta, CANADA
{wangch, chiul, alhajj, barker}Qcpsc.ucalgary.ca

Abstract: XML (extensible Markup Language) has emerged, and. is being gradually
accepted as the standard for data interchange over the Internet. Since most data is
currently stored in relational database systems, the problem of converting relational data
into XML assumes special significance. Many researchers have already done some
accomplishments in this direction. They mainly focus on finding XML schema (e.g., DTD,
XML-Schema, and RELAX) that best describes a given relational database with a
corresponding well-defined database catalog that contains all information about tables, keys
and constraints. However, not all existing databases can provide the required catalog
information. Therefore, these applications do not work well for legacy relational database
systems that were developed following the logical relational database design methodology,
without being based on any commercial DBMS, and hence do not provide well-defined
metadata files describing the database structure and constraints. In this paper, we address
this issue by first applying the reverse engineering approach described in [2] to extract the
ER (Extended Entity Relationship) model from a legacy relational database, then convert
the ER to XML Schema. The proposed approach is capable of reflecting the relational
schema flexibility into XML schema by considering the mapping of binary and nary
relationships. We have implemented a first prototype and the initial experimental results
are very encouraging, demonstrating the applicability and effectiveness of the proposed
approach.

Keywords: Reverse engineering, legacy relational databases, XML.

1. INTRODUCTION

As the World Wide Web is becoming a major means of disseminating and sharing
information, there is an exponential increase in the amount of data in a web-

! A preliminary version of this paper appeared in Proceedings of the 6th International Conference on
Enterprise Information Systems, ICEIS2004, Porto, Portugal, April 4 -17, 2004.

175

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

compliant format such as HTML (HyperText Markup Language) and XML
(extensible Markup Language). Especially, the XML model is a novel textual
representation of hierarchical (tree-like) data where a meaningful piece of data is bounded
by matching starting and ending tags, such as <name> and </name>, respectively. Due to the
simplicity of XML compared to SGML (Standard Generalized Markup Language) and its
relatively powerful expressiveness compared to HTML, XML has become ubiquitous, and
XML data need to be managed in databases.

people
name Address Apt.
Tom 3240 Sawtelle BL 201
John 2140 Sepulveda BL -

peaple
w,,»r""d '\»\
»’"r'/y \4\\;
PErson DErSOn
P l har A %
v T r'd \
m,z[';;.r address apt. » n[n £ tdidress
Tom 3240 Smutelie Bl 201 Johm L0 Sewtelic Bl

() XML model
Figure 1: Representing people in bt%fh: a) relational and b) XML models.

The same data can be correctly captured in'different models, including relational and XML
models. However, as illustrated in Figure 1, there are subtle differences. The XML model
representation can capture more detailed structural information (e.g., person) due to its
hierarchical structure and does not suffer from unnecessary null information (e.g., there is
no apt. branch in the second person node). In the relational model, data are represented in a
flat structure where the only available constructs are tables and attributes, with foreign keys
providing links between tables. A tree-like structure in XML model replaces the notion of
tables, where leaf nodes are equivalent to the notion of attributes in the relational model.

XML is-emerging as the standard format for data exchange. Among its great advantages
are portability, extensibility and the possibility to add semantics, i.e., in particular
structural constraints, to data within the document itself. Therefore, one of the important
tasks that XML will solve is the.exchange of data and information between different
partners. Since most of the data nowadays reside in relational databases, it is important
to automate the process of generating XML documents containing information from existing
databases. Of course, one would like to preserve as much information as possible during the
transformation process, especially constraints.

The Relational-to-XML conversion is considered complex because the two data models are
significantly different. While relational data is flat, normalized into many relations, and the
schema is often proprietary, XML data is nested, unnormalized, and its schema is public,
mostly created by agreement between members of a community

after lengthy negotiations. The Relational-to-XML conversion involves mapping the
relational tables and attributes names into XML elements and attributes names, creating
XML hierarchies, and processing values in an application specific manner.

Considerable work has been done on transforming relational databases that have rich
corresponding catalogs. Although a large number of the existing relational databases are

176

Journal of information and organizational sciences, Volume 28, Number 1 - 2 (2004)

classified as legacy, the conversion of legacy relational databases has received little attention.
Legacy databases are characterized by old-fashioned architecture, non-uniformity resulting
from numerous extensions, and lack of the related documentation, i.e., little or no
information about their design and constraints. Realizing the importance of converting legacy
databases into XML documents, we have developed a method that successfully handles the
process. Our approach highly benefits from our previous finding on reverse engineering of
legacy databases detailed in [2]. Reverse engineering has been extensively studies as the
process of discovering the characteristics of a legacy system. It leads to identifying and
understanding all components of an existing system and the relationships between them.
Database reverse engineering is necessary to semantically enrich and document a legacy
database, and to avoid throwing away the huge amounts of data stored in existing legacy
databases if the owners of existing legacy databases want to re-engineering, or maintain and
adjust the corresponding database design.

Two basic steps are identified in the process of converting legacy databases into XML
documents. First, reverse engineering is employed to deduce information about functional
dependencies, keys and inclusion dependencies; the process involves reconstructing the ER
model from an existing legacy database. Second, the obtained ER model is transformed into
XML schema in a process known as forward engineering.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Section 3 is an overview of the reverse engineering process to extract ER model from the
existing relational database; for more details, the reader is referred to [2]. ER model to XML
schema conversion is presented in Section 4. A closer look at the developed approach and
the implemented prototype is given in Section 5. Section 6 is the conclusions.

2. RELATED WORK

There exist several tools that enable the composition of XML documents from relational
data, such as IBM DB2 XML Extender, SilkRoute, and XPERANTO. XML Extender [7]
serves as a repository for XML documents as well as their Document type declarations
(DTDs), and also generate XML documents from existing data stored in relational database.
DAD or XML Extender is used to define the mapping of DTD to relational tables and
columns. XSLT and Xpath syntax are used to specify the transformation and the location
path. SilkRoute [9] is described as a general, dynamic, and efficient tool for viewing and
querying relational data in XML. In SilkRoute, data is exported into XML in two steps. The
first step is to create an XML view of relational database by using a declarative query
language RXL (Relational to XML Transformation Language). The resulting XML view is
virtual. The second step is to formulate a query (e.g., XML-QL) over the XML view and to pass
the query to the query composer. The query composer computes and generates a new
executable RXL query, which is then translated by the translator into one or more SQL
queries. The XML generator receives the result of the database query, and then translates
them into XML documents. XPERANTO [6] (XML Publishing of Entities, Relationships,
ANd Typed Objects), is a middleware solution for publishing XML; object-relational data
can be published as XML documents. It can be used by developers who prefer to work in a
"pure XML" environment. XPERANTO provides the XML view over the relational data of
the existing database, and provides an XML query facility, which translates XML queries into
corresponding SQL queries for database, and transforms the results back to XML.
XPERANTO contains four major components: the Query Translation, the XML View
Services, the XML Schema Generator, and the XML Tagger. In these tools, the success of
the conversion is closely related to the quality of the target XML schema onto which a
given input relational schema is mapped. However, the mapping from the relational schema

177

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

to the XML schema is specified by human experts. Therefore, when a large relational schema
and corresponding data need to be translated into XML documents, a significant investment
of human effort is required to initially design the target schema. Finally, the work described in
[13] requires knowing the catalog contents in order to extract the relational database schema.

There are also some efforts on mapping non-relational models to XML model. The work
presented in [14] studies the conversion from XML to ER model and vice versa. XGrammar
is used for the notation of XML schema. XGrammar is an extension of the regular tree
grammar definition in [15], which uses a six tuple notation to precisely describe content
models of XML schema languages. Informally, XGrammar takes the structural specification
feature from DTD and RELAX and the data typing feature from XML-Schema. The basic
idea of this conversion is to generate XGrammar from a given XML model, then convert
XGrammar to ER model or vice versa. Generation of an XML schema from the standard
object-oriented design language UML (Unified Modeling Language) model is studied in [4].
They map all elements and data types in XML-Schema to classes annotated with stereotypes
that reflect the semantics of the related XML-Schema concept. They use a sequence
number for content model elements in order to indicate the order of document types. XML-
schemas may contain anonymous groups. They introduce special stereotypes indicating that
class represents an anonymous grouping of elements in UML. In addition, the conversion of
Relational-to-ER-to-XML has been proposed in [10]. This reconstructs the semantic model, in
the form of ER model, from the logical schema capturing user's knowledge, and then converts
it to the XML document. However, many-to-many (M:N) and nary relationships are not
considered properly. Finally, DB2XML [17] is a tool for transforming data from relational
databases into XML documents. DTDs are generated describing the characteristics of the
data making the documents self contained and usable as a data exchange format.

Our approach is different from these approaches; we focus on legacy relational databases.
We adopt our reverse engineering approach proposed in [2] to extract a semantically rich ER
model from the given legacy relational database, and then we convert the ER model to XML
schema; we consider M:N and nary relationships.

3. EXTRACTING ER MODEL FROM LEGACY DATABASE:
AN OVERVIEW

In this section, we present an overview of the reverse engineering process described in [2].
We will show the results obtained for the following running example.

Example 3.1 Consider the COMPANY database shown in Figure 2. This database
contains six tables: EMPLOYEE, DEPENDENT, PROJECT, DEPARTMENT, WORKS-ON,
and DEPT.LOCATIONS; and each table contains tuples some of which are shown in Figure
2.

The first step is to extract the basic and necessary information from a given legacy
relational database. The information includes all candidates and foreign keys found within the
relations. It is summarized in the following two tables. Such information is very essential for
deriving the target ER model. CandidateKeys(relationname, attributename, Candidate
Keyjf) ForeignKeys(PKrelation, PKattribute, FKrelation, FKattribut, Linkjf)

The CandidateKeys table contains all possible candidate keys of the relations. The
Candidate Keys# can be used to keep track of having the same attribute participating in
more than one candidate key. The CandidateKeys table for the example COMPANY
database is shown in Figure 3.

178

Journal of information and organizational sciences,

Volume 28, Number 1 - 2 (2004)

] WANGCH

) Candidete Key Tanle
[Foreion Kex Table

D Upated Forsign Key Takle (¢
D Updatee Foreign Key Table
[ubdates Candidate Key Tan
[Primasy Kas Table

33445556

987654321

8836ESISE

1671 DB]D

1685

Joy

34-08

Daughtar

Theadere

1973-10-25

SON

Abnar

1932 D2 29

Spouse

Michze!

SON

Housion

Housion

Statiord

Bellaire

15658 3

Sugailand

n

GOROESESE 11045-12-03

450 Store, H..

123156795 1055- DI -03

731 Fondrn, .

2885E5535
33;.1553‘

Wigllace

291 Berry, Ba...

Ronaldson

487554321

i Bellaie §
i Producty Sugarland 5
HProdudtZ Housion 5
iComputerzaton Stafiord 4
i Fengamzailcn Houstoa 1
i Slafin: 4

23455789 2

56804444 3

53453453 1

53453453 2

33445555, 2

Figure 2: An example COMPANY relational database

The ForeignKeys table contains all pairs of attributes such that the first attribute is
part of a candidate key in a certain relation and the second attribute is part of a foreign
key, a representative of the first attribute within any of the relations. Linhfr is to
differentiate different foreign keys in the same relation. Foreign keys are numbered so that

all attributes within the same foreign key are assigned the same sequence number. The

ﬂm”l arme

DEP&RTMENT DINAME 9
DEFARTMENT DRNUMEBER 3
DEFEMDEMT DEPENDENT MAME 1
DEPENMDENT BOATE 1
DVEPERMDERNT 7
DEPEMDENT 2
DEFT LOCATIONS mmumzzsm 1
DEFT_LOCATIONS D OCATION 1
EMPLOY GEi 1
EMPLOYEE FIAME 17
EMPLOYVEE L AME 3
FROECT FRIAME 1
FROJECT PINUIME E R i
WORKE_ON EEEN 1
WORKE_ON PO 1

Figure 3: Candidate Keys: A list of possible candidate keys of all relations
in COMPANY database

179

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

ForeignKeys table for the example COMPANY database is shown in Figure 4.

oK 4 Relafion | FXAfibule | Link numier CK G
&:PA?TME\IT DNUMBER CEPT_LOCATIONS CRNUMBER ¢ M=

DEFARTHENT ChUMBER EMPLOYE CND 1 ¥e=1

DEFARTMENT DNUMBER PROJECT CRUM 4 Y=

SWFLOYEE 55N CEPARTMENT MCRSSH ¢ Y= ;

SWPLOYEE 88M CEPENDENT ES3N $e=1 Ze:, nui 5 candi ;*-a
EMFLOYEE 85N EMPLOYEE SUPERESH ¥ $e=0 150t 5 candizale
SWPLOYEE 58N WORKS ON ESSN 1 ez i3 not s candidate
PROJECT PNUMBER WWORKS ON FRO 1 e=1 is nobs candiza
WORKS_ON ESSN DEPARTHENT MGRSSN ¢ We= is rot 2 candizate
WORKE_OM ESSN DEPERCENT ES3N 1 e is ol s candizae
AORKZ_ON ESSN EMPLOYEE SUPERESHM 1 ¥e=1 15rots candisa
AORKS_OM PNO PROGECT FNUMBER 1 is-3candidsie

Figure 4: Foreign Keys: A]{st of attributes in candidate keys and their corresponding
foreign keys with their cardinality

In general, a relation may have a set of candidate keys. One candidate key is chosen
as the primary key by checking corresponding foreign keys. For relations that have multiple
candidate keys, the primary key is selected to be the candidate key that appears in the first
column of ForeignKeys. The Primary Keys table for the example COMPANY database is
shown in Figure 5.

The employed reverse engineering process decides on the presence of candidate key(s) of a
given relation R as foreign key(s) within R itself or any other relation in the relational schema.
This leads to unary and binary relationships because while going from the ER model into the
relational model, all relationships are mapped into these two types of relationships with some
weak entities introduced and converted into relations.

DEPARTNENT T DNUMBER 2
DEPENDENT ESEN 2
DEPEMDENT CEFENDEMT_NAME 2
DEPT_LOCATIONS CNUMBER 1
DEPT_LCCATIONS DLCCATION 1
EMPLOYEE SN 1
PROJECT PRUMBER 2
WORKS_ON ‘EBEN 1
WORKS_ON FNO 1

Figure S: A list of the primary keys for all relations in the COMPANY database

The information in ForeignKeys is used in constructing what is called the Relational
Intermediate Directed (RID) Graph, which present all possible unary and binary relationships
between relations in the given relational schema. In the RID graph, each node represents a
relation and two nodes are connected by a link to show that a foreign key in the relation that
corresponds to the first node represents the primary key of the relation that corresponds to
the second node.

180

Journal of information and organizational sciences, Volume 28, Number 1 - 2 (2004)

As described in [2], the cardinality of a relationship in the RID graph is determined as
follows. A link is directed from R; to R\ to reflect the presence of the primary key of Rl as a
foreign key in R, so, its cardinality is:

e [:1if and only if at most one tuple from R, holds the value of the primary key of
a tuple from R;.
e M:1 if more than one tuple from R, hold the value of the primary key of a tuple
from R;.

The employed process decides also on the minimum and maximum cardinalities at both
sides of the link by investigating whether the link is optional or mandatory on each side.

Analyzing the information in Figure 4, which leads to the RID graph, it can be easily
observed that it contains some extra information because a foreign key is allowed to play the
role of a candidate key and this leads to two symmetric and transitive references. Such extra
information is deleted as described in [2]. The CandidateKeys table for the example
COMPANY database after deleting symmetric and transitive references are shown in Figures
6 and 7, respectively.

Eliminating symmetric and transitive references lead to an optimized RID graph. The
optimized RID graph is analyzed further to identify relationships with attributes, M:N and
nary relationships, if any. The remaining unary and binary relationships are without
attributes, and are represented by direct connections between nodes in the optimized RID
graph. They are all classified as /:1, or M:l. The optimized RID graph for the example
COMPANY database is shown in Figure 8.

— — -
{7 Upated Foreign Key Table (remaved symmetric reference) - o H
_CKRelatign | CKAtribute | FK Relaton | FKAttribute | Link num FKCardinalty Note |
DEFARTHENT .CNUMBER DEPT_LOCATIONS DNUKMBER Mo=1 1 is nct a candidate
DEPARTMENT CNUMBER EMPLOYEE DNO M= Oord isnct acancidate
DEFARTHENT CNUNMBER PROJECT DNUM M>=1 0ard is ncta candidate
EMFLOYEE 28M DEPARTNENT MGRSSN M >=1 0ord isnctacandidate
EMFLOYEE €8N DEPENDENT EGSM M s 1 Oord is nct-a candidate
EMFLOYEE S3H EMPLOYEE SUPER3SN M>=0 Dorl isnct acandidate
EMFLOYEE 28N WORKS_ ON ESSN M >=1 0ori isnct acandidate
PRGJECT 'FNUMBER WORKS_ON PNO =1 1 isnct a cancidate
WORKS_ON ESSN DEPARTMEMNT MGRSSN M >=1 Oori isncta Candlddte 3
\WORKS_ON ESSN DEPENDENT ESSN _ M= 0ori is nct a cangidate
WORKS_OM ESSN EMPLOYEE SUPER3SN | M>=0 Dori isnct a candidate

] I | =
[DEF.QRTH:M DNLIMBLR EMFLm DNO 1 H==1 ford :rmacrnb idaie
|DEPARTHENRT DNUMBER FRCJECT DRUM 1 H>=1 ford iz rotacandisaie
lEMPLO‘r‘EE S5 DEFARTHENT MGRESN 1 H==1 Broed izrotacandissie
[EMFLD‘#EE S50 DEFEMDERT ESEH 1 H==1 Forl isnotacandidale
§EE~‘;FLO"{EE $5N EHFLOYEE SUPERB3KA1 H=={ Forl igngtacandidale
EEMFLDYEE 583N Y0RKS_(N E3EN 1 H>=1 ford s: rola Cax"ibif 3ie ﬂ
1

Figure 7: The ForeignKeys table after eliminating transitive references

181

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

4. CONVERTING ER MODEL TO XML SCHEMA

In this section, we present the proposed process for translating a conceptual schema

(presented as RID graph) into XML schema. The process in pseudo-code is depicted in
Algorithm 4.1.

Algorithm 4.1 (ER Model to XML Schema Conversion)

Input: The RID graph
Output: The corresponding XML schema
Step:
Step 1: Translate each entity in the ER model into a complex-type in XML schema.

Step 2: Map each attribute in every entity into a subelement within the corresponding
complex-type.

Step 3: Create a root element and insert each entity in the ER model as a subelement
with the corresponding complex-type.

Step 4: Use "key" and "keyref to map each relationship between any two entities.
EndAlgorithm

STwaNGoH
[Candidate Key Tabie
Y Fareign Key Table 3 - et S

et . e
D) Upated Forelgn key Takie (ref | ML
[Undated Foreign Key Table (ri - Frsaak UNARE SERLBDATE ADDRESH SELGALARY MU ERGUN
[Updated Candidate Kay Tablg | -
[Prirmary key Table ¢ }f
- ;‘:; fRia
o

= : i
‘ £5511,0EPENDENT NAME SEX,B0ATE BELATIONSHIF | ;’1
¥

et
. 4

HEPASTMERT e

CINAME DHUMBEE MOESSHMBRS TRRTDA

t
t ¥

5
¢é
%

/
i £
Mo Pozdtan

!

PINSME PNUNBER PLOCATOMN.DNUM

Figure 8: The RID graph of the COMPANY database

In order to convert an ER model to XML schema by Algorithm 4.1, we need to go
through the four steps as detailed next:

* Each entity E of the ER model is translated into an XML complex-type of the same
name E in the XML schema. In each complex-type E, there is only one empty element.
There will be several subelements inside the empty element. For example, the
PROJECT entity is translated into a complex-type named "PROJECTJRelation". The
empty element is called "PROJECT".

182

Journal of information and organizational sciences, Volume 28, Number 1 - 2 (2004)

<complexType name = "PROJECT Relation" >
<sequence>
<element name = "PROJECT" type = "r:PROJECT Type"
maxOccurs = "unbounded" />
</sequence>
</complexType> <complexType name = "PROJECT.Tuple" >
<sequence>
<sequence>
</complexType>

The cardinality constraint in the ER model can be explicated by associating two XML built-
in attributes, also called indicator, namely "minOccurs" and "maxOccurs", with subelements
under the XML complex-Type. The "maxOccurs" indicator specifies the maximum number of
times a subelement can occur. "maxOccurs" = "unbounded" indicates the element may
appear more than once. The "minOccurs" indicator specifies the minimum number of times a
subelement can occur. The default value for both the "maxOccurs" and the "minOccurs"
attributes is 1. If we want to specify a value only for "minOccurs", it must be either 0 or 1.
Similarly, if we want to specify a value only for the "maxOccurs", it should be greater
than or equal to 1. If both "minOccurs" and "maxOccurs" are omitted, then the subelement
must appear exactly once.

e In step 2 of Algorithm 4.1, each attribute 4i of the entity E is mapped into a
subelement of the corresponding complex-type E. For example, the PROJECT
entity is mapped into a complex-type named "PROJECT Tuple". Inside the
"PROJECT.Tuple" complex-type, there are several subelements such asPNAME,
PNUMBER, PLOCATION, and DNUM. They are the attributes of the
"PROJECT" entity.The XML schema of the PROJECT entity is:

<complexType name = "PROJECT Tuple" >
<sequence>
<element ref = "nPNAME" />
<element ref = "nPNUMBER" />
<element ref = "r:PLOCATION"/>
<element ref = "r:DNUM"/>
</sequence>
</complexType>

The <sequence> specification in the XML schema captures the sequential semantics of a set of
subelements. For instance, in the <sequence> given above, the subelement PNAME comes
first, followed by PNUMBER, and then PLOCATION, with DNUM at the end. These
subelements must appear in instance documents in the same sequential order as they are
declared here. XML schema also provides another constructor called <all>, which allows
elements to appear in any order, and all the elements must appear once or not at all.

e In step 3 of Algorithm 4.1, each entity is mapped into the XML schema. We
first need to create a root element that represents the entire given legacy relational
database. We create the root element as a complex-type in the XML schema, and
then insert each entity as a subelement of the root element. Next is an example which

183

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

contains the six entity objects DEPARTMENT, EPENDENT, DEPT.LOCATIONS,
EMPLOYEE, PROJECT, WORKS-ON We call the root element COMPANY:

<element name = "COMPANY" >
<complexType>

<sequence>

<element name = "r:DEPARTMENT Tpype" />
<element name = "r:DEPENDENT Type" />
<element name = "r:DEPT_LOCATIONS Type" />
<element name = "r:EMPLOYEE _Type" />
<element name = "r:PROJECT _Type" />
<element name = "r:zWORKS_ON_Type" />
</sequence>
</complexType>
</element >

Compared to DTD, the XML schema provides a more flexible and powerful mechanism

through "key" and "keyref, which share the same syntax as "unique" and also make referential
constraints possible in XML documents.

e Instep 4 of Algorithm 4.1, we use the elements "key" and "keyref to enforce the
uniqueness and referential constraints among the data. According to [20], the "key"
element specifies an attribute or element value as a key (unique, non-nullable, and
always present) within the containing element in an instance document; and the
"keyref element specifies foreign keys, i.e., an attribute or element value correspond
to that of an already specified key or unique element. The "key" and "keyref elements
replace and extent the capability of "ID", "IDREF" and "IDREFs" in DTD. They
are among the great features introduced in XML schema. Also, we can use "key"

and "keyref to specify the uniqueness scope and multiple attributes to create the
composite keys. Here is an example:

<key name = "PROJECTPrimaryKey" >
<selector xpath = "r:PROJECT/r:PROJECT"/>
<field xpath = "PNUMBER"/>
</key>
<key name ="WORKS-ON" >
<selector xpath="r:WORKS_ON/:\WORKS ON"/>
<field xpath = "ESSN"/>
<field xpath = "PNO"/>
</key>
<keyref name = "PROJECTPNUMBER_WORKS ONPNOReference" refer =
"r:PROJECTPrimaryKey" >
<selector xpath=r:WORKS_ON/r:-WORKS_ON"/>
<field xpath = "PNUMBER"/>
</keyref>

184

Journal of information and organizational sciences, Volume 28, Number 1 - 2 (2004)

In this example, we first specify the primary key for each entity in the ER model. From the
ForeignKeys table, we know that, PNUMBER is the primary key of PROJECT entity; ESSN,
and PNO together form a composite primary key of WORKS-ON entity. PNUMBER is a
foreign key of WORKS-ON, so we use Keyref to specify the foreign key relationship
between PROJECT and WORKS-ON entities.

5. A CLOSER LOOK AT THE DEVELOPED APPROACH AND THE
IMPLEMENTED PROTOTYPE

In this section we describe the overall structure of our implementation. The purpose
of this section is not to describe details of the code, but to grant the readers an overview
of the system. We have two main components: extracting ER model from the given legacy
relational database system and converting ER model to XML schema.

5.1 AN OVERVIEW OF THE DESIGN STRUCTURE

The block diagram of our framework is shown in Figure 9. It consists of four major
components: a given relational legacy database, REGNM (short for reverse engineering
module), COVM (short for conversion module), and XML schema. The purpose of the
REGNM is to extract the ER model from the legacy database by running the algorithms
proposed in [2]. Then COVM runs the conversion algorithm to covert the extracted ER
model to a XML Schema. The result XML schema is displayed on the graphical output
interface. Figure 2 shows the input legacy relational database, and Figure 8 shows the RID
graph (ER diagram) obtained as output.

Figure 9: The structure of the framework

The prototype has been implemented using Java. In addition to the fact that we are
familiar with Java, reasons for choosing Java include: '

* It is an Object-Oriented language, and hence it is easy to program in Java.

* We can use JDBC driver to connect to the database, also there are some useful
functions we can use for doing operations in the database.

¢ We can use JDOM to obtain the XML schema.

5.2 EXAMPLES AND RESULTS

We have tested our algorithms on the contents the COMPANY database in Example
3.1 and the SAMPLE database in DB2. Here, we only show the output related to the
COMPANY database because the SAMPLE database is quite large; the corresponding
generated output is long.

Now let us take a look at the results. We divide the testing process into the following
steps:

185

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

1. Find all candidate keys of the COMPANY database; the result is shown
a.in Figure 3.

2. Find all candidate foreign keys of the COMPANY database; the result is shown
in Figure 4, and it is used to construct the initial RID graph.

3. Find the cardinality for each relationship in the COMPANY database; the result is
shown in Figure 4.

4. Eliminate the symmetric and transitive references; the results are shown in
Figure 6 and Figure 7,
respectively.

5. Find M:M and n-ary relationships; the obtained optimized RID graph is shown in
Fig. 8.

[andidata kay Tabla
[Foreign Key Table
[upated Foreian'key Table (e
[2) Undaited Forsign Key Table (i
[Updated Candidate Key Tabl:
[Primary Key Table

-
1XMLSchema" “hitp AW, CRSC.UCE

xalememxmms- ames=" DEPARTMENT MGRSEN" We- Smng I'
<elementxmins="" name="DEPARTMENT_MGRSTARTDATE" type="gate" />
=compigxType xmins=" name="DEPARTMENT_Relation">
=sequence>
<élement name="DEFARTMENT" type="rDEPARTMENT _Type" maxOccurs="unbounded" />

<isequence>
<icomplexType>
<complexType xmins=" hame="DEPARTMENT _Tuple">
<sequence>
«elementref="rDEPARTMENT_DNAME" />
<element re="rDEFARTMENT_DNUMBER" />
<element ref="rDEPARTMENT_MGRSSN" /=
<glement re="rDEPARTMENT_MGRSTARTDATE" />
A <isequence»
i} <icomplexType>
<elementxmins="" name="DEPENDENT_ESSN type="siring’" />
<glement xmins="" name="DEPENDENT_DEPENDENT_NAME" type="string" >
<pjement xmins=""name="DEPENDENT_SEX" fype="string" />
-<elementxmins="' name="DEPENDENT_BDATE" type="date" />
<element xmins="' name="DEPENDENT_RELATIONSHIP" type="string" />
«complexType xmins=" name="DEPENDENT_Relation">
«geguence>
<glementname="DEPENDENT" type="rDEPENDENT_Type" maxOccurs="unbounded" /»
«sequence>
=fcomglexType»
=complexType xmins=" name="DEPENDENT_Tuple*>
<sequence>
«glement ref="r: DEPENDENT_ESSN"/>
<element ref="r.DEPENDENT_DEPENDENT_NAME" />
<element ref=".DEPENDENT_SEX" />
<elementref="rDEFENDENT_BDATE" /=
<glement te="rDEPENDENT_RELATIONSHIP® 1>
Al </sequence>
¥ <complexType>
Al <etementxmins=" name="DEPT_LOCATIONS_DNUMBER' type="inf />
;‘ <elementxmins="" name="DEPT_LOCATIONS_DLOCATION" type="string" />
4} <camplexType xmins=""name="DEPT_LOCATIONS_Relatior">
<sequence>

Figure 10: The output XML schema

6. Convert the ER model to the XML Schema; the output XML schema screen is
shown in Fig. 10. The complete XML schema is given the appendix.

5.3. DISCUSSION OF THE RESULTS

In the last section, we run these algorithms to extract an ER model from the example
legacy relational database - COMPANY, then the ER model is converted to XML schema by
using Algorithm 4.1. The optimized RID graph for the COMPANY database supports the
correctness, effectiveness and applicability of our approach.

We also test our approach on the contents of the SAMPLE database in DB2 and the
NorthWind database in MS Access 2000, we neglected the catalog contents for both databases
in order to test the reverse engineering process. It takes around 5 minutes for the SAMPLE
database, and more than an hour for the NorthWind database. This is normal because we
expect the time to increase when the size of the tested database increases. Compared to the

186

Journal of information and organizational sciences, Volume 28, Number I - 2 (2004)

SAMPLE database, it takes much longer time to test the NorthWind. The main reason is
that NorthWind contains 8 tables, many attributes in some of tables, and a lot of records in
each table. Most of the time is spent on analyzing the contents of the tables and deriving
the ER model. Even if a human is asked to do the same job, the process becomes
unmanageable manually as the size and complexity of the database increases.

To summarize, the proposed framework could automatically extract the ER model from
the given legacy relational database, and then transfer it to an XML schema. The framework
consists of these major components:

Data layer, which is a legacy relational database that stores all the data to be analyzed
and converted into XML.

Reverse engineering layer, which extracts an ER model from the input database by
applying some reverse engineering techniques.

Transformation layer, which transfers the ER model to XML schema.

Graphical output layer, which shows the result for each step (i.e., foreign key table,
candidate key table, primary key table, all tables in the given database, a RID graph
(equivalent to the ER diagram), and an XML schema, etc).

Undoubtedly, reconstructing an ER model from a legacy database, and writing an XML
schema file both are heavy and tedious jobs, especially for a large real application. The users
could be relieved of this heavy load by using our framework. On the other hand, the users'
knowledge could also be involved in this system. However, compared to reconstructing an ER
model and writing a long XML schema file from scratch, the human's mental workload is
greatly reduced with our framework.

Our framework presented in this paper has the following advantages compared to the work
described in [12], where the authors show how to obtain a DTD for data whose structure is
described by a conceptual data model. In brief, they present the translation of all
constructs of the ER model to DTDs and integrate them into an algorithm.

e Our framework could be used not only for a normal relational database system, but
also for a legacy
relational database system.

e We choose the XML schema instead of the DTD. The XML schema provides a more
flexible and powerful
mechanism than the DTD. We can easily present each entity in the ER model by
using XML complex-
Type. And also we can use "key" and "keyref to declare the attributes uniqueness,
composite key, and
referential constraint.

In our framework, we provide a user-friendly graphical user interface and also the output can
be visualized in a user-friendly manner, i.e., our prototype gives users a direct visualization
of the output obtained from each phase of the process.

The expected human workload is considerably reduced compared to the approach
described in [12].

187

C. Wang, A. Lo, R. Alhajj, K. Barker. Reverse engineering based approach ...

CONCLUSION

In this paper, we presented a novel approach to extract an ER model from a legacy
relational database, and then convert the ER model to a corresponding XML schema; i.e., by
applying reverse engineering followed by forward engineering. We preserve as much
information as we can from the given relational schema to the XML schema. Our approach not
only works for the commercial relational databases but also for the legacy relational databases.
We use the XML schema instead of the DTD schema; the advantages of this is that we
can use a complex-type to represent each relational table; "key" and "keyref are great
features introduced in XML schema. They replace and extend the capability of "ID", and
"IDREF" and "IDREFs" in DTD. We use "key" and "keyref to specify the relationship
between tables, the uniqueness scope and multiple attributes to create the composite keys.
We can also determine M:N and n-ary relationships, so we produce a XML schema and
XML documents for the data stored in databases without knowing anything about the catalog
information. Currently, we are working on improving the prototype to provide flexible visual
querying facility by allowing the user to choose from the displayed RID graph the tables and
even the attributes to be displayed in XML format.

REFERENCES

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. "The Lorel
Query Language for Semistructured Data," Department of Computer Science,
Stanford University, Stanford, http://www-
db.Stanford.edu/lore/pubs/lorel96.pdf.

[2] Reda Alhajj, "Extracting the Extended Entity-Relationship Model from a legacy
Relational Database, information Systems, Vol.28, No.6, pp.597-618, 2003.

[3] A. Bonifati, D. Lee. "Technical Survey of XML Schema and Query Languages," Technical
report, UCLA Computer Science Department, June 2001.

[4] G.Booch, M. Christerson, M. Fuchs, and J. Koistinen. "UML for XML Schema Mapping
Specification," http://www. rat ional.com/media/uinl/resources/media/iiinljxinlscli
ema33.pdf.

[5] R.Bourret. "XML and Databases," Web page, 2003,
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[6] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Schanmugasundaram, E. Shekita, and S.
Subramanian. "XPER-ATO: Publishing Object-Relational Data as XML," Proceedings of
the International Workshop on Web and Databases, May 2000.

[7]1 J. ChengandJ. Xu. IBM DB2 XML Extender, IBM Silcom Valley, February, 2000.

[8] R. Elmasri, S. B. Navathe. Fundamentals of Database Systems, Reading, Addison-
Wesley, 4th Edition, 2004.

[9] M. F. Fernandez, W. C. Tan, and D. Suciu. " SilkRoute: Trading between Relational and
XML," Proceedings of the International Conference on World Wide Web, May 2000.

[10] J. Fong, F. Pang, and C. Bloor. "Converting Relational Database into XML Document,"

Proceedings of International Workshop on Electronic Business Hubs, pp61-65, Sep.
2001.

[11] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. "X-Ray - Towards
Integrating XML and Relational Database Systems," Proceedings of the International
Conference on Conceptual Modeling, pp. 339-353, Salt Lake City, UT, Oct. 2000.

188

Journal of information and organizational sciences, Volume 28, Number 1 - 2 (2004)

[12] C.Kleiner, U. W. Lipeck. "Automatic Generation of XML DTDs from Conceptual
Database Schemas," University of Hannover, Germany, Sept 2001.

[13] D. Lee, M. Mani, F. Chiu, and W. W. Chu, "Nesting based Relational-to-XML Schema
Translation," Proceedings of the International Workshop on Web and Databases, May
2001.

[14] M. Mani, D. Lee, and Richard R. Muntz. "Semantic Data Modeling using XML Schemas,"
Department of Computer Science, University of California, Los Angeles, 2001.

[15] M. Mani, D. Lee, and Richard R. Muntz. "Taxonomy of XML Schema Language
using Formal Language Theory," In Extreme Markup Languages, Montreal,
Canada, August, 2001. http://www.cs.ucla.edu/~dongwon/paper

[16] M. Murata. "RELAX (REgular LAnguage descrlptlon for XML," Web page,
2000, http://www.xml.gr.jp/relax/.

[17] V. Turau, "Making Legacy Data Accessible for XML applications," 1999,
http://www.informatik.th-wiesbaden.de/ turau/ps/legacy.pdf.

[18] Extensible Markup Language (XML) http://www.w3sch.ools.com/XML/
[19] Document Type Definition (DTD) http://www.w3schools.com/DTD/
[20] XML Schema http://www.w3schools. com/schema/

[21] Xpath http://www.w3schools.com/xpath/

[22] DOM http: //'www. w3schools. com/DOM/

[23] SOAP http: //www. w3schools. com/SOAP/

[24] XML-QL: A Query Language for XML http://www.w3.0org/TR/NOTE-xml-ql/
[25] XQuery 1.0: An XML Query Language http://www.w3.org/TR/xquery/

Received: 23 May 2004
Accepted: 08 December 2004

189

