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Abstract: In this article is analyzed a reinforcement learning method, in which is defined 
a subject of learning. The essence of this method is the selection of activities by a try and 
fail process and awarding deferred rewards. If an environment is characterized by the 
Markov property, then step-by-step dynamics will enable forecasting of subsequent 
conditions and awarding subsequent rewards on the basis of the present known conditions 
and actions, relatively to the Markov decision making process. The relationship between 
the present conditions and values and the potential future conditions are defined by the 
Bellman equation. Also, the article discussed a method of temporal difference learning, 
mechanism of eligibility traces, as wel as theirs algorithms TD(0) and TD(Lambda). 
Theoretical analyses were supplemented by the practical studies, with reference to 
implementation of the Sarsa(Lambda) algorithm, with replacing eligibility traces and the 
Epsilon greedy policy. 
 
Keywords: algorithm TD(0), algorithm TD(Lambda), Bellman equation, Markov decision 
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1. INTRODUCTION 
 Only intelligent systems have the possibility of adapting to new, unknown and rapidly 
changing situations. Namely, intelligence is the feature of systems capable of adapting to 
changes in environment. Consequently, the more marked the feature, the greater the 
intelligence of the system. 

The intelligent systems should be placed in a very complex environment. A computer 
programme or a machine or a system can be considered capable of learning if they can 
enhance their features by gaining experience in problem solving for given environment. 
The enhancement of system features defines the processes of knowledge acquisition and 
knowledge extension. The system should be capable to get new knowledge and to use it 
more efficiently. Moreover, the system has to be robust enough and so defined as to be able 
to accept environmental dynamic changes. These requirements could be fulfilled only in the 
systems whose learning processes are based on interaction between the student and the 
environment. 
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2.  SYSTEM ENVIRONMENT 
In this article the reinforcement learning method [1], [2], [3], [4], [6], based on learning 

through the  interaction determined by the student`s given goal, is analyzed. This method 
differs from the classical supervised learning methods where the student has been explicitly 
told what to do for given environment. 

 The point of reinforcement learning method lies in the idea of involving the deferred 
awarding of rewards to the student. The student receives the signal of the award every time 
when he/she manages to put the system in an appropriate state. In this way the learning 
process is strengthened. There is no predefined task list because it is on the student to find 
out which actions will bring him/her the greatest reward. In the most challenging cases the 
actions which have been already taken bring immediate reward but also affect future 
actions. According to the above mentioned, the essence of this method is the selection of 
activities by the trial and error process and awarding of deferred awards. 

 The reinforcement learning method defines the subject of learning rather then the 
algorithm of learning. This means that any algorithm made to solve a given task will be the 
algorithm of reinforcement learning method. The Agent (`agent` is a much broader term 
than `student` because it has to learn and make decisions simultaneously) should take into 
consideration the most important aspects of the real problem facing them during the process 
of accomplishing the given goal. 

 The Agent must do the following: 
• find out the state of the environment, 
• take actions to affect the given state, 
• have the given goal or goals which are closely connected to the state of the 

environment. 

 The agent is in permanent communication with the environment, figure 1. The task, 
which is an instance of the reinforcement learning method`s problem, is defined by the 
complete specification of the environment. 

 

Figure 1. The interaction between the agent and its environment. 

 The agent and its environment communicate one to another in discrete parts of time t =
0, 1, 2, ... . At any time t the agent receives the information on the state of the environment, 
st ∈ S, where S represents the assembly of all possible states of environment. The 
appropriate action, at ∈ A(st), is chosen in the same way, where A(st) represents the 
assembly of all possible actions at the particular time. In the next time moment t+1, the 

reward r1

r t + 1

s t + 1

ENVIRONMENT

state s1

action a t

AGENT



Journal of information and organizational sciences, Volume 27, Number 1(2003) 
 

31

environment changes its state into st+1, as the consequence of the action which has already 
been taken, and sends the scalar reward rt+1 ∈ R to the agent. 

 At any step of the procedure the agent will choose the action on the basis of the policy 
πt, where πt(s,a) represents the probability that for the state of environment st = s, there is 
an action at = a. Algorithms of the reinforcement learning method show how the agent 
changes its policy in the course of the process of gaining experience. It is important to 
emphasize that main goal of the agent is to maximize given rewards in a long-term period. 

The boundary between the agent and its environment can be established according to 
the general rule that general rule that everything the agent cannot affect directly makes part 
of its environment. In practice this boundary can be established after states, actions and 
rewards are determined, i. e., after the definition of the task [1]. 
 
3. THE LABYRINTH PROBLEM  
 The above mentioned theories will be illustrated by the results of experiments. For 
exemple, the is one of the trivial problems but still very useful in order to get to the very 
essence of the examined theories. 

 The agent task goal is to reach the end of the labyrinth even if it does not know where 
the end is. In an indirect way, i. e. by means of the reward, the agent finds out that it has 
reached the end of the labyrinth. For the purpose of making the example as illustrative as 
possible as well as to reduce the execution time of the programme, the labyrinth is very 
simple as can be seen in figure 2. Once the agent has found the end of the labyrinth (just 
one episode), it returns to the start position.  

 For the implementation of the learning algorithm it is necessary to determine how the 
state and action will be coded and how the value function and the labyrinth will be stored in 
the memory. 

S E

Figure 2. The labyrinth problem. 

 The labyrinth is stored in the memory as the matrix (8 x 8) of zeroes and ones. Each 
zero marks the track of the labyrinth and each one marks the wall of the labyrinth.  
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/* Labyrint: 1 = wall  0 = track */ 
 int Maze[8][8] = {                                    

 {1,1,1,1,1,1,1,1}, 
{1,0,0,0,0,0,0,1}, 
{1,0,0,1,1,1,0,1}, 
{1,0,0,1,0,0,0,1}, 
{1,0,1,1,0,0,0,1}, 
{1,0,0,0,0,1,0,1}, 
{1,0,1,1,1,1,0,1}, 
{1,1,1,1,1,1,1,1} 

 }; 
 The state is coded with four bits. Each bit represents the position in the labyrinth plane 
and, also, each bit represents the passable or impassable part of labyrinth track (Figure 3.). 
For example, when the agent reaches position 1000, it can continue to the right, left or 
upwards, as long as the wall is below it. 
 

↑

← Ag       →

↓ ↓

Figure 3. To determine how the state and action will be coded. 

 This coding makes it possible for the number of states to depend on the nature and 
number of possible actions rather then the size of the labyrinth. There are only four actions: 
down, right, left and up: 

int NextState (int *x, int *y, int a) 
 { 
 int i, j; 
 int s; 
 /* state action a = {0,1,2,3} = {down, right, left, up} */ 
 switch (a) 
 {

case 0: if (!Maze[*y-1][*x]) 
 *y -= 1; 
 break; 
 case 1: if (!Maze[*y][*x+1]) 
 *x += 1; 
 break; 
 case 2: if (!Maze[*y+1][*x]) 
 *y += 1; 
 break; 
 case 3: if (!Maze[*y][*x-1]) 
 *x -= 1; 
 break; 
 }

s = GetState (*x, *y); 
 return (s); 
 } 

State: b0 b1 b2 b3
b0 → down 
b1 → right 
b2 → left 
b3 → up 
bi = 0 → track 
bi = 1 → wall 
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The value function is stored in memory as the table where the number of rows matches 
the number of state and the number of columns matches the number of actions as follows: 

void InitQfunc (float Q[S][A]) 
 { 
 int s, a;

for s = 0; s < S; s++) 
 for (a = 0; a < A; a++)

Q[s][a] = 0.0; 
 } 
 
4. REWARDING AND IMPEDENT WAY METHOD 
 During its activity, the agent tends to maximize the total of the received rewards. The 
reward is the scalar  whose value varies for every step of the interaction between the agent 
and the environment. The above mentioned definition of the reward determines the place of 
its calculation, and that is the agent`s environment. Besides, the agent should not by any 
means influence the process of reward calculation. 

 Discount factor determines the value of future rewards as it is now, i. e. the reward 
obtained in k step will have the value of γ k+1 times lower then in the present. 

 The environment informs the agent on its state in every moment. On the basis of that 
information, the agent makes necessary decisions. The ideal state signal should provide 
information on both previous and present states, without diminishing the agent`s prediction 
feature. It can be said that this signal has Markov property or the independent way method, 
because all relevant data are included in the information about the present signal state.  

 The answer to the question on how the environment in the moment t+1 will respond to 
the action taken in the moment t can be, in general, that the response depends on all what 
has happened before the t +1 moment. 

 If the environment, i. e. its state, has the Markov property, then such one-step dynamics 
enables the prediction of the next state and the next reward on the basis of the already 
known present state and action. 

 The reinforcement learning method, which satisfies the Markov property, is named 
Markov decision process [1], [5]. In case the spaces of the states and actions are definite 
and determined with the one step dynamics of the given environment, this type of the 
Markov decision process (MDP) is called the definite Markov decision process. 

 The reward is represented as: 0 → detect target and  –1  → not detect target. 
 
int Reward(int x, int y, int a) 
{

if ((x == GoalX) && (y == GoalY)) 
 return (0); 
 else return (-1); 
}
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The environment informs the agent on its state in every moment: 
 int GetState (int x, int y) 
 { 
 int s = 0; 
 if (Maze[y-1][x]) s++; 
 if (Maze[y][x-1]) s +=2; 
 if (Maze[y][x+1]) s +=4; 
 if (Maze[y+1][x]) s +=8; 
 return (s); 
 } 

 
5.  STATE VALUE FUNCTIONS AND ACTIONS AND  THEIR 
 OPTIMIZATION 
 Value functions are defined on the basis of the policy followed by the agent. The policy 
π represents the transformation of the state  s∈ S and the action a∈A(s) into the probability 
π(s,a) of action a sampling when s represents the state of the environment. 

 The police π is equal or better than policy π′ if its total expected reward is equal or 
greater, i. e., π ≥ π′ if and only if the Vπ(s) ≥ Vπ′(s) for every s ∈ S. There is always at least 
one policy which satisfies this condition. Such policy is called the optimum policy π* [1], 
[6]. Folowing this definition it can be concluded that more than one optimum policy can 
exist at the same time, but all of them share only one optimum state value function V*:

)(max)( sVsV π
π

=∗

for every s∈ S.

The same can be applied to the optimum  action value  Q*:

),(max),( asQasQ π
π

=∗

for every s∈ S and  a∈ A(s).

For each state - action (s, a) pair the above mentioned function gives the total expected 
reward for the processing of the action a in the state s and allows to apply the optimum 
policy later on. For this reason the optimum action value function can be defined by using 
the optimum state value function: 
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The Bellman equation for the optimum value function are as follows:                                 
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These equations have a unique solution which is independent of the policy. The 
advantage of these equation is in the fact when V* and Q* are obtained, the process of 
policy determination in much simpler. 

(1) 

(2) 

(3) 

(4) 

(5) 
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It is very useful to analyze the basic algorithms that make decisions as well as the 
concepts allowing such analysis. The starting points are the results obtained through 
practice, without taking into account the theoretical disputes on the convergence of known 
methods and their countability. 

 The calculation of the optimum state functions is performed on the basis of Bellman 
optimum equations (4) and (5). In this case there are two fundamental constraint factors: 
• the necessary time factor and 
• the necessary space factor. 

 The necessary time factor is related to the time necessary for the calculation process, 
and the necessary space factor is related to the memory space necessary for the calculation 
process. If n is the number of possible states and m is the number of possible actions in 
these states, than Bellman equations define the system of nm non-linear equations with nm 
unknown variables. In complex problems the numbers n and m can be very large and their 
solution by using some of the known methods is unacceptable. For all these reasons the 
approximate solution method is applied. 

 The iteration methods using the reinforcement learning method are called the temporal 
difference learning methods (TD methods) [1]. These methods are acceptable in solving of 
the time factor problem, but they still use the backup mechanism which involves the space 
factor problem. 

 All iteration methods for policy definition consist of two iterative simultaneous 
processes: 
• the first process does the value function iteration consistently with the momentary 

policy - policy evaluation, 
• the second process makes the policy become greedy in relation to the momentary value 

function - policy improvement. 

 The policy is greedy if: 
π' (s) = argamax Qπ (s,a)  

where  argamax denotes that this term represents the maximum for the action a.

The agent permanently encounters the problem of how to define the optimum policy on 
the basis of the available state, i. e. how to pick the optimum action from the assembly of 
possible actions. 

 The first method is a simple sampling of the action of the greatest value. The action 
value is evaluated by the iteration process. This method is termed as 'greedy' because it 
follows the greedy policy and it has the property of exclusive exploitation because it does 
not bring any new knowledge. 

 The above mentioned method can attain a certain level of research by a slight 
intervention.  Namely, with the small specific probability ε, a random action will be 
selected instead of the best action. This method is used very often in practice and it is called 
ε - greedy method. The selection is conducted according to the rule of uniform probability 
distribution which sometimes can lead to unexpected results. 

 

(6)
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6. ALGORITHMS OF TEMPORAL DIFFERENCE METHODS 
 The main feature of the temporal difference learning method is the iterativeness of the 
value function evaluation process. The iterative method follows the idea of the 
generalization of policy iteration and it consists of two parts. In the first part the 
initialization of the value function based on arbitrary estimated values in performed, while 
in the second part the approximate value approaches the real value after updating the 
estimated values using error signal. This can be written as follows: 

New Estimation ← Old Estimation + step ∗ (Goal – Old Estimation) 

where (Goal – Old Estimation) is the estimation error. 

 The algorithm in the pseudo code is as follows [1]: 
 
INITIALIZE V(s), π
REPEAT (*for each episode*) 

 INITIALIZE s
REPEAT (*for each step in episode*) 

 a ← action on the basis of the policy π for s 
 PERFORMED ACTION a, OBSERVE REWARD r and next state s' 

 V(s) ← V(s) + α [r + γ (s') – V(s)]
s ← s'

TO THE LAST STATE s
END 

 Generally speaking, there are two versions of temporal difference method [1], [4]. The 
first version of the method improves the policy it applies in action selection. The most 
significant form of this version is Sarsa algorithm. The second version of the temporal 
difference method applies one policy responsible for action selection, which is most often 
greedy policy, but improves the policy which succeeds it. Q algorithm is a representative of 
this version. 

 Sarsa algorithm applies the action value function Q(s,a) rather then the state value 
function V(s) in the process of iteration.  

 The algorithm is [1]: 
 

INITIALIZE Q(s,a) 
REPEAT (*for each episode*) 

 INITIALIZE s 
 a ← action on the basis of the policy π for s 
 REPEAT (*for each step in episode*)  

 PERFORMED ACTION a, TO OBSERVE REWARD r and next state s' 
 a'← action on the basis of the policy π for s' 

 Q(s,a) ← Q(s,a) + α [r + γQ(s',a') –Q(s,a)]
s ← s', a ← a' 

 TO THE LAST STATE s
END 

 The Sarsa algorithm converges with the probability value 1 to optimum policy and 
optimum action value function if all state - action pairs are visited for an infinite number of 
times and if the policy converges to greedy policy. This can be achieved by using ε - greedy 
policy where ε = 1/t.
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The Q algorithm is certainly a breakthrough in machine reeinforcement learning 
method. It approximates the optimum action value function immediately and independently 
on followed policy. Its rule of updating is as follows: 

[ ]),(),(max),(),( 11 ttttattttt asQasQrasQasQ −++← ++ γα
The algorithm is: 
 

INITIALIZE Q(s,a) 
REPEAT (*for each episode*) 

INITIALIZE s
REPEAT (*for each step in episode*) 

a ← action on the basis of the policy π for s 
 PERFORMED ACTION a, OBSERVE REWARD r and next state s' 

[ ]),()','(max),(),(
'

asQasQrasQasQ
a

−++← γα

s ← s
TO THE LAST STATE s 

END 

All visited condition - action pairs have to be updated correctly, which is the 
only convergence condition for Q algorithm. In fact, this is a requirement in all 
machine reinforcement learning methods. 
 
7.  THE ACTIVITY TRACES 
 Activity traces (eligibility traces) [1], [3] represent one of the fundamental mechanism 
of machine reinforcement learning methods. The main idea is to provide memory location 
for each state which has to trace the statistics of its attendance. Every time when the state is 
attended, its activity increases greatly and then it falls until the new attempt. The rule of 
updating the activity traces et(s), is:      
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where 0 ≤ λ ≤ 1 is the decay trace parameter. The efficiency of the above mentioned 
algorithms increases with the involvement of activity traces. 

 The activity traces defined by the rule (8) are called accumulating eligibility traces, and 
they are different from the replacing eligibility traces which are actually their modification.  

 The rule for the replacing eligibility traces is as follows: 
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These two kinds of activity traces can be seen in figure 4. 

 The activity traces can be easily implemented in basic TD methods which are then 
termed as TR(λ) mehtods. TR(λ) methods represent a generalization of TD methods 
because in case of λ = 0, the methods become basic. The modified updating rules and 
modified algorithms are explained in the next section. 

(7)

(8)

(9)
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Figure 4. The eligibility traces. 

 The algorithm TD(λ) has the updating rule as follows: 
V(st) ← V(st) + αδe(st)

where δ = rt+1 + γV(st+1) – V(st) represents TD error. 

 The algorithm is: 

INITIALIZE V(s) i e(s) = 0  for each s∈ S
REPEAT (*for each episode*) 

 INITIALIZE s 
 REPEAT (*for each step in episode*) 

 a ← action on the basis of the policy π for s 
 PERFORMED ACTION a, OBSERVE  REWARD r and next state s' 
 δ ← r + γV(s') – V(s) 
 e(s) ← e(s) + 1 
 For each s: 
 V(s) ← V(s) + αδe(s) 
 e(s) ← γλe(s) 
 s ← s' 

 TO THE LAST STATE s 
END 

The Sarsa(λ) algorithm has the updating rule: 
Q(st, at) ← Q(st, at) + αδe(st, at)

whereδ = rt+1 + γQ(st+1, at+1) – Q(st,at) represents TD error. 

 The algorithm in pseudo code is as follows: 

INITIALIZE Q(s ,a) and e(s ,a) = 0  for each  s∈ S, a∈ A(s) 
 REPEAT (*for each episode*) 

 INITIALIZE s 
 a ← action on the basis of the policy π for s 
 REPEAT (*for each step in episode*)            

 PERFORMED ACTION a, OPSERVE REWARD r and next state s' 
 a'← action on the basis of the policy π for s' 

(10) 

(11) 
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δ ← r + γQ(s', a') – Q(s, a) 
 e(s, a) ← e(s, a) + 1 
 For each s, a: 
 Q(s, a) ← Q(s, a) + αδe(s, a) 

 e(s, a) ←γλe(s, a) 
 s ← s', a ← a' 

 TO THE LAST STATE s 
END 

 
The Q(λ) algorithm has the updating rule: 

Q(st, at) ← Q(st, at) + αδe(st, at)
where δ = r t+1 + γ max Q (st+1, at+1) – Q (st, at) represents TD error. 

 The algorithm is: 

INITIALIZE Q(s,a) i e(s,a) for each s∈ S,  a∈ A(s) 
REPEAT (*for each episode*) 

INITIALIZE s, a 
 REPEAT (*for each step in episode*) 

a ← action on the basis of the policy π for s 
 PERFORMED ACTION a, OPSERVE REWARD r and next state s' 

a* = argbmax Q(s', b) 
δ ← r + γQ(s', a*) – Q(s, a) 
e(s, a) ← e(s, a) + 1 
For each s, a: 
 Q(s, a)← Q(s, a) + αδe(s, a) 
 if  a' = a* then e(s, a)← γλe(s, a)  else e(s, a) ← 0
s ← s', a← a' 

 TO THE LAST STATE s
END 

 On the basis of the above mentioned it can be concluded that estimations of value 
functions are kept as table data with the entries for each state and each state - action pair. In 
cases of constrained and small number of states and  actions this approach gives acceptable 
results. Otherwise, there is the problem of the lack of memory space. Even if there were 
infinite memory space, the table problem still remains because of the necessary time search 
and access to the necessary location. 

 The solution of the above mentioned problem is in the generalizzation of state and 
action spaces. The idea is to generalize the small subset of state space and action space 
through experience in order that they can represent much larger subset of the same space. 
Even though the idea of generalization is simple, its realization is a huge problem and will 
be the subject of future researches. 

 The most frequently used type of generalization in the systems of machine 
reinforcement learning methods is function approximation. This generalization takes 
particular values of the desired function and tries to generalize them to the degree at which 
they represent the approximation of that function. The approximation of function represents 
the instance of learning with supervisor class. The artificial neuro nets, the decision trees, 
pattern recognition are the members of this class. 

(12) 



J. Poliscuk. The analysis of experimental results of machine learning approach  

40

8.  THE ANALYSIS OF EXPERIMENTAL RESULTS  
 The result given in figure 5 is a graphical representation of the dependance between the 
number of steps necessary to find the end of labyrinth and the number of episodes.   
 

NO - steps 1000 -
900    -
800 -
700   -
600 -
500 -
400 -
300   -
200   -
100   -

0 ' ' ' ' ' ' ' ' '
0 10     20       30      40       50      60      70       80    90   100 

 NO – episodes 
Figure 5. The dependance between the number of steps necessary to find the end 

 of labyrinth and the number of episodes. 

 The chart gives the pace at which the agent approaches to the optimum policy. The 
most interesting part of chart are the peaks in particular episodes. These peaks have resulted 
from the search for the optimum solution using the trial and error and research methods as 
applied in the machine reinforcement learning method. 
 

NO - steps 1000 -
900   -  λ = 0,9 
800 - λ = 0,75 
700   - λ = 0,65 
600 -
500 -
400 -
300   -
200   -
100   -

0

0 10     20      30      40      50     60     70       80     90    100 
 No - episodes 

Figure 6. The programme execution for three different values of parameter λ.

Another experiment has also confirmed the assumption that the system performance is 
much better if activity traces and trace decay parameter λ are involved. As previously 
mentioned, for λ = 0 algorithm Sarsa(λ) becomes the basic algorithm version. The results 
of the programme execution for three different values of this parameter are shown in figure 
6. What we can see is that system performance is degraded with the decrease in parameter 
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λ. On the basis of the above mentioned it can be concluded that for lower values of  λ, the 
algorithm needs more time for convergence. For λ = 0.65, the agent cannot find the 
optimum solution in the first 100 episodes. 

 The main aim of the performed experiments is to present the reinforcement learning 
method in simple way. The first experiment gives a practical insight into the reinforcement 
learning method, while the second experiment shows the advantages of trace activity 
methods. It is important to emphasize that, due to its simplicity, this example can not be 
used in more thorough analyses of this method. 
 
9.  CONCLUSIONS                           
 The method of reinforcement learning method is the most significant form of adaptive 
machine learning systems. This method became very popular in the last decade due to its 
thorough theoretical basis, application areas as well as its particular ability to learn without 
previously prepared knowledge database about the problem. In this method, the knowledge 
database is simply combined with the neuro nets and other methods of supervision. 

 The main disadvantage of this method is a relatively slow process of learning. This 
problem can be overcome in several ways. One of the ways is to train the system by using 
problem simulation and then to apply it in practice. Others use action models, planning 
models etc. There are also two other problems besides the above mentioned. The first 
problem is caused by the compromise between the research and exploitation phases, and the 
second is concerned with the issue of the approximation of the function which determines 
the size of the task for which this method can be best applied. Particular solutions to the 
mentioned problems already exist due to which it can be reasonably expected to overcome 
them in the near future. 

 Despite the fact that these problems impose considerable limitation, this method has 
proved to be very useful in all cases where it was possible to apply the system of rewarding. 
The most important applications  are expected to take place in the fields of industrial 
control, autonomous and mobile robots, as well as in solving optimization problems and 
resource distribution. This method can also be used for making predictions in various 
aspects of economy and stock market business. 
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