
29

THE ANALYSIS OF EXPERIMENTAL RESULTS
OF MACHINE LEARNING APPROACH

Jaroslav E. Poliscuk
 Department of Electrical Engineering, University of Montenegro, Podgorica, Montenegro

jaroslav@cg.ac.yu

Abstract: In this article is analyzed a reinforcement learning method, in which is defined
a subject of learning. The essence of this method is the selection of activities by a try and
fail process and awarding deferred rewards. If an environment is characterized by the
Markov property, then step-by-step dynamics will enable forecasting of subsequent
conditions and awarding subsequent rewards on the basis of the present known conditions
and actions, relatively to the Markov decision making process. The relationship between
the present conditions and values and the potential future conditions are defined by the
Bellman equation. Also, the article discussed a method of temporal difference learning,
mechanism of eligibility traces, as wel as theirs algorithms TD(0) and TD(Lambda).
Theoretical analyses were supplemented by the practical studies, with reference to
implementation of the Sarsa(Lambda) algorithm, with replacing eligibility traces and the
Epsilon greedy policy.

Keywords: algorithm TD(0), algorithm TD(Lambda), Bellman equation, Markov decision
making process, mechanism of eligibility traces, method of temporal difference learning,
reinforcement learning method.

1. INTRODUCTION
 Only intelligent systems have the possibility of adapting to new, unknown and rapidly
changing situations. Namely, intelligence is the feature of systems capable of adapting to
changes in environment. Consequently, the more marked the feature, the greater the
intelligence of the system.

The intelligent systems should be placed in a very complex environment. A computer
programme or a machine or a system can be considered capable of learning if they can
enhance their features by gaining experience in problem solving for given environment.
The enhancement of system features defines the processes of knowledge acquisition and
knowledge extension. The system should be capable to get new knowledge and to use it
more efficiently. Moreover, the system has to be robust enough and so defined as to be able
to accept environmental dynamic changes. These requirements could be fulfilled only in the
systems whose learning processes are based on interaction between the student and the
environment.

UDC: 007.52
Original scientific paper

J. Poliscuk. The analysis of experimental results of machine learning approach

30

2. SYSTEM ENVIRONMENT
In this article the reinforcement learning method [1], [2], [3], [4], [6], based on learning

through the interaction determined by the student`s given goal, is analyzed. This method
differs from the classical supervised learning methods where the student has been explicitly
told what to do for given environment.

 The point of reinforcement learning method lies in the idea of involving the deferred
awarding of rewards to the student. The student receives the signal of the award every time
when he/she manages to put the system in an appropriate state. In this way the learning
process is strengthened. There is no predefined task list because it is on the student to find
out which actions will bring him/her the greatest reward. In the most challenging cases the
actions which have been already taken bring immediate reward but also affect future
actions. According to the above mentioned, the essence of this method is the selection of
activities by the trial and error process and awarding of deferred awards.

 The reinforcement learning method defines the subject of learning rather then the
algorithm of learning. This means that any algorithm made to solve a given task will be the
algorithm of reinforcement learning method. The Agent (`agent` is a much broader term
than `student` because it has to learn and make decisions simultaneously) should take into
consideration the most important aspects of the real problem facing them during the process
of accomplishing the given goal.

 The Agent must do the following:
• find out the state of the environment,
• take actions to affect the given state,
• have the given goal or goals which are closely connected to the state of the

environment.

 The agent is in permanent communication with the environment, figure 1. The task,
which is an instance of the reinforcement learning method`s problem, is defined by the
complete specification of the environment.

Figure 1. The interaction between the agent and its environment.

 The agent and its environment communicate one to another in discrete parts of time t =
0, 1, 2, At any time t the agent receives the information on the state of the environment,
st ∈ S, where S represents the assembly of all possible states of environment. The
appropriate action, at ∈ A(st), is chosen in the same way, where A(st) represents the
assembly of all possible actions at the particular time. In the next time moment t+1, the

reward r1

r t + 1

s t + 1

ENVIRONMENT

state s1

action a t

AGENT

Journal of information and organizational sciences, Volume 27, Number 1(2003)

31

environment changes its state into st+1, as the consequence of the action which has already
been taken, and sends the scalar reward rt+1 ∈ R to the agent.

 At any step of the procedure the agent will choose the action on the basis of the policy
πt, where πt(s,a) represents the probability that for the state of environment st = s, there is
an action at = a. Algorithms of the reinforcement learning method show how the agent
changes its policy in the course of the process of gaining experience. It is important to
emphasize that main goal of the agent is to maximize given rewards in a long-term period.

The boundary between the agent and its environment can be established according to
the general rule that general rule that everything the agent cannot affect directly makes part
of its environment. In practice this boundary can be established after states, actions and
rewards are determined, i. e., after the definition of the task [1].

3. THE LABYRINTH PROBLEM
 The above mentioned theories will be illustrated by the results of experiments. For
exemple, the is one of the trivial problems but still very useful in order to get to the very
essence of the examined theories.

 The agent task goal is to reach the end of the labyrinth even if it does not know where
the end is. In an indirect way, i. e. by means of the reward, the agent finds out that it has
reached the end of the labyrinth. For the purpose of making the example as illustrative as
possible as well as to reduce the execution time of the programme, the labyrinth is very
simple as can be seen in figure 2. Once the agent has found the end of the labyrinth (just
one episode), it returns to the start position.

 For the implementation of the learning algorithm it is necessary to determine how the
state and action will be coded and how the value function and the labyrinth will be stored in
the memory.

S E

Figure 2. The labyrinth problem.

 The labyrinth is stored in the memory as the matrix (8 x 8) of zeroes and ones. Each
zero marks the track of the labyrinth and each one marks the wall of the labyrinth.

J. Poliscuk. The analysis of experimental results of machine learning approach

32

/* Labyrint: 1 = wall 0 = track */
 int Maze[8][8] = {

 {1,1,1,1,1,1,1,1},
{1,0,0,0,0,0,0,1},
{1,0,0,1,1,1,0,1},
{1,0,0,1,0,0,0,1},
{1,0,1,1,0,0,0,1},
{1,0,0,0,0,1,0,1},
{1,0,1,1,1,1,0,1},
{1,1,1,1,1,1,1,1}

 };
 The state is coded with four bits. Each bit represents the position in the labyrinth plane
and, also, each bit represents the passable or impassable part of labyrinth track (Figure 3.).
For example, when the agent reaches position 1000, it can continue to the right, left or
upwards, as long as the wall is below it.

↑

← Ag →

↓ ↓

Figure 3. To determine how the state and action will be coded.

 This coding makes it possible for the number of states to depend on the nature and
number of possible actions rather then the size of the labyrinth. There are only four actions:
down, right, left and up:

int NextState (int *x, int *y, int a)
 {
 int i, j;
 int s;
 /* state action a = {0,1,2,3} = {down, right, left, up} */
 switch (a)
 {

case 0: if (!Maze[*y-1][*x])
 *y -= 1;
 break;
 case 1: if (!Maze[*y][*x+1])
 *x += 1;
 break;
 case 2: if (!Maze[*y+1][*x])
 *y += 1;
 break;
 case 3: if (!Maze[*y][*x-1])
 *x -= 1;
 break;
 }

s = GetState (*x, *y);
 return (s);
 }

State: b0 b1 b2 b3
b0 → down
b1 → right
b2 → left
b3 → up
bi = 0 → track
bi = 1 → wall

Journal of information and organizational sciences, Volume 27, Number 1(2003)

33

The value function is stored in memory as the table where the number of rows matches
the number of state and the number of columns matches the number of actions as follows:

void InitQfunc (float Q[S][A])
 {
 int s, a;

for s = 0; s < S; s++)
 for (a = 0; a < A; a++)

Q[s][a] = 0.0;
 }

4. REWARDING AND IMPEDENT WAY METHOD
 During its activity, the agent tends to maximize the total of the received rewards. The
reward is the scalar whose value varies for every step of the interaction between the agent
and the environment. The above mentioned definition of the reward determines the place of
its calculation, and that is the agent`s environment. Besides, the agent should not by any
means influence the process of reward calculation.

 Discount factor determines the value of future rewards as it is now, i. e. the reward
obtained in k step will have the value of γ k+1 times lower then in the present.

 The environment informs the agent on its state in every moment. On the basis of that
information, the agent makes necessary decisions. The ideal state signal should provide
information on both previous and present states, without diminishing the agent`s prediction
feature. It can be said that this signal has Markov property or the independent way method,
because all relevant data are included in the information about the present signal state.

 The answer to the question on how the environment in the moment t+1 will respond to
the action taken in the moment t can be, in general, that the response depends on all what
has happened before the t +1 moment.

 If the environment, i. e. its state, has the Markov property, then such one-step dynamics
enables the prediction of the next state and the next reward on the basis of the already
known present state and action.

 The reinforcement learning method, which satisfies the Markov property, is named
Markov decision process [1], [5]. In case the spaces of the states and actions are definite
and determined with the one step dynamics of the given environment, this type of the
Markov decision process (MDP) is called the definite Markov decision process.

 The reward is represented as: 0 → detect target and –1 → not detect target.

int Reward(int x, int y, int a)
{

if ((x == GoalX) && (y == GoalY))
 return (0);
 else return (-1);
}

J. Poliscuk. The analysis of experimental results of machine learning approach

34

The environment informs the agent on its state in every moment:
 int GetState (int x, int y)
 {
 int s = 0;
 if (Maze[y-1][x]) s++;
 if (Maze[y][x-1]) s +=2;
 if (Maze[y][x+1]) s +=4;
 if (Maze[y+1][x]) s +=8;
 return (s);
 }

5. STATE VALUE FUNCTIONS AND ACTIONS AND THEIR
 OPTIMIZATION
 Value functions are defined on the basis of the policy followed by the agent. The policy
π represents the transformation of the state s∈ S and the action a∈A(s) into the probability
π(s,a) of action a sampling when s represents the state of the environment.

 The police π is equal or better than policy π′ if its total expected reward is equal or
greater, i. e., π ≥ π′ if and only if the Vπ(s) ≥ Vπ′(s) for every s ∈ S. There is always at least
one policy which satisfies this condition. Such policy is called the optimum policy π* [1],
[6]. Folowing this definition it can be concluded that more than one optimum policy can
exist at the same time, but all of them share only one optimum state value function V*:

)(max)(sVsV π
π

=∗

for every s∈ S.

The same can be applied to the optimum action value Q*:

),(max),(asQasQ π
π

=∗

for every s∈ S and a∈ A(s).

For each state - action (s, a) pair the above mentioned function gives the total expected
reward for the processing of the action a in the state s and allows to apply the optimum
policy later on. For this reason the optimum action value function can be defined by using
the optimum state value function:

{ }aasssVrEasQ tttt ==+= +
∗

+
∗ ,|)(),(11 γ

The Bellman equation for the optimum value function are as follows:

[])'(max)('')(
sVRPsV a

ss
a
sssAa

∗

∈

∗ += ∑ γ

[])','(max)(
''' asQRPsQ
a

a
ss

a
ss

∗∗ += ∑ γ

These equations have a unique solution which is independent of the policy. The
advantage of these equation is in the fact when V* and Q* are obtained, the process of
policy determination in much simpler.

(1)

(2)

(3)

(4)

(5)

Journal of information and organizational sciences, Volume 27, Number 1(2003)

35

It is very useful to analyze the basic algorithms that make decisions as well as the
concepts allowing such analysis. The starting points are the results obtained through
practice, without taking into account the theoretical disputes on the convergence of known
methods and their countability.

 The calculation of the optimum state functions is performed on the basis of Bellman
optimum equations (4) and (5). In this case there are two fundamental constraint factors:
• the necessary time factor and
• the necessary space factor.

 The necessary time factor is related to the time necessary for the calculation process,
and the necessary space factor is related to the memory space necessary for the calculation
process. If n is the number of possible states and m is the number of possible actions in
these states, than Bellman equations define the system of nm non-linear equations with nm
unknown variables. In complex problems the numbers n and m can be very large and their
solution by using some of the known methods is unacceptable. For all these reasons the
approximate solution method is applied.

 The iteration methods using the reinforcement learning method are called the temporal
difference learning methods (TD methods) [1]. These methods are acceptable in solving of
the time factor problem, but they still use the backup mechanism which involves the space
factor problem.

 All iteration methods for policy definition consist of two iterative simultaneous
processes:
• the first process does the value function iteration consistently with the momentary

policy - policy evaluation,
• the second process makes the policy become greedy in relation to the momentary value

function - policy improvement.

 The policy is greedy if:
π' (s) = argamax Qπ (s,a)

where argamax denotes that this term represents the maximum for the action a.

The agent permanently encounters the problem of how to define the optimum policy on
the basis of the available state, i. e. how to pick the optimum action from the assembly of
possible actions.

 The first method is a simple sampling of the action of the greatest value. The action
value is evaluated by the iteration process. This method is termed as 'greedy' because it
follows the greedy policy and it has the property of exclusive exploitation because it does
not bring any new knowledge.

 The above mentioned method can attain a certain level of research by a slight
intervention. Namely, with the small specific probability ε, a random action will be
selected instead of the best action. This method is used very often in practice and it is called
ε - greedy method. The selection is conducted according to the rule of uniform probability
distribution which sometimes can lead to unexpected results.

(6)

J. Poliscuk. The analysis of experimental results of machine learning approach

36

6. ALGORITHMS OF TEMPORAL DIFFERENCE METHODS
 The main feature of the temporal difference learning method is the iterativeness of the
value function evaluation process. The iterative method follows the idea of the
generalization of policy iteration and it consists of two parts. In the first part the
initialization of the value function based on arbitrary estimated values in performed, while
in the second part the approximate value approaches the real value after updating the
estimated values using error signal. This can be written as follows:

New Estimation ← Old Estimation + step ∗ (Goal – Old Estimation)

where (Goal – Old Estimation) is the estimation error.

 The algorithm in the pseudo code is as follows [1]:

INITIALIZE V(s), π
REPEAT (*for each episode*)

 INITIALIZE s
REPEAT (*for each step in episode*)

 a ← action on the basis of the policy π for s
 PERFORMED ACTION a, OBSERVE REWARD r and next state s'

 V(s) ← V(s) + α [r + γ (s') – V(s)]
s ← s'

TO THE LAST STATE s
END

 Generally speaking, there are two versions of temporal difference method [1], [4]. The
first version of the method improves the policy it applies in action selection. The most
significant form of this version is Sarsa algorithm. The second version of the temporal
difference method applies one policy responsible for action selection, which is most often
greedy policy, but improves the policy which succeeds it. Q algorithm is a representative of
this version.

 Sarsa algorithm applies the action value function Q(s,a) rather then the state value
function V(s) in the process of iteration.

 The algorithm is [1]:

INITIALIZE Q(s,a)
REPEAT (*for each episode*)

 INITIALIZE s
 a ← action on the basis of the policy π for s
 REPEAT (*for each step in episode*)

 PERFORMED ACTION a, TO OBSERVE REWARD r and next state s'
 a'← action on the basis of the policy π for s'

 Q(s,a) ← Q(s,a) + α [r + γQ(s',a') –Q(s,a)]
s ← s', a ← a'

 TO THE LAST STATE s
END

 The Sarsa algorithm converges with the probability value 1 to optimum policy and
optimum action value function if all state - action pairs are visited for an infinite number of
times and if the policy converges to greedy policy. This can be achieved by using ε - greedy
policy where ε = 1/t.

Journal of information and organizational sciences, Volume 27, Number 1(2003)

37

The Q algorithm is certainly a breakthrough in machine reeinforcement learning
method. It approximates the optimum action value function immediately and independently
on followed policy. Its rule of updating is as follows:

[]),(),(max),(),(11 ttttattttt asQasQrasQasQ −++← ++ γα
The algorithm is:

INITIALIZE Q(s,a)
REPEAT (*for each episode*)

INITIALIZE s
REPEAT (*for each step in episode*)

a ← action on the basis of the policy π for s
 PERFORMED ACTION a, OBSERVE REWARD r and next state s'

[]),()','(max),(),(
'

asQasQrasQasQ
a

−++← γα

s ← s
TO THE LAST STATE s

END

All visited condition - action pairs have to be updated correctly, which is the
only convergence condition for Q algorithm. In fact, this is a requirement in all
machine reinforcement learning methods.

7. THE ACTIVITY TRACES
 Activity traces (eligibility traces) [1], [3] represent one of the fundamental mechanism
of machine reinforcement learning methods. The main idea is to provide memory location
for each state which has to trace the statistics of its attendance. Every time when the state is
attended, its activity increases greatly and then it falls until the new attempt. The rule of
updating the activity traces et(s), is:

+
=

−

−

1)(
)(

)(
1

1

s
s

se
t

t
t γλ

γλ
if
if

.

;

t

t

ss
ss

=
≠

where 0 ≤ λ ≤ 1 is the decay trace parameter. The efficiency of the above mentioned
algorithms increases with the involvement of activity traces.

 The activity traces defined by the rule (8) are called accumulating eligibility traces, and
they are different from the replacing eligibility traces which are actually their modification.

 The rule for the replacing eligibility traces is as follows:

= −

1
)(

)(1 s
se t

t
γλ

if
if

.

;

t

t

ss
ss

=
≠

These two kinds of activity traces can be seen in figure 4.

 The activity traces can be easily implemented in basic TD methods which are then
termed as TR(λ) mehtods. TR(λ) methods represent a generalization of TD methods
because in case of λ = 0, the methods become basic. The modified updating rules and
modified algorithms are explained in the next section.

(7)

(8)

(9)

J. Poliscuk. The analysis of experimental results of machine learning approach

38

et (s)
 t

time when the state is attended

et (s)
t

accumulating eligibility traces

et (s)
t

replacing eligibility traces

Figure 4. The eligibility traces.

 The algorithm TD(λ) has the updating rule as follows:
V(st) ← V(st) + αδe(st)

where δ = rt+1 + γV(st+1) – V(st) represents TD error.

 The algorithm is:

INITIALIZE V(s) i e(s) = 0 for each s∈ S
REPEAT (*for each episode*)

 INITIALIZE s
 REPEAT (*for each step in episode*)

 a ← action on the basis of the policy π for s
 PERFORMED ACTION a, OBSERVE REWARD r and next state s'
 δ ← r + γV(s') – V(s)
 e(s) ← e(s) + 1
 For each s:
 V(s) ← V(s) + αδe(s)
 e(s) ← γλe(s)
 s ← s'

 TO THE LAST STATE s
END

The Sarsa(λ) algorithm has the updating rule:
Q(st, at) ← Q(st, at) + αδe(st, at)

whereδ = rt+1 + γQ(st+1, at+1) – Q(st,at) represents TD error.

 The algorithm in pseudo code is as follows:

INITIALIZE Q(s ,a) and e(s ,a) = 0 for each s∈ S, a∈ A(s)
 REPEAT (*for each episode*)

 INITIALIZE s
 a ← action on the basis of the policy π for s
 REPEAT (*for each step in episode*)

 PERFORMED ACTION a, OPSERVE REWARD r and next state s'
 a'← action on the basis of the policy π for s'

(10)

(11)

Journal of information and organizational sciences, Volume 27, Number 1(2003)

39

δ ← r + γQ(s', a') – Q(s, a)
 e(s, a) ← e(s, a) + 1
 For each s, a:
 Q(s, a) ← Q(s, a) + αδe(s, a)

 e(s, a) ←γλe(s, a)
 s ← s', a ← a'

 TO THE LAST STATE s
END

The Q(λ) algorithm has the updating rule:

Q(st, at) ← Q(st, at) + αδe(st, at)
where δ = r t+1 + γ max Q (st+1, at+1) – Q (st, at) represents TD error.

 The algorithm is:

INITIALIZE Q(s,a) i e(s,a) for each s∈ S, a∈ A(s)
REPEAT (*for each episode*)

INITIALIZE s, a
 REPEAT (*for each step in episode*)

a ← action on the basis of the policy π for s
 PERFORMED ACTION a, OPSERVE REWARD r and next state s'

a* = argbmax Q(s', b)
δ ← r + γQ(s', a*) – Q(s, a)
e(s, a) ← e(s, a) + 1
For each s, a:
 Q(s, a)← Q(s, a) + αδe(s, a)
 if a' = a* then e(s, a)← γλe(s, a) else e(s, a) ← 0
s ← s', a← a'

 TO THE LAST STATE s
END

 On the basis of the above mentioned it can be concluded that estimations of value
functions are kept as table data with the entries for each state and each state - action pair. In
cases of constrained and small number of states and actions this approach gives acceptable
results. Otherwise, there is the problem of the lack of memory space. Even if there were
infinite memory space, the table problem still remains because of the necessary time search
and access to the necessary location.

 The solution of the above mentioned problem is in the generalizzation of state and
action spaces. The idea is to generalize the small subset of state space and action space
through experience in order that they can represent much larger subset of the same space.
Even though the idea of generalization is simple, its realization is a huge problem and will
be the subject of future researches.

 The most frequently used type of generalization in the systems of machine
reinforcement learning methods is function approximation. This generalization takes
particular values of the desired function and tries to generalize them to the degree at which
they represent the approximation of that function. The approximation of function represents
the instance of learning with supervisor class. The artificial neuro nets, the decision trees,
pattern recognition are the members of this class.

(12)

J. Poliscuk. The analysis of experimental results of machine learning approach

40

8. THE ANALYSIS OF EXPERIMENTAL RESULTS
 The result given in figure 5 is a graphical representation of the dependance between the
number of steps necessary to find the end of labyrinth and the number of episodes.

NO - steps 1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

0 ' ' ' ' ' ' ' ' '
0 10 20 30 40 50 60 70 80 90 100

 NO – episodes
Figure 5. The dependance between the number of steps necessary to find the end

 of labyrinth and the number of episodes.

 The chart gives the pace at which the agent approaches to the optimum policy. The
most interesting part of chart are the peaks in particular episodes. These peaks have resulted
from the search for the optimum solution using the trial and error and research methods as
applied in the machine reinforcement learning method.

NO - steps 1000 -
900 - λ = 0,9
800 - λ = 0,75
700 - λ = 0,65
600 -
500 -
400 -
300 -
200 -
100 -

0

0 10 20 30 40 50 60 70 80 90 100
 No - episodes

Figure 6. The programme execution for three different values of parameter λ.

Another experiment has also confirmed the assumption that the system performance is
much better if activity traces and trace decay parameter λ are involved. As previously
mentioned, for λ = 0 algorithm Sarsa(λ) becomes the basic algorithm version. The results
of the programme execution for three different values of this parameter are shown in figure
6. What we can see is that system performance is degraded with the decrease in parameter

Journal of information and organizational sciences, Volume 27, Number 1(2003)

41

λ. On the basis of the above mentioned it can be concluded that for lower values of λ, the
algorithm needs more time for convergence. For λ = 0.65, the agent cannot find the
optimum solution in the first 100 episodes.

 The main aim of the performed experiments is to present the reinforcement learning
method in simple way. The first experiment gives a practical insight into the reinforcement
learning method, while the second experiment shows the advantages of trace activity
methods. It is important to emphasize that, due to its simplicity, this example can not be
used in more thorough analyses of this method.

9. CONCLUSIONS
 The method of reinforcement learning method is the most significant form of adaptive
machine learning systems. This method became very popular in the last decade due to its
thorough theoretical basis, application areas as well as its particular ability to learn without
previously prepared knowledge database about the problem. In this method, the knowledge
database is simply combined with the neuro nets and other methods of supervision.

 The main disadvantage of this method is a relatively slow process of learning. This
problem can be overcome in several ways. One of the ways is to train the system by using
problem simulation and then to apply it in practice. Others use action models, planning
models etc. There are also two other problems besides the above mentioned. The first
problem is caused by the compromise between the research and exploitation phases, and the
second is concerned with the issue of the approximation of the function which determines
the size of the task for which this method can be best applied. Particular solutions to the
mentioned problems already exist due to which it can be reasonably expected to overcome
them in the near future.

 Despite the fact that these problems impose considerable limitation, this method has
proved to be very useful in all cases where it was possible to apply the system of rewarding.
The most important applications are expected to take place in the fields of industrial
control, autonomous and mobile robots, as well as in solving optimization problems and
resource distribution. This method can also be used for making predictions in various
aspects of economy and stock market business.

REFERENCES
[1] R. S. Sutton and A. G Barto. Reinforcement Learning: An Introduction. MIT press –

Bradford Books, Cambridge, MA, USA, 1998.

[2] J. A. Boyan and M. L Littman. Packet Routing in Dynamically Changing Networks: A
Reinforcement Learning Approach. Advances in Neural Information Processing
Systems: Proceedings of the 994 Conference, San Francisco, CA, USA, 1994.

[3] K Doya. Reinforcement Learning in Continuous Time and Space. Neural
Computation, Vol 12, No 1, 2000, pp. 219-246.

[4] L. P Kaelbling., M. L. Littman and Moore A. W. Reinforcement Learning: A Survey.
Journal of Artificial Intelligence, Vol 4, 1996, pp. 237-285.

J. Poliscuk. The analysis of experimental results of machine learning approach

42

[5] M. E. Lewis and M. L. A. Puterman. Probabilistic Analysis of Bias Optimality in
Unichain Markov Decision Process. IEEE Transactions on Automatic Control, Vol
46, No 1, 2001, pp. 96-101.

[6] C. Szepesvari and M. L. A. Littman. Unified Analysis of Value – Function – Based
Reinforcement – Learning Algorithms. Neural Computation, Vol 11, No 8, 1999, pp.
2017-2061.

[7] J. E Poliscuk.. A contribution to methodology of development of Decision Support
Systems and Expert Systems. Faculty of Organization and Informatics, Varazdin,
University of Zagreb, Croatia, 1992.

Received: 22 September 2002
Accepted: 20 November 2003

