UDC:007.52
Original scientific paper

DATA ACCESS ARCHITECTURE IN OBJECT-ORIENTED
APPLICATIONS USING DESIGN PATTERNS

Danijel Matié¢
EUROCOMPUTER SYSTEM, Zagreb
danijel.matic@ecs.hr

Hrvoje Kegalj
Infodom, Zagreb
hrvoje.kegalj@infodom.hr

Dino Butorac
Epsilon, Zagreb
dino.butorac@epsilon.hr

Abstract: This paper is describing data access architecture in a modern object-oriented
application. Complex application solutions have multiple, parallel data sources. Each data
source has specific properties and ways to access data. This architecture, by using already
tried solutions, ensures a simple and flexible way to access different data sources. It’s also
describing singleton, data access object and abstract factory patterns and their interaction
in achieving flexible and scalable data access architecture.

Keywords: design patterns, architecture, object-oriented, data access.

1. INTRODUCTION

Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder, but just keeping the focus on reusability is not enough. In order to
deliver the desired quality to the end user, an application must also exhibit a wide variety of
architectural requirements. Robert Grady categorized these necessary quality requirements
of a software system, referred to as “FURPS ” in his work [5]. The nonfunctional (the
URPS part) requirements he described deal mostly with the architecture of an application,
and he categorizes them in the following way:

e Usability, which is concerned with characteristics such as aesthetics and
consistency in the user interface.

e Reliability, which is concerned with characteristics such as availability, accuracy
of system calculations, and the system’s ability to recover from failure.

e Performance, which is concerned with characteristics such as throughput, response
time, recovery time, start-up time, and shutdown time.

81

Journal of information and organizational sciences, Volume 27, Number 2 (2003)

e Supportability, which is concerned with characteristics such as testability,
adaptability, maintainability, compatibility, configurability, installability,
scalability, and localizability.

In order to meet all these demands the design of the architecture of an application
becomes an important and vital task in a software development cycle.

This paper describes data access architecture in a modern object-oriented application, it
shows, in a problem -solving oriented manner, the transition from the problem, which is
stated as: “to define a flexible, reusable, maintainable and platform independent data
access architecture ”, to the realized solution. In designing the solution we remained at a
level of abstraction, which is independent of the final implementation of the architecture.
So, the implementation of the same architectural solution has been successfully
implemented both in the J2EE and .NET environment.

2. PATTERNS

During the design of the data access architecture presented in this paper we used several
Design Patterns to accomplish the stated problem. Although Design Patterns are not a new
term in modern software development, at this point we will give a short overview about
their history, their structure and what we think is the most important part, the pattern
catalog, which represents a source of knowledge about previously solved design problems.

2.1. HISTORY

Patterns were first introduces by Christopher Alexander [1] in the 1970s. He realized
that there where certain solutions that could be applied over and over again to the same or
similar problem. He also combined these existing solutions to create new solutions to new
problems. His definition of patterns is:

"Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can use
this solution a million times over, without ever doing it the same twice."

Even though Christopher Alexander was talking about patterns in buildings and towns,
his definition remains relevant also in object-oriented software development. This relevance
was discovered by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
popularly called the Gang of Four (GoF), in their book [4], where they described 23
Patterns. Their work started a small revolution, maybe the second after the introduction of
the object-oriented paradigm, and today the usage of patterns has become a widely accepted
industry standard. The patterns described in their book are categorized in three main
categories:

e Creational, concern the process of object creation.

e Structural, deal with composition of classes and objec ts.

e Behavioral, characterize the ways in which classes or objects interact and
distribute responsibility.

Today there is a significant amount of literature dealing with Design Patterns, for
different programming languages and for different problem domains , the majority of them
are built upon the Design Patterns introduced by GoF. The expression “are built upon”
shows us that Design Patterns can exist on different levels of abstraction, which when
properly used can lead to platform independent architectural solution like the one presented
in this paper.

Design Patterns have proved themselves in such a manner, that they were

82

D. Mati¢, H. Kegalj, D. Butorac. Data access architecture in object-oriented applications...

implemented in some programming languages (e.g. Collections Framework in Java
consist of several GoF patterns).

2.2. PATTERN STRUCTURE

To understand and use patterns, knowing their structure is fundamental. Although there
are a wide variety of different pattern description templates, all of them consist of the same
basic structure. This structure is divided into the following 4 parts:

¢ Pattern name

The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two. This is a very important part of the
pattern structure, because it improves our design vocabulary. It also allows us to
talk about specific design problems and solutions on a higher level of abstraction.
Finding an appropriate and «good» name is one of the hardest parts in describing a
pattern.

¢ Problem

The problem describes when to apply the pattern. It describes the problem and the
context. In same cases it also describes some specific design problems or it gives a
description of some class or object structures, which are symptomatic for an
inflexible design. Sometimes the problem includes a list of precondition, which
have to be met in order to apply the pattern.

* Solution

The solution describes the elements, which make up the design, their relationships,
responsibilities and collaborations. It doesn't describe a concrete solution, like
some particular implementation; rather it gives a more abstract solution in order to
be reapplied again in some other appropriate situation.

» Consequences

The consequences are the results and trade-offs of applying a pattern. A pattern is
not a "perfect" solution, in order to solve one problem; the pattern can introduce
other aspects, which could impact the design negatively. So, when applying some
pattern, there has to be a deep understanding on how it will impact the system,
especially its flexibility, extensibility or portability.

2.3. PATTERN CATALOG

Using patterns is an effective way to capture and organize knowledge about solutions to
recurring problems in every domain of life, not only in software engineering. Knowing
patterns not only enriches the vocabulary of a software architect or designer, it also allows a
company to capture knowledge in a formal and descriptive way, which can be used as a
reference or source of solutions for their projects in the future.

Organizing patters in a catalog (Pattern Language is often used as a synonym for a
pattern catalog) helps to effectively organize knowledge in such a manner, that the solution
for recurring problem can be easily found and applied. Also the usage of patterns in
different projects/products can be tracked and managed, which helps to write technical
documentation, because the key architectural problems could have been solved by some
patterns from the catalog, which are well documented.

&3

Journal of information and organizational sciences, Volume 27, Number 2 (2003)

Introducing a new employee in a software company can be a difficult and a long-lasting
task. He has to learn the way the company does its business, the standards the company
uses and the solutions for problems already solved. Solving the problem twice is a typical
scenario with new employees. By using a pattern catalog, the new employee can quickly
get familiar with company standards, concepts and the usual problem domain the company
deals with.

3. DATA ACCESS ARCHITECTURE
3.1. INTRODUCTION

A typical application is composed of many logical packages; such as a user interface
package, a database access package and so forth. Each package groups a set of cohesive
responsibilities (e.g., database access). This is the basic practice of modularization to
support a separation of responsibilities. One way to accomplish this separation of concerns
is to organize the logical structure of the application into discrete layers of distinct, related
responsibilities, with a clean separation of concerns such that the “lower” layers are low-
level and general services, and the higher layers are more application specific.

A layer is a large-scale element, often composed of several packages or subsystem. Our
proposed architecture uses the well known 3-tier approach. There is a lot of
misunderstanding regarding the difference between layers and tiers, in this work we won’t
discuss the difference, rather we state that in this work a layer and a tier are logically the
same, whereby a tier represent a distributed layer implemented at another node.

The three-tier architecture imposed itself as a good and proven solution for the majority
of applications. This approach divides the architecture of an application into three distinct
tiers: presentation, business and persistence. The presentation tier is responsible for the
presentation of data, receiving user events and controlling the user interface. The business
logic tier encapsulates the business functionality of the application. The persistence tier is
responsible for data storage. Besides the widespread relational database systems, existing
legacy system databases are often reused here.

The data access architecture, presented in this paper, is the link between the business
tier and the persistence tier, in other words the business tier uses this data access
architecture to both populate its business objects with the needed data and to store this data
as needed.

3.2. DATA ACCESS OBJECT

Many real world applications consist of business objects, which collaborate in order to
perform some needed business functionality. Some of this business objects need to persist
their data at some point.

A typical implementation of such a business object is shown on Figure 1. As the figure
shows the data access logic is embedded into the business object, so the business object, not
only knows its data, it also has the knowledge of how and where to access it.

84

D. Mati¢, H. Kegalj, D. Butorac. Data access architecture in object-oriented applications...

Business object

Data Access |\ Data Source

Code

Figure 1: Business object, which encapsulates data access logic

Having knowledge usually means having power and is considered as something “good”,
but not in this particular case. The bad thing about this approach is the fact that whenever
the data source is changed, the business object has to be changed as well, in order to access
this new data source. In the worst case, it should be rewritten all over again, but mostly
only one segment must be changed, the data access code. The change of th e business
object does not only demand the change of the actual implementation code, but as well
affects the production environment in which the application is deployed. Usually this means
that the application has to be re-deployed, which in some cases dem and the application to
be stopped for some time. This is not quite flexible, especially if the application represents
a 24/7/365 service, where such a downtime could have negative business impacts.

A known principle says: “Every software problem can be sol ved with another layer of
indirection.” The principle is also true in this case. In order to make the business object
unaware of data source changes, we separated the access logic into a special object, the data
access object (See Figure 2). This data access object implements the necessary program
logic to access some data source.

Business object

Data Access
Data Source

Figure 2: The separation of the data access logic into a separate object

Now the change of data sources does not affect the business object. Another advantage
of this approach is that the development of the application can be divided into more teams,
which will, according to their expert knowledge, work on the data access objects or on the
implementation of business processes in the business logic tier.

This particular solution is called “Data Access Object” and is a well know design
pattern. The class diagram of the DAO pattern is shown on Figure 3.

85

Journal of information and organizational sciences, Volume 27, Number 2 (2003)

winterfanes
AbstractDAD

A

Client -| ConcreteDAD ENCapeLlates -| DataSource

wLBE

Creates,Uses

o LR

L R, valueObject

Figure 3: The DAO pattern defines the following classes:

e Client — represents the data client, which requires access to the data source to
obtain, modify and store data, in our case this is the business object

e AbstractDAO - represents the interface which the ConcreteDAO implements,
providing such an interface assures that the Client, by programming to the
interface, remains intact when the ConcreteDAO is replaced with another
implementation which implements this interface

e ConcreteDAO — represents the key object of this pattern, it abstracts the
underlying data access implementation for the Client, providing transparent access
to the data source.

e DataSource -represents a data source implementation. A data source could be a
database such as an RDBMS, OODBMS, XML repository, flat file system or
another system (legacy/mainframe).

e ValueObject (TransferObject) - represents a data carrier object, which
encapsulates all data read or transferred to the data source, rather then populating
the client with data directly from the ConcreteDAO, we use this object to achieve
low coupling between the client and the data source.

3.3. ABSTRACT FACTORY

Every business object will use its own data access object in order to access data. The
access to one particular data source will generate a certain number of data access objects;
we refer to it as "a family" of objects. This leads to the following conclusion: “Every data
source in the application will create one family of objects”. The business object will use the
same type of object from another family to access data from different data sources. The
business object has to be aware of the different families even though, in one moment, it
uses just one object to access a data source.

This approach is not good because, when introducing a new data source, a new family
of objects has to be created. Also the business object has to be changed in order to be aware
of the new data source object family, which is a similar problem like the awareness of the
data access logic.

86

D. Mati¢, H. Kegalj, D. Butorac. Data access architecture in object-oriented applications...

W 3iConceteDAD abataSource
] ;
21 \get datal, i !
! el 3 et datal o
i
4 \geate VO | | avalueChiect
i 5 : Yoot propertyl :
retrn WO U
WL L P LR EEEEEEEEEE L ;
1 \set propertyl i
71 et datah, u
¥ 8 \get propertyh .
9 store datah, u
i
i

Figure 4: DAO Pattern — Sequence Diagram

We solved this problem by creating a factory object to which we delegated the process
of object instantiation. This approach is called the Abstract Factory Design Pattern. By
using this pattern we are able to isolate the process of object creation from the business
object (this is another example of the “indirection” principle stated before). The class
diagram of the Abstract Factory Pattern is shown on Figure 5.

ient

+ Client ()
+ getCorcreteProduct |) AbstractPy oduct

01| henbstactFciory

«irter faces 0..1]- thedbst actProduct
AbstractFactory
aiber faces
+ restaoncreERootet {) Abstacttocut AbstractProduct

i %

ConcreteFactory ConcreteProduct

+ ConareteFactory ()

+ createConaeteProduct |) ; AbstractProdlct + Concretefrcduct

Figure 5: Abstract Factory Pattern — Class Diagram

87

Journal of information and organizational sciences, Volume 27, Number 2 (2003)

The Abstract Factory Pattern defines the following classes:

e AbstractFactory — declares an interface for operations that create abstract product
object.

e ConcreteFactory — implements the operations to create concrete product objects.

e AbstractProduct — declares interface for type of product objects.

e ConcreteProduct — implements AbstractProduct interface. Also defines a product
to be created by the corresponding factory.

e Client — uses interfaces declared by AbstractFactory and AbstractProduct creating
and using concrete products, in our case this is the business object

aClient : Client theConcreteFactary | Concrete theConcreteProduc: : Concrete
Bactory Product

|
|
|
|1 » createCancreteProduct)

s ConcreteProduct {)

ﬂ

Figure 6: Abstract Factory Pattern — Sequence Diagram

The factory completely abstracts the creation and initialization of the product from the
client. This indirection enables the client to focus on its discrete role in the application
without concerning itself with the details of how the product is created. Thus, as the product
implementation changes over time, the client remains unchanged.

The most important aspect of this pattern is the fact that the client is abstracted from
both the type of product and the type of factory used to create the product. Furthermore, the
entire factory along with the associated products it creates can be replaced in a wholesale
fashion. Modifications can occur without any changes to the client.

By throwing the responsibility of creating certain data access objects over from the
client class to the factory class, the change of the source is made possible. The change of
data source claims the change of the factory class that is used to create DAOs which is
possible to implement into the configuration files.

The negative aspect of this approach is complicated introducing of the new product.
Abstract factory interfac e fixes the set of products that can be created. Adding new kind of
product requires extending the factory interface. Once factory interface is changed all
subclasses of that factory also must be changed.

3.4. SINGLETON

The final step in defining the data access architecture is to ensure the existence of only
one instance of a concrete factory.

All business objects use one concrete factory, depending on the type of data source they
access, in order to access their concrete DAOs. If every business object would access its

88

D. Mati¢, H. Kegalj, D. Butorac. Data access architecture in object-oriented applications...

own factory, it could easily result in an explosion of objects. Also by assuring that there is
only one factory per family we have one single point of control. By changing this single
factory we automatically change the behavior that factory provides for all business objects
that access it.

The solution might be the usage of a global variable; however this approach doesn’t
guarantee that there will be only one instance at the time. A better solution is to transfer the
responsibility of creating one instance to the class itself. The class, by intercepting requests
to create new objects of it, can control the instantiation process in order to assure only one
instance per time. This is the Singleton pattern (see Figure 7).

Singleton

Client “Lise» - unigLelnstance ¢ Singleton

seseessoeessose 34 getiguelnstance () ¢ Shigleton
- Singletan ¢)

+ Client {)
getSincleton {) : void

Figure 7: Singleton Pattern — Class Diagram

Clients access any instance of a singleton only through the getUniquelnstance()method.
How the instance gets created is the responsibility of the singleton class itself. We also
want to be able to control how and when an instance will get created. In OO development,
special object creation behavior is generally best handled in the class constructor. This case
is not different. We can define when and how we construct a class instance and then keep
any client from calling the constructor directly. This is the approach always used for
singleton construction.

3.5. DATA ACCESS ARCHITECTURE MODEL

In order to explain the data access architecture we consider the following hypothetical
application:

The application will use data, which can be found in the local system as well as data
available from other systems. This particular example will access both a RDBMS system
and a XML file repository. So, the application must be able to work with both data sources
in the same way, there should be no coding in the business logic tier in order to switch to
another data source. So, the main problem here is to abstract the data access mechanism in
such a way that the business logic tier is unaware of the actual switch of data sources. Also,
there should be only one point in the application where the switch has to be performed;
multiple points of variation could lead to inconsistent changes.

The solution to this problem is described in the previous parts of this paper and finally
presented on Figure 8.

As can be seen on Figure 8 the central part of the data access architecture is the
AbstractFactory, which is implemented as a Singleton. It knows which data source is
"active" at a particular moment, it knows how to switch to another data source and it is
responsible to create objects of a particular family of objects in order to serve the
BusinessObject. There is only one AbstractFactory, so there is only one point of variation
where the switch between data sources occurs.

The BusinessObject "uses" the AbstractFactory to get its DAO Object. By programming
to the AbstractDAO interface, the BusinessObject is unaware of the underlying data access
mechanism and is not able to tell which data source its been used.

&9

Journal of information and organizational sciences, Volume 27, Number 2 (2003)

SQLDAOand XMLDAO are concrete implementations, which implement the
AbstractDAO interface and implement the data access code for their particular data sources.

SQLFactoryand XMLFactory are concrete factories responsible to create their DAO
objects. They extend the AbstractFactory.

Business Ohject

HUgEM + Business Chiect [)
+ getDv2 [1 woid

- dan winterfacex
0 0.1 | AbstractDAC
wabstract» e
Afstractfactory Jr—
- uniquelnsiance ; AbstractFactory :ma?rrl;ilfj
[reht]
+cra at-al:h'-\u:\() + AbrtractDdD =+ oofere |" ’,l
+getlnstanze [] @ AbstractFactory & ﬂ
- fbstractFactary ([]

L

+createDds [) : AbstractDC
+ SCiFactory()
: SQLDAD

eCreales »

S Factory

+oreate []
+delete []
+read (]
C
]

¥MLFactory +S0LDA0
+update [

)

+xMLFactory []
+createld [] AbstractDaO WMLDAD

___________________________ JHRMDAD)
wCfe ahag e +craate []

+read()

+update [)

+delete []

Figure 8: Data Access Architecture

4. CONCLUSION

Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder, but just keeping the focus on reusability is not enough. In order to
deliver the desired quality to the end user, an application must also exhibit a wide variety of
architectural requirements.

Design Patterns are used to define, document and develop reusable components for
recurring types of problems. Knowledge of Design Patterns enriches the language and
makes communication more efficient during design discussions.

Technology evolves at daily rate, so familiarity with concepts such as Design Patterns at
different abstraction levels gives any architect, designer and developer a powerful tool for
their jobs. Already there are tools that make it possible to document Design Patterns and to
use them in a development environment. Rational XDE is one of them and apart from
saving and documenting Design Patterns (GoF Patterns included) it supports model-to-

90

D. Mati¢, H. Kegalj, D. Butorac. Data access architecture in object-oriented applications...

model and model-to-code transformations.

All of the GoF Design Patterns are independent of programming languages and
technology environments. Not only that they do not age, but also a whole set of new
Patterns can be built based upon them, for some actual technology, programming language
or platform.

This paper described how to build effective and flexible data access architecture with
design patterns.

REFERENCES

[1] Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; Angel, S.
(1977): A Pattern Language, Oxford University Press.

[2] Alur, D.; Crupi, J.; Malks, D. (2001): Core J2EE Patterns: Best Practices and Design
Strategies, Prentice Hall / Sun Microsystems Press.

[3] Fowler, M.; Scott, K. (2000): UML Distilled — A Brief Guide to the Standard Object
Modeling Language - Second Edition, Addison-Wesley.

[4] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. (1995): Design Patterns — Elements of
Reusable Object-Oriented Software, Addison-Wesley.

[5] Grady, R. (1992): Practical Software Metrics for Project Management and Process
Improvement, Prentice-Hall.

[6] Kegalj, H. (2003): The Role of Design Patterns in Building Information Systems,
CASE 15, Opatija.

[7] Larman C. (2002): Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process — Second Edition, Prentice-Hal.

[8] Trowbridge, D.; Mancini, D.; Quic, D.; Hohpe, G.; Newkirk, J.; Lavigne, D. (2003):
Solution Patterns Using Microsoft .NET, Microsoft Corporation.

Received: 17 December 2003
Accepted: 3 July 2004

91

