
UDC: 681.142.2
Original scientific paper

THE STRUCTURE OF A SUBSCHEMA AND ITS XML SPECIFICATION

Ivan Lukovic', Pavle Mogin2
, Miro Govedarica", Sonja Ristlc"

'University of No vi Sad, Yugoslavia
Faculty of Technical Sciences, Novi Sad

{ivan, miro)@iis.ns.ac.yu
2Victoria University of Wellington, New Zeland

School of Mathematical and Computing Sciences, Wellington
pmogin@mcs.vuw.ac.nz

3Business College, Novi Sad, Yugoslavia
sdris tic@uns.ns.acyu

Abstract: The notion of a subschema, as a formal and abstract definition of data,
constraints, and database update activities that are needed to make a transaction program,
is introduced in the paper. A subschema is designed with respect to a user requirement and
an existing relational database schema. A subschema design is done in the course of a
transaction program design. Establishing methods for the design of a transaction program
specification asks for a definition of a general and formal structure of that program. Our
recent research shows that this goal may be achieved by means of XML specifications.
Using XML specifications provides an automatic procedure for generating an executable
specification of a transaction program. In the paper we present a formal way to describe
the structure of a subschema by means of XML. This description supports SQL subschema
specification using concepts of ANSI SQL92 standard.

Keywords: relational database schema, transaction program specification, subschema,
XML specification.

1. INTRODUCTION

The software component of an information system (IS) can be observed as a set of
applications. Each application is a structured set of transaction programs, which is usually
aimed at supporting logically related processes that are performed in the same business
unit. Specifying transaction programs and applications is an important and time-consuming
methodological task in the process of the design of an IS. The design specification of a
transaction program is a formalized description of that program. It is aimed at supporting
the implementation of an end user business task that is defined by means of a user request.
It is usually assumed that the transaction programs will be executed against a database.
Accordingly, the basic structural components of a transaction program specification are: (i)
A specification of the human-computer interface; (ii) A data definition; and (iii) A formal
description of a data processing procedure. In this paper, the data definition part of the
transaction program specification is called a subschema. A subschema is a formal and

69

1. Lukovic, P. Mogin, M Govedarica, S. Ristic. The structure of a subschema ...

abstract definition of data, constraints, and database update activities that are needed to
make a transaction program.

Establishing methods for the design of a transaction program specification and an
application specification asks for a definition of a general and formal structure of those
specifications. It is particularly important if an application development is based on using a
code generator. In order to make a software development process satisfactory effective,
nowadays it is practically inevitable to use an integrated CASE tool with the appropriate
code generators included. At the other hand, a requirement to design a program and
application specifications that are fully independent of a chosen programming and run-time
environment becomes highly important so as to preserve investments in a software de-
velopment for a longer time.

Our recent research shows that this goal may be achieved by means of XML [9] and
UIML [8] specifications. It appears that XML and UIML are suitable languages for
specifying a general structure of a program specification and an application specification.
Using XML and UIML provides an automatic procedure for generating executable
specifications of transaction programs and applications in a chosen programming and run-
time environment. A process of generating an executable XML program and application
specification is shown in Figure 1. The process input elements are: (i) the repository
information of a chosen CASE tool; (ii) UIML DTD Specification [8]; (iii) a common
specification of the application user interface designed using UIML [3]; and (iv) DTDs as
formal representations of the subschema and the application structure. It is supposed that
the repository supports all the concepts necessary to design a program and an application
specification. The process includes two techniques: (i) reading the repository information
and an automatic producing of the corresponding XMLIUIML code and (ii) merging of
XML documents by applying XSL transformations [10]. More details about XML and
UIML usage for these purposes may be found in [3].

UIML DID specifialCim UIMLSpedfica6al of the
Usa- Inretface

DID specificatims of
the Suhsdtema;nd

theApJUca6mSbu:ttre

Gesuating am
l\b-gingofXMLdowmEsts (XSL tnuN<Imatims)

Figure 1. A Concept of Generating Executable Program Specifications

This paper introduces the notion of a subschema and presents a way of formal
specification of a subschema by means of XML. Beside the Introduction and the
Conclusion, the paper contains three additional sections. Section 2 presents a formalization
70

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

of commonly used integrity constraint types, necessary to build both a database schema and
a subschema. A concept of subschema is introduced in Section 3. In Section 4, an XML
DTD specification of a subschema general structure is presented.

2. PRELIMINARIES

A relational database schema is a pair (S, I), where S is a set of relation schemes and 1is
a set of interrelation constraints. It is supposed in the paper that the database schema is
produced using a well-defined methodological approach, and no further attention is paid to
this issue.

Each relation scheme from S is a named triple: N(R, C, KiR)), where N is a unique
name, R is an attribute set, and C is a specification of constraints. A relation scheme will be
often referred simply by its name N. The specification of constraints C is a triple (K, 'feN),
Uniq(N)), where K is a set of keys, 'feN) will be called tuple integrity constraint, and
Uniq(N) is a (possible empty) set of uniqueness constraints. Each key XE K is a set of non
null able attributes from R and each value of X uniquely identifies at most one tuple from an
instance over N and there is no proper subset of X with the same property. Kp(R)E K denotes
the primary key of the relation scheme N. The definitions of the other two integrity
constraint types are given in the separate sections.

The set of interrelation constraints 1may contain various types of constraints, of which
frequently used referential integrity constraint is just one.

In order to define the tuple integrity constraint, let us first introduce notions of: (i) a
domain integrity constraint, (ii) a domain integrity constraint of an attribute in a universal
set and (iii) a domain integrity constraint of an attribute in a relation scheme.

2.1. THE DOMAIN ImEGRITY CONSTRAIm

Informally, a domain of an attribute A is a set of such values that can be assigned to A.
This set can be specified by defining a data type, a maximal data length and a condition
that each constant, which is supposed to be a domain value, has to satisfy. There are two
classes of domains: predefined (primitive) and user defined. Let Dp denote a set of
predefined domains. It is represented by means of implicitly defined, initially existing data
types in a database management system (DBMS), for example, Dp = {Character, Integer,
Real, Logical, Date, ... }. User defined domain is explicitly specified by means of a
previously specified domain, using the principle of inheritance.

Definition 1. Let D be a set of all the domains in a system, such that Dp ~ D holds. Let D
be a domain from D. A domain integrity constraint id(D) is a triple:

id(D) = (Typ(D), Len(D), Con(D)), (1)

where Typ(D) is a super domain (type constraint), Len(D) is a maximal length constraint
and Con(D) is a logical condition. If any component in (1) is not specified for a domain
DE D, it will be denoted with an "empty" symbol d.

71

1. Lukovic, P. Mogin, M Govedarica, S. Ristic. The structure of a subschema ...

Domain constraint for a predefined domain DpE Op is not explicitly specified. Thus,
Typ(Dp) = fl, and Con(Dp) = fl holds, for each DpE Op. It is supposed that there are some
predefined domains in a DBMS for which Len(Dp) has to be specified (for example
Character). Otherwise, Len(Dp) = fl holds.

A specification of the type constraint Typ defines a relation of domain inheritance Typ
<;;;;02 in a following way. (D; Df)E Typ iff D, = Typ(DJ 0 can be considered as well-
defined set of domains, if the graph (0, Typ) is an acyclic structure such that:

(2)

holds. In other words, if 0 is a well-defined set, then type constraint of a new domain is
always specified by using a previously specified domain from O. For each domain, after a
finite number of times the relation Typ is applied, a predefmed domain must be reached. In
this paper, we suppose that 0 is a well-defined set of domains.

For each domain D,E D\Op, Len(DD is specified according the following rules. Len(DD
= /',., iff Typ(Dj)E D\Op, or Typ(Dj)E Op and Len(Typ(Dj)) = fl. Otherwise, Len(Dj) $;
Len(Typ(Dj)), iff Typ(Dj)E Op and Len(Typ(Dj)) "/;fl.

A logical condition Con(D) is composed of atomic conditions, related by logical
operators r-; v, =>,~, and •. Each atomic condition is of the form d Ok, k tl d, or
de {k], ... , kn}, where d is a formal variable, representing a value, kj, ..., k; and k are the
constants and OE{<,>,$;,~,"/;,=}. Complete definitions of an atomic condition and a
condition Con(D) can be found in [5] and [7].

A domain constraint id(D) may be validated for any value d; A validation is denoted as
id(D)(dD, and id(D)(d;)E {T, .l} must hold, where T stands for true, and .1 stands for false.
In the following text, validation rules for id(D)(dD are presented.

• If d, is a null value (missing value), which is denoted by d, = to, then id(D)(dD = T. Thus,
a null value satisfies each domain constraint by default.

• Validation rules for each DE Dp are embedded in a DBMS and no further attention is
paid to them.

• If DE 0 \ Op, then a validation id(D)(dD is defined by the expression:

id(D)(dD = id(Typ(D))(d;) /\ Len(D)(d;) r. Can (D)(dD. (3)

• A validation id(Typ(D))(dj) is performed using the same rules on a domain
specified by Typ(D) in a recursive manner.

• Len(D)(dj) is validated only if id(Typ(D))(dj) = T holds. If Len(D) = fl, then
Len(D)(dj) = T. If Len(D) "/;fl, then Len(D)(dj) = T iff the length of d, is not grater
than the specified Len(D) .

• Con(D)(dj) is validated only if Len(D)(dj) = T holds. Besides, it is supposed that
Can (D) is built in such a way that all the constants from Con(D) satisfy both
Typ(D) and Len (D). If Con(D) = fl, then Con(D)(d;) = T. If Con(D)"/; fl, then
Con(D)(d;) = Tiff d, satisfies the logical condition Con(D), which is transformed

72

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

in such a way that d, replaces all the occurrences of a formal variable d. All the
relational and logical operators are validated in a usual way.

The relation Typ ~D2 allows defining a notion of the domain chain. Let
Ld(D) = (Dn, ..., DJ), n ~ 2, be a sequence of domains, where D, DJ, ..., DnE D and De Dp.
Ld(D) is called a domain chain for D, if DJE Dp, D; = D, and (ViE {2,..., n})(Typ(DD =

Dj-J) holds. The following lemma presents a rule how to validate the domain constraint of a
user-defined domain. The proof may be found in [7].

Lemma 1. Let D be a user defined domain and let Ld(D) = (Dn, .., DJ) be a domain chain
for D. Then

n
id(D)(dp) = id(DJ)(dp) 1\ Len(D2)(dp) 1\ (1\ Con(DD(dp))

i=2
(4)

holds.

Example 1. Let a predefined domain Integere Dp be given. Let domains DMarkGrade and
DPositiveMarkGrade be defined in the following way: id(DMarkGrade) = (Integer, 2, d >
51\ d'5.IO), and id(DPositiveMarkGrade) = (DMarkGrade, Ll, d > 6). A domain chain for
DPositiveMarkGrade is (DPositiveMarkGrade, DMarkGrade, Integer). According to
Lemma 1, id(DPositiveMarkGrade)(dp) will be validated using the formulae:

id(lnteger)(dp) 1\ Len(DMarkGrade)(dp) 1\ Con(DMarkGrade) 1\

Con(DPositiveMarkGrade) =
id(lnteger)(dp) 1\ (2)(dp) 1\ (d ~ 5 1\ d s; IO)(dp) 1\ (d ~ 6)(dp).

2.2. THE DOMAIN INTEGRITY CONSTRAINT OF AN ATTRIBUTE IN A
UNIVERSAL SET

,

Let a universal relation scheme (U, C) be given, where U = {Ad i E {J, ... ,n}} is a
universal set of attributes and C is a set of global constraints. Let D be a set of all domains
and let id(D) = {id(D) I DE D} denote a set of all domain constraints, where id(D) ~ C
holds. Each constraint from id(D) is specified independently of any attribute from U.

A domain function Domiy. U-7D associates each attribute AE U with a domain from D.
Consequently, Dom., associates the corresponding domain constraint id(D) with A. Let
Dom(U, A) denote a domain D for which Domu(A, D) holds. Then a domain constraint
id(Dom(U, A)) will be called the domain constraint of an attribute in a universal set of
attributes. id(Dom(U, A)) may be validated for an attribute A value for each tuple
t« Tuple(U), which is denoted as id(Dom(U, A))(t[A]). Validation is performed according to
rules for id(D), presented in Lemma 1.

2.3. THE DOMAIN INTEGRITY CONSTRAINT OF AN ATTRIBUTE IN A
RELATION SCHEME

We suppose that a database schema (S, I) is designed by a decomposition of a universal
scheme (U, C), and that it should be logically equivalent to (U, C). Therefore, the equality

73

I. Lukovic, P. Mogin, M Govedarica, S. Ristic. The structure of a subschema ...

of attribute sets U = UR j and the equivalence of integrity constraints C == I U

NjES

[UC j Ishould hold.
NjES

Let an attribute AE U belong to two different relation schemes N; and N, from S. It may
be supposed that the domains for A in R; and Rk need not be the same, but both of them
should be the subsets of a domain, defined by Dom(U, A). Therefore, a domain function
DOmR.:Rr~D is introduced to associate each attribute AERj with a domain from D. Let

J
Dom(N,-, A) denote a domain D for which DOmRCA, D) holds. The function DOmR. must be

J J
specified in such a way that Dom(U, A)E Ld(Dom(N,-, A)) holds, for each A in any N,-from
S. It follows that the logical implication id(Dom(N,-, A)) 1= id(Dom(U, A)) must hold. The
proof of the statement may be found in [7].

Domain constraint id(Dom(N,-, A)) will be called the domain constraint of an attribute
in a relation scheme. id(Dom(N,-, A)) may be validated for an attribute A value for each
tuple te Tuple(Rj), which is denoted as id(Dom(U, A))(t[A]). A validation is performed
according to rules presented in Lemma I.

2.4. THE TUPLE INTEGRITY CONSTRAINT

Let us first introduce the notions of (i) a null value constraint, and (ii) an attribute value
constraint, and then formulate a tuple integrity constraint.

For an attribute A one may expect that null values are allowed in one, but disallowed in
an other relation scheme. This possibility can additionally restrict a set of allowed values
for an attribute in a relation scheme. Let Null(A';" A) be a logical parameter, which denotes a
null value constraint of an attribute A in a relation scheme N,-. Thus, Null(N;, A)E {L, T}
holds. If it is Null(N;, A) = T, null values for A in an instance over A'; are allowed.
Otherwise, if Null(N;, A) = 1., null values are disallowed.

In certain cases, a value of Null(N,-, A) may be a consequence of the appropriate null
value constraint Null(U, A) in a universal relation scheme only. However, a value of
N ull(A';, A) may also depend of the existence of the other constraints, such as keys.

A null value constraint can be validated for any value from the domain of an attribute
AERj- Validation of a value d.; which satisfies id(Dom(N,-, A)), is denoted by Null(N,-, A)(d;).
Validation rules are defined as follows:

• Null(N,-, A) = T => Null(N,-, A)(d;) = T; and

• Null(N,-, A) = 1. => (d, = ta ¢=> Null(A';, A)(d;) = 1.).

Specifications of a domain constraint of an attribute in a relation scheme and a null
value constraint together build a new integrity constraint type, which is called the attribute
value constraint. Let 'l(N,-, A) be an attribute value constraint. It is a structure given in the
following way:

'l(A';, A) = (Dom(N,-, A), Null(N,-, A)). (5)

74

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

Both components of 1(~, A) are mandatory.

A validation rule for an attribute value constraint IS defined as follows: 1(0,
A)(t[A]) = id(Dom(Aj, A))(t[A]) 1\ Null(~, A)(t[A]), where t[A] is an A value of a tuple t
over the set of attributes Rj- The set of all values satisfying 1(~, A) is denoted as
DomaintNi, A).

Some attribute values from a tuple over R;may be, in some cases, logically related. This
kind of a relationship is modeled by a logical condition, denoted as Con(0). Con(~) is
composed of atomic conditions, related by logical operators 1\, v, =>,~, and -.. Each
atomic condition is of the forma] 8 a2, where a] and a2 are the terms and
BE {<, >,~,~,:f., =}. A term is defined recursively. A term is either (i) a constant
ke Domaintjl; A), where AER;, or (ii) an attribute AER;, or (iii) a function j(ah".,an),
where a], ...,a,. are previously defined terms andfis an n-ary function that is computable on
the level of a single tuple over R; Each term is obtained by applying aforementioned rules a
finite number of times. Con(0) may also be an "empty" condition. In this case, it is marked
with a symbol I'l. Con(~), defined in such a way, is called the logical condition of a
relation scheme. Complete definitions of an atomic condition and a condition Con(~) can
be found in [5] and [7].

If a tuple te. Tuple(R;) satisfies the attribute value integrity constraint for each A E R;,
then it may be used to validate a logical condition of a relation scheme Con(0). A
validation is denoted as Con(~)(t). Validation is a logical function, i.e. Con(Aj)(t)E {T, .L}
must hold, for each tuple t from the set {tETuple(R;) I ('rjAER;)(1(~, A)(t[A]) = T)}.
Validation rules are defined as follows.

• If Con(~) = .:1, then Con(0)(t) = T.

• If Con(0) :f. I'l, then each attribute A in Con(~) is replaced by a corresponding value
t[A]. After that, the values of all the functions in Con(0) are calculated. Finally,
Con(Aj)(t) = T will hold iff t satisfies such a transformed condition, where relational and
logical operators are validated in a usual way.

Definition 2. A tuple integrity constraint 1(0) over a relation scheme 0 is a pair

(6)

where {1(~, A) IAER;} is a set of attribute value constraints and Con(0) is a logical
condition of a relation scheme.

A tuple integrity constraint 1(0) may be validated for any tuple t over the set of
attributes R;, which is denoted as 1(0)(t). A validation rule is defined by the logical
expression:

1(0)(t) = (A 1(0, A)(t[A])) 1\ Con(~)(t),
AERJ

(7)

where te Tuple(Rj).

75

I. Lukovic, P. Magin, M Gavedarica, S. Ristic. The structure of a subschema ...

By analyzing the syntax rules used to formulate Con(N;) and Con(D), it should be
noticed that there are examples of logical constraints, which can be equivalently expressed
by means of both Con(Aj) and some conditions of the type Con(Dom(N;, A)), AERj- In the
same way, it is possible to equivalently express the constraint Null(N;, A) == 1-, by
incorporating the expression A #- r.v into Con(Dom(N;, A)) and leaving Null(H;, A) == T. In
order to avoid such ambiguousness, we suppose that ConCH;) is built in such a way that it
expresses only those constraints that could not have been expressed by means of any
domain constraint conditions Con(Dom(N;, A)), AE Rj- Besides, we suppose that if Null(N;,
A) == T holds for an attribute AERj, then there must be a tuple te Tuple(R;) for which
Con(N;)(t) == T and t[A] == to hold. If Con (H;) satisfies both aforementioned conditions, it is
called a well-defined condition. More details may be found in [7].

Example 2. Let a relation scheme ORDER(R, C, KP(R)) be given, where R == {OrdJd,
Ordate, CustId, Origin, Total}, and C == ({Ordld}, r(ORDER), 0). Let the tuple integrity
constraint be defined in the following way:

• 1(ORDER) == 1(N]) == ({ t(N], A) IAER]}, Custld> 90000 ~ Total ~ 10000,00);
• t(N], Ordld) == (DOrdJd, 1-), id(DOrd1d) == (Integer, 6, d ~ 1);
• t(Nj, Ordate) == (DOrdate, 1-), id(DOrdate) == (Date, L1, L1);
• t(Nj, Custld) == (DCOJd, 1-), id(DCOld) == (DCustld, L1, d ~ 1000);

id(DCustld) == (Integer, 5, d ~ 1);
• t(N], Origin) == (DOrigin, 1-), id(DOrigin) == (Character, 1, dE {'d', 'f});

• t(Nj, Total) == (DTotal, 1-), id(DTotal) == (Real, L1, d ~ 0);

The values of attribute Origin determine whether a domestic or foreign customer issued
a particular order, where'd' stands for domestic and 'f for foreign. The logical condition
Con(N]) requires that a total amount of an order for a customer with Custld grater than
90000 must be grater than or equal 10000,00.

2.5. THE UNIQUENESS INTEGRITY CONSTRAINT

Definition 3. Let a relation scheme H;(Rj, Cj) be given. A uniqueness integrity constraint is
the expression of the form Unique(N;, X), where X sRj holds.

A uniqueness integrity constraint Unique(H;, X) may be validated for any relation rj
defined over the attribute set Rj, which is denoted as Unique(N;, X)(lj). Uniqueness
integrity constraint is satisfied iff the following two conditions hold:

(8)

(\7'X' c X)(-(8)). (9)

Let the set Kj of all keys of a relation scheme N;(Rj, Cj) and a set of attributes X sRj be
given. According to the definitions of a uniqueness constraint and a key constraint, it
follows that the equivalence (Uniqueus·, X) /\ (\7'AEX)(NulI(Aj, A) == 1-)) =XE Kj holds
([7]). Hence, we suppose that the set of all relation scheme uniqueness constraints Uniq(H;)
== {X c Rj I Unique(N;, X)} contains only those X for which (\7'KE Kj)(K '± X) holds.

More details, concerning aforementioned constraint types can be found in [5] and [7].
76

Journal of' information and organizational sciences, Volume 26, Number 1-2 (2002)

2.6. THE CONSTRAINT SPECIFICATION

The common components 'of the specification of a constraint OE I U [UCj Iare: a
NjES)

constraint type denoted as ConType, where ConTvpee {Key, Unique, T,

Referentiallntegrity, ...}, and a nonempty set of four-tuples:

T(o)={ (N], Ph Atd (op /1, act/I) I iI C. l}), ..., (Nm,Pm,Atm, {(oPmim,actmim)I i; C. l})}. (10)

In the four-tuple (0,P» At), {(op), act)) I i) c. l}), 0 is the name of a relation scheme

that is spanned by 0, P/= {referenced, referencing, ... } is the role of 0 in 0, At) is a set or
sequence of attributes from R) that are relevant for 0, and {(oP)~' act)~) I i) c. l} is a set of

pairs (critical operation, activity). An attribute A is relevant for 0 if 0 is used to check
values of A. An operation Op)~E{insert, delete, update} is a critical one if it can violate a

constraint and aC~~E{NoAction, Cascade, Se tDefau It, SetNull} is an activity for preserving
data consistency. The activity acl.i~is applied to preserve data consistency during an attempt
of the constraint violating by means of op)~. Besides, specifications for some constraint

types may contain, as the third component, an optional logical condition denoted as
ConstCondition.

3. THE SUBSCHEMA
A subschema is designed with respect to a user request and an existing relational

database schema. Accordingly, a subschema describes data of a relatively small part of a
database, and consists of a set of relation schemes and a set of interrelation constraints.
Each relation scheme of a subschema consists of a set of attributes and a set of local
constraints. A role and a set of modifiable attributes, defining possible database update
activities, are also assigned to each relation scheme. Each relation scheme of a subschema
may be considered as a view on a single base relation scheme. Subschema instances are not
materialized.

The goal of a subschema design is to satisfy at least one user request. So, for a database
schema there may exist at most as many subschemas as there are identified user requests.

Definition 4. A subschema is a named pair Pk(Sk, Ik), where Pk is a subschema name, Sk is a
set of relation schemes, and Ik is a set of interrelation constraints. The set of relation
schemes of a subschema Pk is

s, = {N/(R/, C/, Kp(R/), Role(Pk, N/), Mod(Pk, Nh, Sr(Pk, N/)) I ie {l ,..., n}}, (11)

where N/ is a scheme name, R/ is an attribute set, c; is a specification of constraints of the
form (Ki\ T(N/), Uniq(N/)), and Kp(Rh is a primary key. Role(Pk, N/) is a set of relation
scheme roles in the subschema Pi; and Mod(Pk, N/) is a set of attributes that may be
modified. Sr(Pk, Nh is a function from the set of relation schemes Sk into the set of relation
schemes S. ([4], [5], [6], [7])

Further explanations of Sr(Pk, N/), Role(Pk, N/) and Mod(Pk, N/) follow.

77

I. Lukovic, P. Magin, M. Govedarica, S. Ristic. The structure of a subschema ...

Sr(P k» Nh associates each relation scheme N/E Sk with a relation scheme ~E S for
which R/ ~ R; holds. The relation scheme N; will be called the corresponding relation
scheme for the relation scheme Nt A subschema designer defines the mapping Sr(Pk, N/).
It is supposed that database schema and subschema design guarantee that for each N/ in
any Pk there is at least one ~E S such that R/ ~ R; holds.

Role(Pk, Nh determines the operations that may be performed on an instance of the
relation scheme Nt These operations may be built into a transaction program made using
the concepts of a subschema Pi. A set of relation scheme roles is a nonempty set, and
Role(Pk, Nh ~ {r, i, m, d}, where:

• r stands for data reading or referencing;

• i stands for data insert;

• m stands for data modification; and

• d stands for data deleting.

A subschema Pk is intended for database querying only if (\:f N/E Sk)(Role(Pk,

Nh = {r}) holds, and it is intended for database updating otherwise.

The set Mod(Pk, Nh contains those attributes of the relation scheme N/ that may be
modified. If me Role(Pk, Nh , then Mod(Pk, Nh must not equal 0.

According to the definition, a subschema is merely a design tool that is needed for a
correct transaction program design.

Example 3. Suppose a database schema (S, I) and subschemas PI(SI, II), PiS], 12), P3(S3, 13)
are given, where:

• S= {ORDER(Rj, CI, KP(RI))' SHIPMENT(R2, C2, Kp(R2)), CUSTOMER(R3, C3,

Kp(R3))};
• RI = {Ordld, Ordate, Custld, Origin, Total};
• CI = (Kj, T(NI)' Uniq(NI))= ({ {Ordld}}, 'l(ORDER), 0); K/RI) = {Ordld};
• R2= {Shipld, Ordld, ShipDate, ShipTotal};
• C2 = (K2, T(N2), Uniq(N2)) = ({ {ShipId}}, 'l(SHIPMENT), 0); KiR2)

{ShipId};
• R3= {CustId, CustName, CustAdrr};
• C3 = (K3, T(N3), Uniq(N3))= ({{CustId}}, 'l(CUSTOMER), 0); KiR3) =

{Custld});
• 1= {ORDER[CustldJ c CUSTOMER[CustldJ, SHIPMENT[OrdldJ c ORDER [OrdldJ}.

• SI = {Dom_Shipped_Order(R/, C/,...),Shipment(R/, C/,...)};
• R/ = {Ordld, OrDate, CustId, Origin, Total};
• C/=(K/, T(N/), Uniq(N/))=({ {Ordld}}, 'l(Dom_Shipped_Order), 0);

Kp(R/)={Ordld};
• R/ = {Shipld, Ordld, ShipDate, ShipTotal};
• C/ = (K/, T(N/), Uniq(N/)) = ({{ShipId}}, 'l(Shipment), 0); Kp(R/)

{Shipld};
• Role(PI, Dom_Shipped_Order) = Role(PI, Shipment) = {r};

78

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

• Mod(P}, Doni Shipped Orderi = Mod(P}, Shipment) = 0;
• Sr(P], Dom_Shipped_Order) = ORDER;
• Sr(PI, Shipment) = SHIPMENT;

• II = {Shipment[OrdIdJ s;; Dom Shipped _Order[OrdIdJ,
Dom_Shipped_ Order[OrdIdJ s;; Shipment[OrdIdJ};

• S2 = {Order(R/, C/,...),CustomerCR/, C/,...)};
• R/ = {OrdId, OrDate, CustId, Origin, Total};
• C/ = (K/, r(N/), Uniq(N/)) = ({ {OrdId}}, reOrder), 0); K/R/) = {OrdId};
• Role(P2, Order) = {i, r};
• Mod(P2, Order) = 0;
• Sr(P2, Order) = ORDER;
• R/ = {CustId, CustName, CustAdrr},
• C/ = (K/, r(N/), Uniq(N/)) = ({ {CustId}}, reCustomer), 0); Kp(R/)

{CustId});
• Role(P2, Customer) = {r};
• Mod(P2, Customer) =0;
• Sr(P2, Customer) = CUSTOMER;

• 12 = {Order[CustIdJ s;; Customer[CustIdJ};

• S3 = {Order(R/, C/,...),Shipment(R/, C/,...)};
• R/ = {OrdId, OrDate, Custld, Origin, Total};
• C/ = (K/, r(N/), Uniq(N/)) = ({ {OrdId}}, reOrder), 0); K/R/) = {OrdId};
• Role(P3, Order) = {r};
• Mod(P3, Order) = 0;
• Sr(P3, Order) = ORDER;
• R/ = {ShipId, OrdId, ShipDate, ShipTotal};
• C/ = (K/, r(N/), Uniq(N/)) = ({ {ShipId}}, reShipment), 0); Kp(R/)

{ShipId};
• Role(P3, Shipment) = {i, r};
• Mod(P3, Shipment) = 0;
• Sr(P3, Shipment) = SHIPMENT;

• 13 = {Shipment[OrdIdJ c Order[OrdIdJ};

Subschema PI is aimed for data queries only, P2 is aimed for order entry, and P3 is
aimed for entry of shipments that are initiated by orders. Subschema P I is associated with a
business unit whose task is to control domestic orders. In this business unit users are not
interested in customer data except for customer id number. The domain constraint of
attribute Origin in subschema PI should be more restrictive than the corresponding
constraint in the database schema, because only the orders of domestic customers are
required. PI also contains the inclusion dependency Dom_Shipped_Order[OrdIdJ s;;
Shipment[OrdIdJ that forces selecting only those order tuples from a relation over ORDER
that are referenced by some shipment tuples.

Suppose all the tuple integrity constraints that are embedded into relation schemes
whose name has the same meaning are the same, except the domain constraint of attribute
Origin. Let a tuple integrity constraint reORDER) be defined as in Example 2, and a tuple
integrity constraint of scheme Dom _Shipped_Order be defined as follows:

79

1. Lukovic, P. Magin, M Govedarica, S. Ristic. The structure of a subschema ...

• !(Dom_Shipped_Order) = !(N/) = ({ !(N/, A) IAER/}, CustId > 90000 => Total ~
10000,00);
• !(N/, Ordld) =!(NJ, Ordldy;
• !(N/, Ordate) =!(NJ, Ordatey;
• !(N/, Custld) =!(NJ, Custld);
• !(N/, Origin) = (DDOrigin, 1-), id(DDOrigin) = (DOrigin, L1, d='d'});
• !(N/, Total) =!(NJ, Total);

In subschema PJ, Domain(Dom_Shipped_Order, Origin) = {'d'} holds, whereas in the
relation scheme Order of P2, P3 so as in the relation scheme ORDER of the database
schema, Domain(Order, Origin) = Domain(ORDER, Origin) = i'd', 'f} holds.

4. XML SPECIFICATION OF A SUBSCHEMA

The notion of a subschema and its formal structure are introduced in Section 3. That
structure can be formally expressed by means of XML syntax [9]. An XML DTD formal
specification of a subschema structure is shown in Figure 2. It is used to syntactically
validate any automatically generated XML specification of subschema. The subschema
concepts and the corresponding DTD concepts are shown in Table 1 in order to help in
understanding the specification shown in Figure 2.

Table 1. The List of Subschema Concepts with Its XML DTD Equivalents

The Subschema Concept Name of the DTD Element Name of the DTD attribute

PiSk, Ik) subschema subschName
OEIk, T(o) subschConstraint conName, conClass

N/(R/, C/, ..., Sr(Pk, N/»ESk relScheme schemeName,
dbSchemeName

OEC/, T(o), KpCR/) scheme Constraint conName, conClass
XERole(Pk, N/) role roleID

AER/, Dom(N/,A), MOd(Pk, attribute attName, attMod
N/)

DpE Dp, id(Dp) predefDomain type, maxLength
DE D \ Dp, id(D) domain length

Con(D) domCondition -

OEC/, T(o), id(Dom(N/,A», attrConstraint conName, conClass
Kn(R/)

(~, PJ,A/.i, {Cop), act) I ~ ~ consRelScheme schemeName, schemeRole
l})

AEA1J conSchAttr conAttName
(op), act) conValActivity -

op/J operation operType
act) action act Type

Con(D) attCond -
Con(N/,) schCond -

ConstCondition for an OEIk sbcCond -
- validateTime validateTimeType

80

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

The XML DTD specification of a subschema is designed in a way to reach a compromise
between two goals. The first one was to support all the concepts, introduced in Sections 2
and 3. The other one was to support such a subschema specification that would be in
accordance with the syntax of ANSI SQL92 standard [2]. This way, DTD shown in Figure
2 is somehow more general than the specifications introduced in Sections 2 and 3. For
example, it enables, in accordance with SQL92, defining of validation time for each
subschema constraint (see the element Validate'Iime in DTD). Also, it generally offers
more than one way to specify the same subschema constraint using SQL92 syntax. For ex-
ample, if a key consists of only one attribute, the corresponding key constraint can be
specified either at the relation scheme level, using the element scheme Constraint, or at the
attribute level, using the element attrConstraint.

However, DTD shown in Figure 2 is, in some details, less restnctrve than the
structuring rules for subschema given in Section 3, and the specifications of various types
of constraints, given in Section 2. To illustrate the claim, let us consider a CHECK
constraint that implements the logical condition of a tuple constraint. It may be defined
within the element schemeConstraint specifying a value 'CHECK' of the attribute conClass.
However, the condition schCond may be omitted, despite the fact that it should be defined.
Oppositely, if a primary key is defined using the element schemeilonstraint, then schCond
must not be defined, but the DTD syntax does not cover this rule. Next, note that the syntax
rules for Con(D) and Con(H;-) are not embedded into the DTD, since the elements dom-

<!DOCTYPE subschema [
<!ELEMENT subschema (relScheme+, subschConstraint*»
<!ELEMENT relScheme (role+, attribute+, schemeConstraint*»
<!ATTLIST relScheme

schemeName CDATA #REQUIRED>
dbSchemeName CDATA #REQUIRED>

<!ELEMENT role EMPTY>
<!ATTLIST role

roleID (readlinsertlmodifyldelete) #REQUIRED>
<!ELEMENT attribute ((domainlpredefDomain), attrConstraint*»
<!ATTLIST attribute

attName CDATA #REQUIRED
attMod (yeslno) #REQUIRED>

<!ELEMENT domain ((predefDomainldomain), domCondition»
<!ELEMENT predefDomain EMPTY>
<!ATTLIST predefDomain

type (STRING IINTEGER IREAL IDECIMAL IBOOLEAN IDATE ICDATA)
#REQUIRED

maxLength CDATA "">
<!ATTLIST domain

length CDATA "">
<!ELEMENT domCondition (#PCDATA»
<!ELEMENT attrConstraint (consRelScheme+,attCond?,

validateTime)>
<!ELEMENT schemeConstraint

length CDATA "">
<!ELEMENT domCondition (#PCDATA»
<!ELEMENT attrConstraint (consRelScheme+,attCond?,

validateTime)>
<!ELEMENT schemeConstraint

(consRelScheme+,schCond?,validateTime)>
<!ELEMENT subschConstraint

(consRelScheme+,sbcCond?,validateTime)> 81
<!ELEMENT consRelScheme (conSchAttr+, conValActivity+»

1. Lukovic, P. Mogin, M Govedarica, S. Ristic. The structure of a subschema ...

Condition, attCond and schCond have been left unstructured. Embedding the syntax rules
for ConCD) and ConCA',) into the DTD represent a further research task. We believe that it
would be very difficult and practically even unnecessary to cover all the formal rules by
means of a DTD. Besides, it is expected that almost all structuring rules should be em-
bedded into a dictionary of the selected CASE tool.

schemeRole (referencing Ireferenced) #REQUIRED>
<!ELEMENT conSchAttr EMPTY>
<!ATTLIST conSchAtt

conAttName CDATA #REQUIRED>
<!ELEMENT conValActivity (operation, action»
<!ELEMENT operation EMPTY>
<!ATTLIST operation

operType (ON_UPDATE ION_DELETE ION_INSERT) #REQUIRED>
<'ELEMENT action EMPTY>
<!ATTLIST action

actType (NO_ACTION ICASCADE ISET_DEFAULT ISET_NULL) #REQUIRED>
<!ELEMENT attCond (#PCDATA»
<!ELEMENT schCond (#PCDATA»
<!ELEMENT sbcCond (#PCDATA»
<!ELEMENT validateTime EMPTY>
<'ATTLIST validateTime

validateTimeType (INITIALY DEFERRED I
INITIALY IMMEDIATE_NOT_DEFERRABLEI
INITIALY_IMMEDIATE_DEFERRABLE)

"INITIALY IMMEDIATE NOT DEFERRABLE">
<!ATTLIST attrConstraint

conName CDATA #REQUIRED

conClass(NOTNULLICHECKIPRIMARY_KEYIUNIQUEIREFERENCES)#REQUIRED>
<!ATTLIST schemeConstraint

conName CDATA #REQUIRED
conClass (CHECKI PRIMARY_KEY IUNIQUE IREFERENCES) #REQUIRED>

<!ATTLIST subschConstraint
conName CDATA #REQUIRED
conClass (ASSERTION) #REQUIRED>

<!ATTLIST subschema
subschName CDATA #REQUIRED>

l>

Figure 2. XML DTD Specification of The Subschema Structure

For the purpose of the paper, we have chosen a DTD concept instead of more flexible
XML Schema concept to express the subschema structuring rules. The only reason for it is
that an equivalent XML Schema specification is too complex to be presented in the paper in
detail.

5. CONCLUSION

In this paper, the notion of a subschema that represents the data definition part of a
transaction program specification is introduced. The common constraint types that are used
to specify a subschema constraints are also presented in a formal way. A subschema is a
structure, expressed by means of relational database schema concepts, extended by the
specification of the allowed database update activities, and a mapping that uniquely bonds

82

Journal of information and organizational sciences, Volume 26, Number 1-2 (2002)

subschema relation schemes with the database relation schemes. A formal way to describe
the structure of a subschema by means of XML is presented in the paper. This description
supports SQL subschemaspecification using concepts of ANSI SQL92 standard.

We have chosen the concepts of the relational data model to define the notion of a
subschema, since we needed its powerful mathematical formalism to express our ideas and
solutions in a precise way. But we believe that our results may be applied to other data
models, too. We propose that subschema, as a part of a transaction program should have all
the necessary constraints defined, despite the fact that all database constraints should be
implemented and validated under a DBMS. By embedding all the relevant database
constraints into a subschema, we obtain a possibility to validate them earlier than a DBMS,
i.e. just after a user action which may cause a constraint violation. It could be one of the
ways to make a user interface more "friendly". In order to reach this goal, it is necessary to
provide formal rules, which will guarantee that the set of subschema constraints will imply
all those database schema constraints that might be violated by the allowed database update
operations.

The idea of using code generators to produce transaction programs automatically is not
a new one. One of the problems concerning this idea is that many of the current code
generators are highly specialized for only one programming environment. Using such
generators makes application software highly dependent on the chosen programming
environment. Our main idea is to build a code generator, as a part of an integrated CASE
tool, which can produce executable program specifications that are mostly independent of a
particular programming environment. We propose using of XML, as a specification
language for this purpose [3]. In this paper, we have represented the formally defined
structure of a subschema by means of XML. One of the open questions is how to formalize
and precisely specify by means of XML the other constraint types, not mentioned in the
paper, but used in the software design practice.

REFERENCES
[I] Codd, E. F. (1990): The Relational Model for Database Management Version 2,

Addison -Wesley -Publishing -Company, USA

[2] Date, C. J. (1994): A Guide to the SQL Standard, Addison-Wesley Publishing
Company, USA

[3] Govedarica, M. (2001): An Automated Development of Information System
Application Prototypes, PhD Thesis, University of Novi Sad, Faculty of Technical
Sciences, Novi Sad, Yugoslavia

[4] Lukovic, I.; Mogin P. (2000): On The Role of Subschema as A Component of The
Implementation Specification of A Program, VI Symposium on Computer Science
and Information Technologies YUINFO, Kopaonik, Yugoslavia, Proceedings on CD
ROM

[5] Mogin, P.; Lukovic, I.; Govedarica M. (2000): Database Design Principles,
University of Novi Sad, Faculty of Technical Sciences & MP "Stylos", Novi Sad,
Yugoslavia

83

1. Lukovic, P. Mogin, M Govedarica, S. Ristic. The structure of a subschema ...

[6] Mogin, P.; Lukovic, 1. (1999): An Approach to Database Design, International
Journal of INDUSTRIAL SYSTEMS, Vol. 1, No.2, Novi Sad, Yugoslavia 59-68

[7] Ristic, S. (in progress): A Research of Subschema Consolidation Problem, PhD
Thesis, University of Novi Sad, Faculty of Economics, Subotica, Yugoslavia

[8] UIML / User Interface Markup Language - Draft Specification, Version 2.0 Harmonia
Inc,2000

[9] XML/ Extensible Markup Language, http://www.w3.org/XML/

[10] XSL / Extensible Stylesheet Language, http.r/www.ws.org/TRrxsl/

Received: 9 January 2003
Accepted: 9 October 2003

84

