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Original scientic paper

It is well known that most air purifying methods imply the passing of air 
ow, as a pollutant carrier, through a control unit which retains impurities. 
Properties of the air control unit and the purifying process itself therefore 
differ depending on the nature of present impurities, as well as on ow-
thermal properties of air as the carrier of those impurities. For the assumed 
conditions, in terms of production of a pollution source and presence of 
different polluting substances in the form of dust, aerosols, gas, vapor 
in the exhaust gas, etc., an integrated gas purier has been designed and 
tested, comprising a module for purication of mechanical impurities and 
a module for purication of gaseous impurities. The purier is compact 
and has a universal application while simultaneously retaining several 
different pollutants. These requirements were met through application of 
the ltration and adsorption methods. On the formed experimental line 
with an adequate system of acquisition, lter-adsorber type gas cleaners 
in the function of ow-thermal parameters of gas mixture were tested 
simultaneously. Experimental data were used for training the radial basis 
function neural network, which was then used to model properties of the 
process and gas cleaner.

Modeliranje parametara procesa pročišćavanja zraka proči-
stačem tipa lter-adsorber neuronskom mrežom

Izvornoznanstveni članak

Poznato je da većina metoda pročišćavanja otpadnih plinova podrazumijeva 
prolazak struje otpadnog plina kao nositelja zagađenja kroz neki pročistač 
koji vrši zadržavanje nečistoća. Karakteristike pročistača i samog procesa 
pročišćavanja se zato razlikuju zavisno od vrste i prirode prisutnih 
nečistoća kao i od strujno termičkih osobina zraka kao nositelja tih 
nečistoća. Za predpostavljene uvjete, u smislu produkcije izvora emisije, 
prisustva različitih onečišćujućih tvari u obliku prašine, aerosola, plinova i 
para u otpadnom plinu, itd.., Koncipiran je i ispitivan integrirani pročistač 
plinova koji se sastoji iz modula za pročišćavanje mehaničkih nečistoća 
i modula za pročišćavanje plinovitih nečistoća. Pročistač je kompaktan, 
i ima univerzalnu primjenu uz istovremeno zadržavanje više različitih 
onečišćujućih tvari. Realizacija ovih zahtjeva ostvarena je primjenom 
metoda ltracije i adsorpcije. Na formiranoj eksperimentalnoj liniji s 
odgovarajućim sustavom akvizicije, simultano su izvršena ispitivanja 
pročistača otpadnih plinova tipa lter-adsorber u funkciji strujno termičkih 
parametara mješavine. Eksperimentalno dobiveni podaci iskorišteni su 
za obučavanje neuronske mreže radijalnih bazisnih funkcija, kojom je 
izvršeno modeliranje karakteristika pročistača i procesa.
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1. Experiment

Essence of experimental work is the formation of an 
original examination line, and the testing of interaction 
of integrated air cleaner, which contains a lter for 
mechanical impurities and an adsorption lter, with 
respect to mechanical and gaseous test contaminants, and 
air as the carrying gas.

The module of mechanical purier consists of the 
panel industrial lter, internal labels 109.122.73/20, 
or F20, designed for the purpose of experiments by 

a domestic manufacturer of lter products “Frad”, 
Aleksinac, Serbia.

Dimensions of the lter partition are 600x600, mm, 
and the ll consists of lter paper with specic load of 
120, gr/m2, with gas ow > 750, l/m2s, with pressure 
drop down to 200 [Pa], manufactured by NEENAH 
GESSNER, Germany, with nominal neness of ltering 
F = 13.5 - 19, µm.

The module of gas pollutants air cleaner contains 
an adsorption active coal (charcoal) ll in the form of 
cassette groups with 12 cartridges. The pelletted active 
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Symbols/Oznake

RBF - Radial basis function Neural Network 
- Neuronska mreža radijalnih bazisnih 
  funkcija

nI - entrances
- ulazi (ulazni neuroni)

nH - hidden neurons
- skriveni neuroni

nO - output neurons
- izlazni neuroni

ŷ
l

- output of the ‘Ith’ neuron in exit layer
- izlaz ‘I-tog’ neurona u izlaznom sloju

φ(u, m
i
, σ

i
) - the output of the ‘Ith’ hidden neuron

- izlaz ‘I-tog’ skrivenog neurona

u - instant input
- trenutni ulaz

a
l0

- the threshold of the “lth” output neuron
- prag “l-tog” izlaznog neurona

a
li

- the weight between “I” hidden and “l” 
  output neuron 
- težina između “I” skrivenog i “l” 
  izlaznog neurona

m
i
 = [m

i1
, ...,m

inI]T - center of the activation function of “I” 
  hidden neuron
- centar aktivacijske funkcije “I-tog” 
  skrivenog neurona

σ
i
 = [σ

i1
, ...,σ

inI]T - width of the activation function of “I” 
  hidden neuron
- širina aktivacijske funkcije “I-tog” 
  skrivenog neurona

E - the criterion function
- kriterijumska funkcija

uλ - the λth input sample
- λ-ti ulazni uzorak

- the lth component of the λth target output
- l-ta komponenta λ-tog ciljanog izlaza

f
l
(uλ) - the lth component of RBF network 

  output obtained for λth inlet uλ

- l-ta komponenta RBF izlaza mreže 
  dobijenog za λ-ti ulaz uλ

p - any adaptive RBF network parameter
- bilo koji adaptivni parameter RBF 
  mreže

Δ(n) - local value of parameter shift in step n
- lokalna vrijednost promjene parametra 
  u koraku n

nH - minimal number of hidden neurons 
- minimalni broj skrivenih neurona

coal with granulations of 4[mm] was manufactured by 
an American corporation CALGON CARBON (and their 
European branch Chemviron Carbon).

Adsorption lter size depends on the necessary 
capacity of adsorption and spatial properties of air cleaner, 
as well as on hydrodynamic and exploitative conditions.

The acquisition system consists of sensors and 
transmitters of physical non-electric quantities, a device 
for measuring, processing, and acquiring data, a personal 
computer, and a source of direct electrical current which 
supplies power to transmitters.

M1,• input air velocity in the intake canal, in front of 
the rst lter unit, (primary air canal)

M2,• temperature and relative humidity of input air, 
in front of the rst lter unit, (primary air canal)

M3,• differential pressure streams of air in input and 
output canals of the rst lter unit (primary and 
secondary air canal)

M4,• temperature and relative humidity of air in the 
output canal of the rst lter unit, (secondary air 
canal)

M5,• concentration of gaseous chemical pollutants 
(probation measure point), in the outlput canal of the 
rst lter unit, (secondary air canal)

M6,• differential pressure of air ow in input and 
output canals of the second lter unit, (secondary 
and tertiary air canal)

M7,• concentration of gaseous chemical pollutants in 
the output canals of the second lter unit, (tertiary 
air canal)

M8,• temperature and relative humidity of air in the 
output canal of the second lter unit, (tertiary air 
canal)

M9• , temperature in the room

Position of measuring points on the examination line 
is represented in Figure 1.

Figure 1. Appearance of experimental set up with measuring 
points

Slika 1. Prikaz eksperimentalne aparature s mjernim točkama
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2. Modelling with a Neural RBF network – 
Neural network learning algorithm 

The radial basis function neural network was used, 
with nI entrances, nH hidden neurons, and n0 output 
neurons. The output of the ‘Ith’ neuron in exit layer is 
dened as:

(1)

and the output of the ‘Ith’ hidden neuron is dened as:

(2)

were u is the instant input, a
l0

is the threshold of the “lth” 
output neuron, a

li
is the weight between “I” hidden and 

“l” output neuron ; m
i
=[m

i1
, ..., m

inI]T and σ
i
=[σ

i1
, ..., σ

inI]
T are the center and width of the activation function of “I” 
hidden neuron, respectively.

Adaptation of parameters and structure of the RBF 
(Radial Basis Function) network goes on in the iterative 
procedure of passages through a given set of training 
samples. Off-line algorithms of structure adaptations: 
K-means and “orthogonal leas squares” provide networks 
with a large number of neurons because adaptive 
parameters are the only output weights. Katayama et al. 
[3] combined Maximum Absolute Error method (MAE) 
for the adaptation of structures and gradient descent for 
the adaptation of RBF parameters. Their method here is 
extended by application of “Resilient Back Propagation 
(RPROP)” [1-2, 4] algorithm for parameter adaptation 
instead of gradient descent.

The learning algorithm comprises the following 
processes:

Parameter adjustment for a given set of hidden 
neurons

Adaptation of network architecture for the addition 
of new neurons

The learning task can be formulated as follows. If 
Λ for input/output samples of data are given and also a 
preset model error ε > 0, which has to be satised, we 
need to nd the minimal number of hidden neurons 
nH and optimal parameter values a

ki
, m

ij
, σ

ij
, l =1,...,nO, 

i =1,...,nH, j =1,...,nI so that the following inequation is 
satised:

(3)

where E is the criterion function which needs to be 

minimized, uλ is the λth input sample, is the lth

component of the λth target output and f
l
(uλ) is the lth

component of RBF network output obtained for λth input 
uλ. In RPROP, the parameter adaptation method is based 
on gradient sign �E ���a

li
,�E ���m

ij
, �E ���σ

ij
, l =1,...,nO, 

i=1,...,nH, j =1,...,nI. Let p be any adaptive RBF network 
parameter. Adaptation of parameter P is dened by the 
following iterative procedure:

(4)

where:

(5)

and Δ(n) is a local value of parameter shift in step n. 
Every parameter has its own change value which is 
obtained based on:

When the error reaches the minimum during the 
process of adaptation for the given number of hidden 
neurons, i.e. radial basis functions, algorithm generates 
new basis functions. They are generated so that the 
centre of the function is located in the point of input 
space for which the maximal amount of absolute error 
(difference between a desired response and the response 
received from the RBF network with current structure) 
is obtained.

3. Predicting the change of the air cleaner
parameters by using neural network

Data for training the radial basis function (RBF) 
neural network have been taken from experiments. 
As the input data in the neural network, the following 
data were considered, in different models: temperature 
and velocity, relative humidity and ow, velocity and 
concentration, and as the output data: differential pressure 
or the output concentration in the lter partition, i.e. the 
adsorber lter.

The data obtained during the experiment, or the 
“tripartite data” – velocity, temperature, and differential 
pressure – are used for training the neural network.

After the training period, the neural network was 
asked to predict values of differential pressure for those 
temperature and velocity values which had not been 
available as measured data during the experiment.

Figure 2 shows data based on which neural network 
training activity was conducted.

Neural network prediction essentially represents the 
law of behavior of differential pressure depending on the 
temperature, the relative humidity, and the velocity of 
gas mixture (ow rate).

(6)
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Figure 2. Three sets of temperature data as a basis for Neural 
network training and prediction

Slika 2. Tri seta temperaturnih podataka kao osnova za 
obučavanje i predviđanje Neuronske mreže

The similar applies to the prediction of input and 
output concentrations of test gases and vapors with 
respect to changes in temperature, relative humidity, and 
velocity of gas mixture (ow) through adsorber layers.

Results of the prediction, illustrated by functional 
dependence of the differential pressure of mechanical 
impurities lter on temperature, relative humidity, and 
(gas ow) velocity, which neural network has “learned” 
based on given measuring data, are shown in gures 3 
and 4.

Figure 3. Prediction of differential pressure on F20 
mechanical impurities lter in function of temperature and 
velocity (ow rate) of gas mixture

Slika 3. Procjena diferencijalnog pritiska na lteru mehaničkih 
nečistoća F20 u funkciji temperature i brzine (protoka) plinske 
smješe

Previous diagrams show the impact of ow-thermal 
parameters on the mechanisms for test dust separation on 
the lter partition. It is obvious that increased temperature 
of the gas mixture results in density reduction and 
viscosity increase for the carrying gas (air), which is 

manifested through small pressure drops on the lter 
partition and vice versa.

Figure 4. Prediction of differential pressure on F20 
mechanical impurities lter in function of relative humidity 
and velocity (ow rate) of gas mixture

Slika 4. Procjena diferencijajnog pritiska na lteru mehaničkih 
nečistoća F20 u funkciji relativne vlage i brzine (protoka) 
plinske smješe

In the event of the increase in the relative humidity 
of the gas mixture, less pressure drops occur on lter 
partitions and purication is more efcient.

Since the integrated air cleaner comprises a lter for 
mechanical impurities and an adsorber, Figures 5 to 8, 
show the prediction of input and output concentrations of 
isobutylene vapor used in the experimental phase.

Figure 5 shows the prediction of input concentration 
(ppm) of isobutylene vapor in function of temperature and 
velocity (ow rate) of gas mixture through the adsorption 
ll (charcoal).

Figure 5. Prediction of input concentration [ppm] of 
isobutylene vapor in function of temperature and velocity 
(ow rate) of  gas mixture

Slika 5. Procjena ulazne koncentracije [ppm] pare izobutilena 
u funkciji temperature i brzine (protoka) plinske smješe
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Increased temperatures in the system facilitate the 
evaporation of isobutylene, which results in increased 
concentrations in front of the adsorption lter. As the 
air ow rate in lter-ventilation system increases, input 
concentrations of isobutylene become diminished. Figure 
6 shows predictions of output concentration of isobutylene 
vapor in function of temperature and velocity (ow rate) 
of gas mixture through the adsorption ll (charcoal).

Figure 6. Prediction of output concentration [ppm] of 
isobutylene on adsorption lter (charcoal) in function of 
temperature and velocity (ow rate) of gas mixture

Slika 6. Procjena izlazne koncentracije [ppm] pare izobutilena 
na adsorpcijskom lteru (aktivni ugljen) u funkciji temperature 
i brzine (protoka) plinske smješe

Figure 7. Prediction of input concentration of isobutylene 
vapor in function of relative humidity and velocity (ow rate) 
of gas mixture

Slika 7. Procjena ulazne koncentracije pare izobutilena u 
funkciji relativne vlage i brzine (protoka) plinske smješe

The gure shows negligible concentrations of 
isobutylene vapor behind the adsorption lter at lower 
temperatures and abstemious ow rates of gas mixture. In 
contrast, higher temperatures cause the increase in output 

concentrations of isobutylene vapor. At higher gas mixture 
velocities through the adsorber, output concentrations 
become equal to the input ones, because the time of 
phase contact decreases, wherein the adsorption process 
is negligible. Figure 7 shows the predictions of input 
isobutylene vapor concentration in function of relative 
humidity and velocity (ow rate) of gas mixture through 
the adsorption ll (charcoal).

From the previous gure, we may notice an increase 
in input isobutylene vapor concentrations with reduced 
humidity content in the air. The evaporating of isobutylene 
is then more intensive, and the input concentrations 
are larger. With larger gas mixture ows in the lter-
ventilation system, input concentration drops to the 
minimum as a consequence of large volume of air ow. 
Figure 8 shows the predictions of output isobutylene 
vapor concentration in function of relative humidity and 
velocity (ow rate) of gas mixture through the adsorption 
ll (charcoal).

Figure 8. Prediction of output concentration of isobutylene 
[ppm] on adsorption lter (charcoal) in function of relative 
humidity and velocity (ow rate) of gas mixture

Slika 8. Procjena izlazne koncentracije izobutilena [ppm] na 
adsorpcijskom lteru (aktivni ugljen) u funkciji relativne vlage 
i brzine (protoka) plinske smješe

Output concentrations are a consequence of complex 
thermodynamic, ow, and diffusion processes in the 
adsorber. Lower humidity content in the air results in 
increased input concentrations, but also in a good response 
from desorption lling of the lter. With large ows of 
gas mixtures, output concentrations are similar in value 
to the input ones, because there is no sufcient time for 
the contact of phases. It is very important to observe the 
input and output concentration models simultaneously 
because they are closely related and can be explained 
only through their relation to one another. It is important 
to emphasise the importance of simultaneous observation 
of predictions of input and output concentrations of test 
gases and vapors in function of ow-thermal parameters 
because it is the only way of getting the full picture of the 
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process in real time. Owing to decrease in temperature, 
production of organic solvent vapors also decreases, 
resulting in the decrease of input concentration. An 
additional decrease of input concentration occurs 
with constant increase of velocities (ow rates) of gas 
mixtures. i.e. with the ever-growing quantities of air 
passing through the system. Simultaneously, on the output 
of the adsorber, there are positive responses in terms of 
removing unwanted compounds for lower temperatures 
and relatively moderate velocities of gas mixtures. 
On the other hand, high velocities of gas mixture and 
higher temperatures result in larger quantities of output 
concentrations, which indicates that the adsorber is not 
functioning properly. Predictions of adsorber behavior 
in case of relative humidity change, shows positive 
behavior in the event of lower relative air humidity 
and lower (moderate) velocities of gas mixture through 
the adsorber. In contrast, higher humidity actively 
participates in the adsorption process and occupies the 
place of the active chemical compound. In addition, 
increased air humidity has limited acceptancy for organic 
compound vapors; therefore, input concentrations are 
reduced. There is obviously specic dual behavior 
present in the lter-adsorber system, resulting from the 
opposed natures of ltering and adsorption processes. 
Generally, what is benetial for the process of ltration 
and what facilitates particle separation through the 
aforementioned mechanisms, is quite the opposite for the 
process of adsorption, and vice versa. Certainly there are 
many other aspects of observing this system which can 
be added between these statements. They refer to many 
possible reactions of chemical compounds and particles, 
interactions between particles and air, etc.

4. Conclusion

On the basis of experimental data, modelling of air 
cleaner parameters by neural network was conducted, 
with respect to ow-thermal parameters of gas mixture. 
The radial basis function neural network was used and 
data for its training were taken from experiments. In 
different models, input parameters of neural network 
are represented by temperature and velocity, relative 
humidity and ow rate, velocity and input concentration 
of test dust and test gases, and output parameters by 
differential pressure on lter partition (adsorber), in other 
words, output concentration of gaseous test substances 
at the adsorption lter output. Experimental data, or 
“tripartite data” – velocity, temperature, and differential 
pressure – are used for training the neural network.

In the trainings process, the neural network was given 
the task to predict output values (differential pressure on 
the mechanical impurities lter, output concentration of 
gaseous test substances) for those values of temperatures, 
relative humidity, and velocity (ow rates) of gas 

mixtures, for which experimental testing has not been 
conducted.

Predictions by neural network basically represent the 
law of behavior of output quantities relative to the input 
ones, obtained by self-learning of neural network and 
through available experimental data.

Our topic for consideration was the prediction of 
differential pressure and output concentration depending 
on temperature, relative humidity, and velocity of gas 
mixture.
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