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1. Experiment

Essence of experimental work is the formation of an

Original scientific paper
It is well known that most air purifying methods imply the passing of air
flow, as a pollutant carrier, through a control unit which retains impurities.
Properties of the air control unit and the purifying process itself therefore
differ depending on the nature of present impurities, as well as on flow-
thermal properties of air as the carrier of those impurities. For the assumed
conditions, in terms of production of a pollution source and presence of
different polluting substances in the form of dust, aerosols, gas, vapor
in the exhaust gas, etc., an integrated gas purifier has been designed and
tested, comprising a module for purification of mechanical impurities and
a module for purification of gaseous impurities. The purifier is compact
and has a universal application while simultaneously retaining several
different pollutants. These requirements were met through application of
the filtration and adsorption methods. On the formed experimental line
with an adequate system of acquisition, filter-adsorber type gas cleaners
in the function of flow-thermal parameters of gas mixture were tested
simultaneously. Experimental data were used for training the radial basis
function neural network, which was then used to model properties of the
process and gas cleaner.

wew £

Modeliranje parametara procesa prociSéavanja zraka proci-
stacem tipa filter-adsorber neuronskom mrezom
Izvornoznanstveni ¢lanak

Poznato je da ve¢ina metoda proc¢is¢avanja otpadnih plinova podrazumijeva
prolazak struje otpadnog plina kao nositelja zagadenja kroz neki procistac
koji vrsi zadrzavanje necistoca. Karakteristike procistaca i samog procesa
proc¢is¢avanja se zato razlikuju zavisno od vrste i prirode prisutnih
necistoca kao i od strujno termickih osobina zraka kao nositelja tih
nedistoca. Za predpostavljene uvjete, u smislu produkcije izvora emisije,
prisustva razli¢itih onec¢iS¢ujucih tvari u obliku prasine, aerosola, plinova i
para u otpadnom plinu, itd.., Koncipiran je i ispitivan integrirani pro¢istac
plinova koji se sastoji iz modula za proc¢is¢avanje mehanickih necistoca
i modula za procis¢avanje plinovitih necistoc¢a. Procista¢ je kompaktan,
i ima univerzalnu primjenu uz istovremeno zadrzavanje vise razlicitih
oneciscujucih tvari. Realizacija ovih zahtjeva ostvarena je primjenom
metoda filtracije 1 adsorpcije. Na formiranoj eksperimentalnoj liniji s
odgovaraju¢im sustavom akvizicije, simultano su izvrSena ispitivanja
procistaca otpadnih plinova tipa filter-adsorber u funkciji strujno termickih
parametara mjesavine. Eksperimentalno dobiveni podaci iskoriSteni su
za obucavanje neuronske mreze radijalnih bazisnih funkcija, kojom je
izvr§eno modeliranje karakteristika procistaca i procesa.

a domestic manufacturer of filter products “Frad”,
Aleksinac, Serbia.

Dimensions of the filter partition are 600x600, mm,

original examination line, and the testing of interaction
of integrated air cleaner, which contains a filter for
mechanical impurities and an adsorption filter, with
respect to mechanical and gaseous test contaminants, and
air as the carrying gas.

The module of mechanical purifier consists of the
panel industrial filter, internal labels 109.122.73/20,
or F20, designed for the purpose of experiments by

and the fill consists of filter paper with specific load of
120, gr/m?, with gas flow > 750, 1/m?s, with pressure
drop down to 200 [Pa], manufactured by NEENAH
GESSNER, Germany, with nominal fineness of filtering
F=13.5-19, um.

The module of gas pollutants air cleaner contains
an adsorption active coal (charcoal) fill in the form of
cassette groups with 12 cartridges. The pelletted active
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Symbols/Oznake
RBF - Radial basis function Neural Network
- Neuronska mreza radijalnih bazisnih
funkcija
n' - entrances
- ulazi (ulazni neuroni)
ntt - hidden neurons
- skriveni neuroni
n° - output neurons
- izlazni neuroni
7 - output of the ‘™ neuron in exit layer
- izlaz ‘/-tog’ neurona u izlaznom sloju
o(u, m, o) - the output of the ‘" hidden neuron
- izlaz ‘I-tog’ skrivenog neurona
u - instant input
- trenutni ulaz
a, - the threshold of the “/*” output neuron
- prag “/-tog” izlaznog neurona
a, - the weight between “I” hidden and “/”
output neuron
- tezina izmedu “I” skrivenog i “/”
izlaznog neurona
m,=[m,, ...m_]" - center of the activation function of “/”

hidden neuron
- centar aktivacijske funkcije “/-tog”
skrivenog neurona

- width of the activation function of “I”
hidden neuron

- irina aktivacijske funkcije “/-tog”
skrivenog neurona

= T
0,= [0, ....0.1]

E - the criterion function
- kriterijumska funkcija

- the A" input sample
- A-ti ulazni uzorak

- the /™ component of the A" target output
- I-ta komponenta A-tog ciljanog izlaza

@) - the /™ component of RBF network
output obtained for A" inlet u*
- [-ta komponenta RBF izlaza mreze

dobijenog za A-ti ulaz u*

P - any adaptive RBF network parameter
- bilo koji adaptivni parameter RBF
mreze

A(n) - local value of parameter shift in step n
- lokalna vrijednost promjene parametra

u koraku n

- minimal number of hidden neurons
- minimalni broj skrivenih neurona

coal with granulations of 4[mm] was manufactured by
an American corporation CALGON CARBON (and their
European branch Chemviron Carbon).

Adsorption filter size depends on the necessary
capacity of adsorption and spatial properties of air cleaner,
as well as on hydrodynamic and exploitative conditions.

The acquisition system consists of sensors and
transmitters of physical non-electric quantities, a device
for measuring, processing, and acquiring data, a personal
computer, and a source of direct electrical current which
supplies power to transmitters.

e MI, input air velocity in the intake canal, in front of
the first filter unit, (primary air canal)

* M2, temperature and relative humidity of input air,
in front of the first filter unit, (primary air canal)

e M3, differential pressure streams of air in input and
output canals of the first filter unit (primary and
secondary air canal)

° M4, temperature and relative humidity of air in the
output canal of the first filter unit, (secondary air
canal)

e MS5, concentration of gaseous chemical pollutants
(probation measure point), in the outlput canal of the
first filter unit, (secondary air canal)

e Mo, differential pressure of air flow in input and
output canals of the second filter unit, (secondary
and tertiary air canal)

e M?7, concentration of gaseous chemical pollutants in
the output canals of the second filter unit, (tertiary
air canal)

e MS, temperature and relative humidity of air in the
output canal of the second filter unit, (tertiary air
canal)

e M9, temperature in the room

Position of measuring points on the examination line
is represented in Figure 1.

Figure 1. Appearance of experimental set up with measuring
points

Slika 1. Prikaz eksperimentalne aparature s mjernim tockama
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2. Modelling with a Neural RBF network —
Neural network learning algorithm

The radial basis function neural network was used,
with n' entrances, n" hidden neurons, and n° output
neurons. The output of the ‘I neuron in exit layer is
defined as:

nH
Y :a10+zali(pi(u;mi’6i) (1)
i=1

and the output of the ‘/"” hidden neuron is defined as:

! 2
n u_m
0,wm,0))=exp —Z[ j ) :

J=1 ij

2

were u is the instant input, a, is the threshold of the “/*”
output neuron, a, is the weight between “I” hidden and
“I” output neuron ; m, =[m,, ..., mml]T and o, =[0,, ..., 0, ]
Tare the center and width of the activation function of “/”
hidden neuron, respectively.

Adaptation of parameters and structure of the RBF
(Radial Basis Function) network goes on in the iterative
procedure of passages through a given set of training
samples. Off-line algorithms of structure adaptations:
K-means and “orthogonal leas squares” provide networks
with a large number of neurons because adaptive
parameters are the only output weights. Katayama et al.
[3] combined Maximum Absolute Error method (MAE)
for the adaptation of structures and gradient descent for
the adaptation of RBF parameters. Their method here is
extended by application of “Resilient Back Propagation
(RPROP)” [1-2, 4] algorithm for parameter adaptation
instead of gradient descent.

The learning algorithm comprises the following
processes:

Parameter adjustment for a given set of hidden
neurons

Adaptation of network architecture for the addition
of new neurons

The learning task can be formulated as follows. If
A for input/output samples of data are given and also a
preset model error ¢ > 0, which has to be satisfied, we
need to find the minimal number of hidden neurons
n" and optimal parameter values a,, m, o, 1 =1,....n°,
i =1,..,n" j =l1,..,n'so that the following inequation is
satisfied:

E=2Y 3 0f - 16 <e,

A=11=1

(€)

where E is the criterion function which needs to be
minimized, «* is the A™ input sample, ¥ is the I
component of the A" target output and f(u") is the /*
component of RBF network output obtained for A™ input
u*. In RPROP, the parameter adaptation method is based
on gradient sign 0E / da, ,0E / E)mij, oE / aaij, [=1,...,n°,

i=1,..,n" j=1,...,n". Let p be any adaptive RBF network
parameter. Adaptation of parameter P is defined by the
following iterative procedure:

p(n+1)= p(n)+ Ap(n),

Ap(n) = —sgn (IE(n)/3p(n))- A(n) @
where:
1 ifx>0
sgn(x)=9-1 ifx<0, (5)
0 else

and A(n) is a local value of parameter shift in step n.
Every parameter has its own change value which is
obtained based on:

A(n) =

A(n=1)-n, if 9E(n)/dp(n)-0E(n—1)/dp(n—1)>0 (6)
={A(n-1)-n_ if 9dE(n)/dp(n)-0E(n—1)/dp(n—1)<0.
A(n-1) else

When the error reaches the minimum during the
process of adaptation for the given number of hidden
neurons, i.e. radial basis functions, algorithm generates
new basis functions. They are generated so that the
centre of the function is located in the point of input
space for which the maximal amount of absolute error
(difference between a desired response and the response
received from the RBF network with current structure)
is obtained.

3. Predicting the change of the air cleaner
parameters by using neural network

Data for training the radial basis function (RBF)
neural network have been taken from experiments.
As the input data in the neural network, the following
data were considered, in different models: temperature
and velocity, relative humidity and flow, velocity and
concentration, and as the output data: differential pressure
or the output concentration in the filter partition, i.e. the
adsorber filter.

The data obtained during the experiment, or the
“tripartite data” — velocity, temperature, and differential
pressure — are used for training the neural network.

After the training period, the neural network was
asked to predict values of differential pressure for those
temperature and velocity values which had not been
available as measured data during the experiment.

Figure 2 shows data based on which neural network
training activity was conducted.

Neural network prediction essentially represents the
law of behavior of differential pressure depending on the
temperature, the relative humidity, and the velocity of
gas mixture (flow rate).
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p,, mbar

differential pressure/
diferencijalni pritisak

20

temperature /

O, 10 o
temperatura, °C velocity / brzina, m/s

¢ lower temp. / niZe temperature (-)
O average temp. / standardne temperature (st.)

+ higher temp. / viSe temperatura (+)

Figure 2. Three sets of temperature data as a basis for Neural
network training and prediction

Slika 2. Tri seta temperaturnih podataka kao osnova za
obucavanje i predvidanje Neuronske mreze

The similar applies to the prediction of input and
output concentrations of test gases and vapors with
respect to changes in temperature, relative humidity, and
velocity of gas mixture (flow) through adsorber layers.

Results of the prediction, illustrated by functional
dependence of the differential pressure of mechanical
impurities filter on temperature, relative humidity, and
(gas flow) velocity, which neural network has “learned”
based on given measuring data, are shown in figures 3
and 4.

o temp.-
O temp. st.
+ temp.+

differential pressure/
diferencijalni pritisak
p,, mbar
shs

temperature /
temperatura, °C b 2

velocity / brzina, m/s
Figure 3. Prediction of differential pressure on F20
mechanical impurities filter in function of temperature and
velocity (flow rate) of gas mixture
Slika 3. Procjena diferencijalnog pritiska na filteru mehanickih
necisto¢a F20 u funkciji temperature i brzine (protoka) plinske
smjese

Previous diagrams show the impact of flow-thermal
parameters on the mechanisms for test dust separation on
the filter partition. It is obvious that increased temperature
of the gas mixture results in density reduction and
viscosity increase for the carrying gas (air), which is

manifested through small pressure drops on the filter
partition and vice versa.

¢ humidity-
O humidity st.
+ humidity+

P> mbar
£ (=2 o 5

differential pressure/
diferencijalni pritisak
S

=3
®
8 S

60

humidity /relativna vlaga, % 40

0

velocity / brzina, m/s

Figure 4. Prediction of differential pressure on F20
mechanical impurities filter in function of relative humidity
and velocity (flow rate) of gas mixture

Slika 4. Procjena diferencijajnog pritiska na filteru mehanickih
necistoca F20 u funkciji relativne vlage i brzine (protoka)
plinske smjese

In the event of the increase in the relative humidity
of the gas mixture, less pressure drops occur on filter
partitions and purification is more efficient.

Since the integrated air cleaner comprises a filter for
mechanical impurities and an adsorber, Figures 5 to 8,
show the prediction of input and output concentrations of
isobutylene vapor used in the experimental phase.

Figure 5 shows the prediction of input concentration
(ppm) of isobutylene vapor in function of temperature and
velocity (flow rate) of gas mixture through the adsorption
fill (charcoal).

& temp.-
O temp. st.
+ temp.+

60
~ g 50
5%
g5 40
235
52 %
S
8¢ 20
58
TRl
0
40

20 1

temperature /

temperatura, °C velocity / brzina, m/s

10 0
Figure 5. Prediction of input concentration [ppm] of
isobutylene vapor in function of temperature and velocity
(flow rate) of gas mixture

Slika 5. Procjena ulazne koncentracije [ppm] pare izobutilena
u funkciji temperature i brzine (protoka) plinske smjese
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Increased temperatures in the system facilitate the
evaporation of isobutylene, which results in increased
concentrations in front of the adsorption filter. As the
air flow rate in filter-ventilation system increases, input
concentrations of isobutylene become diminished. Figure
6 shows predictions of output concentration of isobutylene
vapor in function of temperature and velocity (flow rate)
of gas mixture through the adsorption fill (charcoal).

& temp.-
O temp. st.
+ temp.+

output concentration /
izlazna koncentracija
o

1

velocity / brzina, m/s

temperature / 20
temperatura, °C 10 0
Figure 6. Prediction of output concentration [ppm] of

isobutylene on adsorption filter (charcoal) in function of

temperature and velocity (flow rate) of gas mixture

Slika 6. Procjena izlazne koncentracije [ppm] pare izobutilena
na adsorpcijskom filteru (aktivni ugljen) u funkciji temperature
i brzine (protoka) plinske smjese

¢ humidity-
O humidity st.
+ humidity+
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. 0
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Figure 7. Prediction of input concentration of isobutylene
vapor in function of relative humidity and velocity (flow rate)
of gas mixture

Slika 7. Procjena ulazne koncentracije pare izobutilena u
funkciji relativne vlage i brzine (protoka) plinske smjese

The figure shows negligible concentrations of
isobutylene vapor behind the adsorption filter at lower
temperatures and abstemious flow rates of gas mixture. In
contrast, higher temperatures cause the increase in output

concentrations of isobutylene vapor. Athigher gas mixture
velocities through the adsorber, output concentrations
become equal to the input ones, because the time of
phase contact decreases, wherein the adsorption process
is negligible. Figure 7 shows the predictions of input
isobutylene vapor concentration in function of relative
humidity and velocity (flow rate) of gas mixture through
the adsorption fill (charcoal).

From the previous figure, we may notice an increase
in input isobutylene vapor concentrations with reduced
humidity content in the air. The evaporating of isobutylene
is then more intensive, and the input concentrations
are larger. With larger gas mixture flows in the filter-
ventilation system, input concentration drops to the
minimum as a consequence of large volume of air flow.
Figure 8 shows the predictions of output isobutylene
vapor concentration in function of relative humidity and
velocity (flow rate) of gas mixture through the adsorption
fill (charcoal).

¢ humidity-
O humidity st.
+ humidity+

ouput concentration /
izlazna koncentracija

60
humidity /
relativna vlaga, % 0

=

velocity / brzina, m/s
Figure 8. Prediction of output concentration of isobutylene
[ppm] on adsorption filter (charcoal) in function of relative
humidity and velocity (flow rate) of gas mixture

Slika 8. Procjena izlazne koncentracije izobutilena [ppm] na
adsorpcijskom filteru (aktivni ugljen) u funkciji relativne vlage
i brzine (protoka) plinske smjese

Output concentrations are a consequence of complex
thermodynamic, flow, and diffusion processes in the
adsorber. Lower humidity content in the air results in
increased input concentrations, but also in a good response
from desorption filling of the filter. With large flows of
gas mixtures, output concentrations are similar in value
to the input ones, because there is no sufficient time for
the contact of phases. It is very important to observe the
input and output concentration models simultaneously
because they are closely related and can be explained
only through their relation to one another. It is important
to emphasise the importance of simultaneous observation
of predictions of input and output concentrations of test
gases and vapors in function of flow-thermal parameters
because it is the only way of getting the full picture of the
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process in real time. Owing to decrease in temperature,
production of organic solvent vapors also decreases,
resulting in the decrease of input concentration. An
additional decrease of input concentration occurs
with constant increase of velocities (flow rates) of gas
mixtures. i.e. with the ever-growing quantities of air
passing through the system. Simultaneously, on the output
of the adsorber, there are positive responses in terms of
removing unwanted compounds for lower temperatures
and relatively moderate velocities of gas mixtures.
On the other hand, high velocities of gas mixture and
higher temperatures result in larger quantities of output
concentrations, which indicates that the adsorber is not
functioning properly. Predictions of adsorber behavior
in case of relative humidity change, shows positive
behavior in the event of lower relative air humidity
and lower (moderate) velocities of gas mixture through
the adsorber. In contrast, higher humidity actively
participates in the adsorption process and occupies the
place of the active chemical compound. In addition,
increased air humidity has limited acceptancy for organic
compound vapors; therefore, input concentrations are
reduced. There is obviously specific dual behavior
present in the filter-adsorber system, resulting from the
opposed natures of filtering and adsorption processes.
Generally, what is benefitial for the process of filtration
and what facilitates particle separation through the
aforementioned mechanisms, is quite the opposite for the
process of adsorption, and vice versa. Certainly there are
many other aspects of observing this system which can
be added between these statements. They refer to many
possible reactions of chemical compounds and particles,
interactions between particles and air, etc.

4. Conclusion

On the basis of experimental data, modelling of air
cleaner parameters by neural network was conducted,
with respect to flow-thermal parameters of gas mixture.
The radial basis function neural network was used and
data for its training were taken from experiments. In
different models, input parameters of neural network
are represented by temperature and velocity, relative
humidity and flow rate, velocity and input concentration
of test dust and test gases, and output parameters by
differential pressure on filter partition (adsorber), in other
words, output concentration of gaseous test substances
at the adsorption filter output. Experimental data, or
“tripartite data” — velocity, temperature, and differential
pressure — are used for training the neural network.

In the trainings process, the neural network was given
the task to predict output values (differential pressure on
the mechanical impurities filter, output concentration of
gaseous test substances) for those values of temperatures,
relative humidity, and velocity (flow rates) of gas

mixtures, for which experimental testing has not been
conducted.

Predictions by neural network basically represent the
law of behavior of output quantities relative to the input
ones, obtained by self-learning of neural network and
through available experimental data.

Our topic for consideration was the prediction of
differential pressure and output concentration depending
on temperature, relative humidity, and velocity of gas
mixture.
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