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Abstract: Optimal growth models aim at explaining long run trends of growth under the strong

assumption of full efficiency in the allocation of resources. As a result, the steady state time

paths of the main economic aggregates reflect constant, exogenous or endogenous, growth.

To introduce business cycles in this optimality structure one has to consider some source of

inefficiency. By assuming that firms adopt a simple non optimal rule to predict future

demand, we let investment decisions to depart from the ones that would guarantee the total

efficiency outcome. The new investment hypothesis is considered under three growth setups

(the simple one equation Solow model of capital accumulation, the Ramsey model with

consumption utility maximization, and a two sector endogenous growth scenario); for each

one of the models, we find that endogenous business cycles of various orders (regular and

irregular) are observable.
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Introduction

Growth models are specially designed to characterize long term trends of growth.

Both the neoclassical framework [i.e., the Solow (1956) and the Ramsey (1928) –

Cass (1965) – Koopmans (1965) models] and the endogenous growth setup [i.e., the

interpretation of the growth process pioneered by Romer (1986), Lucas (1988),

Rebelo (1991) and Aghion and Howitt (1992)] characterize accumulation processes

which culminate in a steady state result where the main economic aggregates (output,

capital stock, investment and consumption) grow at constant rates, which can be

respectively determined by exogenous or endogenous factors.

Because growth is not a linear process it is important to inquire why business

cycle fluctuations are not captured under standard growth setups. The obvious answer
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is that optimal growth models are built over a perfect competition market structure,

where no place is left for inefficiencies. A market clearing Walrasian setup allows

answering only to the following question: which is the trend of evolution of

macroeconomic aggregates when all imperfections are ruled out? Several attempts to

explain business cycles have been suggested in the economic literature. The most

important debate is the one between the strand of literature that considers that the

utility maximization scenario is not suitable to explain fluctuations that occur in a

context of market failures and the theory that has attempted to reconcile the basic

intertemporal growth framework with cycles caused by real factors.

The first approach, originally presented by Phelps (1970) and Lucas (1972), can

be thought as a Keynesian theory of fluctuations. In this view, markets fail for various

reasons. First, there are coordination problems, which emerge from the strategic

nature of the relations among economic agents; in this case, low levels of aggregate

investment can explain why each individual firm does not invest. Therefore,

expansions would be periods of generalized confidence while recessions would be

associated with low levels of economic activity triggered by a wave of pessimism

throughout the economy. Second, in a Keynesian perspective, fluctuations may be

understood as well as the result of incomplete nominal adjustment or price stickiness.

Prices and wages do not adjust instantaneously and simultaneously and, hence,

nominal sluggishness provokes real shocks on demand. As a whole, the Keynesian

view sets aside the competitive optimization framework in order to emphasize that

cycles are essentially the result of nominal disturbances over a far from perfect

economic system.

The second approach, which relies on the work set forth by Kydland and Prescott

(1982), Long and Plosser (1983), King, Plosser and Rebelo (1988), and Christiano

and Eichenbaum (1992), among others, corresponds to the Real Business Cycles

(RBC) theory. As Rebelo (2005) highlights, the literature on RBC allows for several

important thoughts about cycles; besides the relevance and appealing in terms of

empirically testable results, this theory has the merit of allowing to unify business

cycles analysis and growth theory, since fluctuations are approached under the

dynamic general equilibrium models that characterize the study of economic growth

since the work of Solow. In the words of Rebelo (2005, page 2), ‘business cycles can

be studied using dynamic general equilibrium models. These models feature

atomistic agents who operate in competitive markets and form rational expectations

about the future’.

To allow for cycles under a market efficiency setup, RBC models consider real

shocks, like technology shocks or sudden changes in fiscal policy. These

disturbances introduce a stochastic component on growth models, and it is this non

deterministic element that produces fluctuations around the output trend. The

revolutionary idea behind RBC theory is that it is not necessarily demand that mainly

38 Orlando Gomes



determines cycles, but instead it is probably a supply side shock regarding total factor

productivity (TFP). Furthermore, fluctuations occur under perfectly competitive

markets and thus recessions and expansions are simply the response to real economy

events. The whole RBC mechanism works through the labor market: TFP growth

induces a change in the behaviour of profit and utility maximizing agents; firms will

want to hire additional work; the higher demand for work rises wages and introduces

a change in households choices; these will be available to trade leisure by work hours

in order to gain increased income that can be used in consumption. Under an

analytical viewpoint, RBC models introduce over the simple Ramsey model an

intertemporal choice between labor and leisure, with leisure an argument of the utility

function.

The RBC theory bases its explanation of cycles on the occurrence of exogenous

disturbances. Under this perspective, one can establish a critical argument that

resembles the one that motivated the rise of endogenous growth models. Neoclassical

growth theory offered an exogenous interpretation of long run growth: exogenous

technology shocks were the engine of sustained growth. Similarly, in RBC models

the engine of fluctuations is also the exogenous productivity disturbances (or other

kind of shocks). Thus, although RBC models continue to be a fundamental

benchmark in the understanding of business cycles, as documented in, e.g., King and

Rebelo (1999) and Jones, Manuelli and Siu (2000), it is important to look beyond this

‘exogenous business cycles’ theory.

This paper searches for a model that explains business cycles within an optimal

growth framework, as in RBC models, but that can simultaneously be presented

entirely as a deterministic setup. This requires introducing some kind of Keynesian

feature in the model, that is, market failures are the ingredient that is necessary to

obtain endogenous business cycles in an intertemporal growth scenario.

There is an important strand of literature that presents an endogenous

interpretation of cycles. Studies on ‘endogenous business cycles’ are motivated by

the work on nonlinear macroeconomics first developed in the 1980s by various

authors including Stutzer (1980), Benhabib and Day (1981), Day (1982) and

Grandmont (1985). Authoritative surveys about this literature can be found in

Baumol and Benhabib (1989), Boldrin and Woodford (1990), Chiarella (1992) and

Bullard and Butler (1993). It is with the work of Christiano and Harrison (1999) that

RBC theory and the endogenous cycles interpretation are crossed. These authors use

an optimal growth model with endogenous labor – leisure decisions just as in the

RBC theory, but stochastic shocks are replaced by a production externality. This

externality allows for increasing marginal returns in production which generate a

complex dynamic behaviour that for some combinations of parameter values is

characterized by long term periodic and a-periodic motion: cycles are an endogenous

phenomenon and no external event is necessary to justify them.

Imperfect Demand Expectations and Endogenous Business Cycles 39



Other authors have reemphasized the importance of this approach; this is the case

of Wen (1998), Schmitt-Grohé (2000), Guo and Lansing (2002) and Coury and Wen

(2005). This last work highlights the little empirical relevance of the externalities

model, given the unreasonably high level of externalities that is necessary to produce

nonlinear motion. This literature is also criticized, following Reichlin (1997), in the

grounds of the extreme complexity of the obtained growth paths – multiple equilibria

and chaotic motion frequently arise as the outcome of the referred analytical

structures, raising doubts about the underlying hypothesis regarding agents

expectations and also raising the question of how such outcomes can be subject to

empirical scrutiny.

Nevertheless, the referred approach to business cycles is able to maintain the

structure of the prototype growth model and simultaneously generate endogenous

cycles through a kind of market imperfection, which is precisely where one wants to

aim in the present work.

Other studies remark the relevance of expectations in the determination of cycles;

this is other concern of ours. Maintaining the analysis close to the RBC benchmark,

Cochrane (1994), Danthine, Donaldson and Johnson (1998), Beaudry and Portier

(2004), Lorenzoni (2005) and Jaimovich and Rebelo (2006), develop models where

the central issue consists in highlighting the role of expectations about the future as a

fundamental source of cycles. For instance, periods of expansion may be the result of

optimistic expectations about TFP growth, which can be triggered by news

announcing, for instance, a technological revolution (e.g., as a result of the

introduction of the internet); if the expectations become an overvaluation of what in

fact ends up by occurring this may produce a downfall in investment and as a

consequence a period of recession may arise. The notion that news about the future or

some kind of change in agents’ expectations can be an important source of

fluctuations is a matter that is under discussion in macroeconomics since the work of

the most prominent economists of the early twentieth century, like Pigou.

Another work that calls the attention for the relevance of expectations in the

determination of cycles is Dosi, Fagiolo and Roventini (2006). The argument of this

group of authors is that agents do not act on a fully rational way; instead, firms tend to

employ routinized behavioural investment rules that are less costly than the rules

underlying a profit maximizing behaviour. Firms are risk averse, or prudent, and they

cannot as well fully anticipate future levels of demand. Therefore, choices

concerning investment decisions are always based on non optimal estimates of future

demand. Lack of full knowledge and prudence are the main features that do not allow

for a complete coincidence between real world demand expectations and demand

expectations obeying to the benchmark rational expectations optimality setup.

Following the previous discussion on growth and cycles, next sections develop a

group of models with the following characteristics:
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i) They are all simple optimal growth models;

ii) No stochastic features are introduced;

iii) Endogenous cycles are generated through firms’ investment decisions;

iv) Investment decisions are disturbed by a market failure. Firms are unable to

predict future levels of demand that are exactly identical to the demand level

corresponding to rational expectations;

v) Firms are generally prudent, and thus investment lies below the optimal level,

but periods of overconfidence are not excluded from the analysis;

vi) Three scenarios are considered: the one equation Solow model of capital

accumulation, the consumption utility maximization Ramsey model and an

endogenous growth setup with two sectors which produce, with different

technologies, physical and human capital;

vii) The analytical structures will consider solely investment and consumption

decisions and, thus, the labor market (the labor-leisure trade-off) is excluded from the

analysis.

In the proposed framework, which is related to previous work (Gomes, 2006a,

2006b) the main idea is that the level of investment chosen by firms does not coincide

in every moment with the level of investment that is compatible with the optimal

setup; in some time periods investment is below its potential level, reflecting the risk

averse nature of firms’ decisions; in other periods, overconfidence may lead to

investment above the optimum.

The rule that we will adopt concerning expected demand growth will lead to a

piecewise difference equation that resembles a logistic / tent map. This type of map is

known to produce a great variety of nonlinear dynamic results ranging from low and

high periodicity cycles to a-periodicity / chaos. Therefore, by introducing a source of

inefficiency (the absence of coincidence between effective and potential investment)

we generate endogenous fluctuations under the structure of the standard

intertemporal growth setup.

The dynamic analysis will proceed in two steps: first, we study the existence of

local bifurcations in the steady state vicinity. Although it gives important guidance

about the dynamic properties of the problem, the local analysis tends to be misleading

when nonlinearities are present. Hence, on a second step, global dynamics are

discussed, considering particular examples with specific parameter values. The main

result is that cycles of various orders (regular and irregular) are observable, and in

this way the developed framework intends to be a contribution to the literature on

endogenous business cycles.

The remainder of the paper is organized as follows. Section 2 discusses the

expected demand rule. Section 3 considers three different growth models and in each

one of them we introduce investment decisions that depart from the optimum as a

consequence of non perfect demand expectations by firms. In this section, a local
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dynamics analysis is developed. Section 4 analyzes global dynamics by means of

numerical examples that are graphically illustrated. Finally, section 5 concludes.

Demand Expectations

An optimal demand level is defined here as the level of demand corresponding to

market clearing (i.e., to the absence of inefficiencies in the allocation of resources).

Such level is the one underlying the decisions agents undertake when considering

optimal growth modelling structures. In practice, aggregate demand can differ from

the optimal benchmark value; hence, we start the analysis by considering a variable dt

which represents the ratio between effectively observed and optimal levels of

demand. Demand is often below the reference level (when agents predict an

economic slowdown or given some kind of inertia), and it can also be above optimal

values (for periods of generalized optimistic behaviour); thus, while dt is commonly

taken as equal to 1 in most growth models, it is often lower or higher than 1.

A central assumption underlying the analysis that follows is that firms make

today’s investment decisions based on expectations about future demand. Therefore,

it is necessary to define a rule translating how firms predict the evolution of the ratio

dt. Consider Et d
� as the expected growth rate of dt from t to t+1. If firms adopt always

a behaviour compatible with the optimal growth setup, this implies

E dt d t� � �( / )1 1, such that E dt t � �
1

1, that is, independently of the value of dt, the

next period expected demand will coincide with the optimal demand level. Figure 1

sketches this boundary; as we shall see, the nature of business cycles implies that

values above and below this line are observable, meaning that cycles are synonymous

of deviations from optimal expectations regarding future demand. In the figure, we

present a lower bound, Et d
� � �1, that guarantees non negative values for E dt t �1

.

Figure 1: The optimal growth of demand expectations
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To generate cycles in standard growth models, we consider instead of the optimal

rule of expectations formation [E dt d t� � �( / )1 1], an approximated rule, which is

composed by a piecewise function containing two straight lines. The first, defined in

0
0

� �d t � with�
0

some positive value below unity, is a linear approximation of the

optimal curve around d t ��
0
, that is, E dt d t� � �� � �2 1 1

0 0

2/ ( / ) . The second,

defined for d t � �
0
, is a linear equation passing through points

( , ) ( ; / )d Et t d
� � �� �

0 0
1 1 and ( , ) ( ; )d Et t d

� �� 1
1

, with 0 1
1

� �� .

Figure 2 gives an example of a possible function obeying the imposed conditions.

The proposed approximation to the optimality scenario serves the suggested

purposes: it changes the optimal rule in order to generate endogenous cycles (as we

will regard below), and it allows for the possibility of demand expectations growth

below and above the benchmark values.

Figure 2: A non optimal demand expectations growth rule

The right-hand side equation in figure 2 is analytically given by

E dt d t�
� � �

� �
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� �
�
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�
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The central assumption in this paper is that firms do not necessarily adopt an

optimal rule in terms of expected demand growth. Instead, they take a simpler

approximated rule, that we can present in terms of a relation between dt and d
t �1

(we

consider perfect foresight, and thus the operator of expectations is hereafter

neglected),
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Figure 3 represents equation (1) for specific values of �
0

and �
1
. The figure

displays a hump-shaped function similar to the logistic equation. This equation is

known to lead, for some parameter values, to periodic and a-periodic long term time

series. Therefore, it is through equation (1) that we will propose a framework of

endogenous cycles that can be associated to any one of the most influential growth

setups (section 3 considers neoclassical growth by taking the Solow and the Ramsey

models, and endogenous growth by assuming a two sector model with physical goods

and human capital generated by different technologies).

Figure 3: Evolution of demand expectations (�0=0.4; �1=0.7)

Having defined the rule through which firms form expectations about future

demand, it is now necessary to associate this mechanism to firms’ investment

decisions. We consider per capita investment variables: j t represents potential

investment and it translates the amount of effective investment. The relation between

the two is given by considering demand expectations, that is, i f E d jt t t t� �( )
1

, with

f’>0. In order to simplify the analysis in the next section, we consider an explicit

function f E d d
t t t( ) ,� � �

1
0� � . If d t �1, then i jt t� , that is, for an optimal level of

demand, the investment level corresponds to the potential level; because in some time

moments d t �1, there are periods of underinvestment, while in other moments d t �1,

meaning overinvestment. Considering a non optimal investment variable that is

determined by the proposed demand expectations rule, endogenous fluctuations are

generated, and these will propagate to the main macroeconomic aggregates as we

introduce the rule in standard intertemporal growth models.

Before analysing growth models, let us briefly study the dynamic properties of

system 1. In a first moment consider a local analysis in the vicinity of the steady state.
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The demand ratio steady state is a point d d dt t
� � �1

. Under this definition, besides

the trivial point d �0, two equilibrium points are found: d � �� �
0 0

2( ) for d t � �
0
,

and d �
� �

� �

1 1

1 1

0 1

0 1

� � �

� �

( )

( )
for d t � �

0
. However, since � � �

0 0 0
2( )� � , we can

concentrate on the last d point (note that this obeys �
0

1� �d ). Hence, the first

equation of (1) may be neglected in the analysis of the steady state.

Stability analysis of system (1) allows finding the result in proposition 1.

Proposition 1. The demand expectations rule (1) has a unique admissible steady

state point d �
� �

� �

1 1

1 1

0 1

0 1

� � �

� �

( )

( )
. This is a stable equilibrium point for

�
� �

�
1

0 0

0

2

3 2 1
�

� �( )
; it is unstable for �

� �

�
1

0 0

0

2

3 2 1
�

� �( )
; and a bifurcation is

observable under condition �
� �

�
1

0 0

0

2

3 2 1
�

� �( )
.

The bifurcation referred to in proposition 1 is a flip bifurcation, since under such

condition we have
� � �

�

G d

d t

( ; ; )
0 1 1� � , with

� �G d d dt t t( , , )
( )

( ) ( ( ))� �
� �

� � � �
0 1

0 0

0

2

1 0 1

1

1
1 1 1 1�

�
� � � � � .

Figure 4 plots the regions of stability (S) and instability (U), given the space of

parameters. The line dividing the two areas corresponds to the bifurcation condition.

Figure 4: Areas of stability / instability in the parameters space

Note that the stability result of proposition 1, which is illustrated in figure 4, is a

result attained through a local analysis. The ‘logistic’ shape of equation (1) allows to
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suspect that a global analysis will reveal another qualitative behaviour, namely

periodic and a-periodic long term time series of dt will be found for different values of

parameters �
0

and �
1
.

A diagram similar to the one in figure 4 can be displayed, now considering a

global analysis instead of the local analysis previously undertaken2. Taking some

initial value for dt in the interval (0,1), figure 5 presents the long term qualitative

nature of the dt time series for different pairs (�
0
, �

1
).

Figure 5: Global dynamics in the parameter space

The stability area in figure 5 (where a fixed point is found) is the same as in figure

4. The difference respects to the area that under a local analysis is identified as

unstable, but that global analysis reveals to be an area where multiple long term

qualitative outcomes are possible: period 2, 4, 8, … cycles are identified and regions

of high periodicity (higher than 35 period cycles) or a-periodicity are also present.

We draw in figures 6 and 7 the series of Lyapunov characteristic exponents (LCEs)

for selected values of �
0

and �
1
, in order to identify the regions with chaos or, more

rigorously, the regions where exponential divergence of nearby orbits is evidenced.

Figures 6 and 7 can be analyzed alongside with figure 5: chaos emerges for values

of parameters to which we cannot identify a low order periodicity (chaos is associated

with positive values of the Lyapunov characteristic exponent).

The chaotic nature of system 1 can be understood as well by looking at bifurcation

diagrams [figure 8 plots a bifurcation diagram ( , )�
0

d t for �
1

05� . ; figure 9 plots the

bifurcation diagram ( , )�
1

d t for �
0

0 75� . . These are the same values chosen to draw

the LCEs, and the two pairs of diagrams can be jointly analyzed].
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Figure 6: LCEs for �1=0.5

Figure 7: LCEs for �0=0.75

Figure 8: Bifurcation diagram (�1=0.5)
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Figure 9: Bifurcation diagram (�0=0.75)

Finally, a long term time series of the demand function is presented in figure 10,

revealing the pattern of evolution that is followed when �
0

and �
1
are such that the

system falls in the chaotic zone.

Figure 10: dt time series (�0=0.75; �1=0.5; transients=100,000)

In the previous paragraphs we have characterized the dynamics underlying

difference equation (1). Recall that this function describes how firms perceive the

evolution of demand. Remind also that demand expectations are the central influence

over firms’ investment decisions and, thus, demand expectations characterized by

endogenous fluctuations will imply an investment process that is also governed by a

cyclical / chaotic behaviour, which then spreads to the whole main economic

aggregates. The following section debates the role of this process when associated to

optimal growth frameworks.
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Growth Models with Non Optimal Investment Levels

In this section we introduce the non optimal investment decisions of firms, derived

from an incorrect evaluation of demand evolution, in growth models. We consider

three growth models with a common feature: they will be all represented by two

equations systems, where one of the equations is the demand rule (1) and the other

characterizes the process of capital accumulation. We begin with the Solow growth

model.

The Solow Model

In the Solow growth setup, an exogenous saving rate, 0<s<1, is considered.

Recalling that jt and it represent potential and effective investment respectively (in

per capita values), and defining yt as per capita output, we can write j syt t� or

i sd yt t t� � . We consider a Cobb-Douglas production function y Akt t� � , with A>0 a

technology index and 0 1� �� the output-capital elasticity; the process of capital

accumulation is described by equation k k i k
t t t t� � � �

1
� , with � �0 the capital

depreciation rate.

Putting together the previous information, we get the capital accumulation

equation in the Solow model, with non optimal investment,

k sAd k k k given
t t t t� � � �

1 0
1� � �( ) , (2)

The dynamics of the original Solow model (equation (2) when dt = 1) is well

known – in the presence of diminishing marginal returns, the steady state is

characterized by a zero growth result, that can be changed only with some external

event like technological progress. Adding dt, and the corresponding evolution

process in (1), we introduce endogenous cycles. Note that if the steady state is

eventually reached, then the equilibrium level of per capita capital is:

k
sA

�
� �

� �

	



��

�


��

	




�
�

�



�
�

�

�

� � �

� �

� �

1 1

1 1

0 0 1

0 1

1 1

(

( )

/ ( )

.

This is a value below the one in the original Solow model (i.e., imperfect demand

expectations end up by producing a long term sub-optimal outcome).

The local properties of the model are mainly the ones discussed for equation (1).

To this equation we have added a capital accumulation constraint, that under the

assumption of decreasing marginal returns involves a stable steady state. The
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linearization of system (1) – (2) in the steady state vicinity implies the matricial

system

k k

d d

k
t

t

�

�

�

�
�

�
�

�

�
 �

� �

�
� �

�

1

1

0

2

0

2

1

0

1 1

0
1

1

( )

( )

(

� � ��
� � �

� �
0
)

�

�

�
�
�

�

�

 
 
 

�

�

�

�
�

�

�
 

k k

d d

t

t

(3)

Let J1 be the Jacobian matrix in 3. The local properties of the system are stated in

proposition 2.

Proposition 2. The Solow model with non optimal demand expectations /

investment decisions can be locally characterized by saddle-path stability for

�
� �

�
1

0 0

0

2

3 2 1
�

� �( )
. A stable equilibrium is found under �

� �

�
1

0 0

0

2

3 2 1
�

� �( )
.

The main new result obtained with the introduction of a Solow physical capital

constraint over the initial system is that the space of parameters identified in figure 4

as unstable is, in the two-dimensional version of the model, an area of saddle-path

stability. The region of stability continues to be exactly the same. Once again, keep in

mind that this is a steady state vicinity result and, in fact, the true qualitative dynamic

results are the ones evidenced in figure 5. In section 4 we study some numerical

examples in order to illustrate the presence of endogenous fluctuations in this model.

The Ramsey Model

In this sub-section we introduce optimal consumption decisions by a representative

agent engaged in maximizing utility. Consider a consumption utility function, U(ct),

where ct is per capita consumption. We need to work with an explicit function U,

hence, we consider U(ct) = ln(ct), a function that fulfils the main requirement of

positive and diminishing marginal utility. Taking a discount factor !" ( , )0 1 , the

intertemporal problem that the agent solves in t = 0 is Max ct

t

t!
�

�#

$
0

ln( ).

The constraint over this problem is a capital accumulation equation that is similar

to the one in the Solow model. Taking the same production function and the same

process of capital accumulation and replacing the exogenous process of investment

by the demand equation yt = jt+ct, the desired equation is

k d Ak c k
t t t t t� � � � �

1
1� � �( ) ( ) (4)
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The dynamics of the Ramsey model is also widely known from the literature. In

the original version (dt=1) steady state vicinity analysis leads to a saddle-path

equilibrium, where we identify a unique one-dimensional stable relation between

endogenous variables kt and ct. Therefore, if one wants to study the dynamics of the

model with endogenous cycles, we can do it only over the stable arm. Thus, this has to

be found.

Proposition 3. In the Ramsey model with non optimal investment decisions, the

capital accumulation difference equation

k Ad k d k k c
t t t t t� � � �

�
��

�
�

�

�
 �

�
��

�
�

�
1

21 211
1 1� � �!%

!
�

!%

! �
 d t

� (5)

describes the economy’s transitional dynamics, when the convergence to the steady

state is guaranteed by the fact that the stable trajectory c c k kt t� �
�

�
1

21
!%

!
( ) is

followed. The value %
21

is the eigenvalue inside the unit circle of the Jacobian’s

linearized version of the model and k and c are steady state values of the model’s

variables.

Equation (5) synthesizes the dynamics of the Ramsey model in the particular case

when the saddle-path is followed (because ct is a control variable, the representative

agent can choose an initial level of consumption over the stable trajectory, what

implies that this trajectory will be followed until the equilibrium point is

accomplished). The equation gives the dynamic behaviour of only one of the

variables, kt; however, to gain access to the dynamics of ct, we just have to look to the

relation between kt and ct given by the stable trajectory.

As in the Solow model, the Ramsey model with the possibility of endogenous

fluctuations is now a two equation system, (5) – (1). Once more, we linearize the

system around the steady state point,
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(6)

The dynamic results relating to system (6) are very similar to the ones

characterizing (3). Because %
21

lies inside the unit circle, the same result as in

proposition 2 is derived, that is, a bifurcation line separates a region of stability from

a region of local saddle-path stability, that we know to be the area where endogenous

fluctuations can be identified. Again, we leave concrete global dynamic results to

section 4.
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Endogenous Growth

The main departure of endogenous growth models relatively to the neoclassical setup

is that in opposition to the Solow and Ramsey frameworks, variables kt and ct do not

converge in any circumstance to long term constant values. Instead, these variables

will exhibit constant growth rates that are, in the simpler form of the model, the same

for the several economic aggregates involved in the analysis. Thus, to accomplish an

equation where, as in (2) or (5), a stable dynamic process is revealed, we will have to

consider ratios of variables with a same long term rate of growth, rather than the

original per capita variables. As we shall see, some simplifications are needed in

order to get to that one-dimensional stable difference equation.

The endogenous growth scenario that is proposed is the Uzawa (1964) – Lucas

(1988) model with physical and human capital. Consider ht as representing per capita

human capital and let ut be the share of human capital applied to produce physical

goods. One main assumption is that physical and human capital are produced with

different technologies. The final goods production function is y Ak u ht t t t� �� �( )1 ;

under this specification, physical capital is used entirely to generate additional

physical goods. Note, as well, that both inputs exhibit decreasing marginal returns

(0 1 1� � �� is the output – human capital elasticity). The production function

regarding the generation of human capital is linear: z B u h Bt t t� � �( ) ,1 0. In both

production functions, constant returns to scale prevail.

Considering the same utility maximization structure as in the Ramsey model,

recovering the non optimal process of investment of previous models and assuming a

same depreciation rate for both forms of capital, the Uzawa–Lucas endogenous

growth model with non perfect demand expectations will be given by (7),

Max c

subject to k d y c k

t

t

t

t t t t t
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ln( )

: ( ) ( )

h z h
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1

0 0

1( )

, .

�

(7)

For the Uzawa-Lucas model, we state proposition 4.

Proposition 4. Let &t t tk h' / and ( t t tc k' / . Assuming that the initial values

of ( t and ut are already the steady state results, ( (
0
� and u u

0
� , then the

Uzawa-Lucas endogenous growth model can be expressed through a two equations

system that includes (1) and the following difference equation for the dynamics of the

ratio between types of capital,
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The study of local dynamic properties of the system (8)-(1) does not differ

significantly from the analysis undertaken for Solow and Ramsey models. The main

distinction is, as referred, that the constant long term expected result respects now not

to the capital stock but to a ratio of capital stocks.

Following the same procedure, we linearize (8)-(1) in the steady state vicinity,
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While in the neoclassical growth models we have regarded that the eigenvalue

derived from the capital equation was always inside the unit circle, this does not

happen now. If B �
�

� �
� � !

� !
( )

( )

1

1 1
, instability will prevail. Otherwise, our known local

qualitative behaviour applies: the regions of saddle-path stability and stable node

stability, and the bifurcation line, in the (�
0
,�

1
) space are precisely the same as in the

Solow and Ramsey models.

Global Dynamics

In this section, we illustrate graphically the global dynamics of each one of the

growth models previously described. As benchmark parameter values we consider

the following vector:

� �� � � � � !
0 1

s A B = � �075 05 025 1 05 025 005 096 01. . . . . . . .

Note that some of these parameters exist only in one or two of the models.

Let us begin by the Solow model. We have regarded in section 2, through the

construction of bifurcation diagrams and computation of Lyapunov exponents, that

for the chosen values of parameters (�
0

0 75� . and �
1

05� . ), the demand equation

implies chaotic motion; this chaotic motion will spread, under the defined investment
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rule, to the accumulation of capital. Therefore, the capital stock will exhibit

endogenous fluctuations under a long term perspective. This can be confirmed by

looking at figure 11 (which is drawn for the set of chosen values of parameters).

Figure 11: Solow model: kt time series (transients=100,000)

We can also present the dynamic behaviour of the other per capita variables

besides capital, namely consumption, output and investment (both potential and

effective). All the variables will display, for the given parameter values, a chaotic

behaviour. Just as an illustration, regard figures 12 and 13; these present attractors,

relating in the first case to the long run relationship between variables kt and ct, and in

the second case, yt and it.

Figure 12: Solow model: (kt, ct) attractor (transients=1,000)
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Figure 13: Solow model: (yt, it) attractor (transients=1,000)

In what concerns the Ramsey model, for the same parameters set we encounter a

same kind of qualitative behaviour for the endogenous variables, that is, endogenous

business cycles are evidenced. Figure 14 displays the long run behaviour of the

capital variable, for the selected array of parameter values.

Figure 14: Ramsey model: kt time series (transients=100,000)

The differences that we find when comparing figures 11 and 14 relate to the fact

that consumption is determined in a different way: this is an exogenous variable in the

Solow framework and a result of optimal decisions in the Ramsey model.

Nevertheless, the main result continues to hold: endogenous business cycles occur as

a result of inefficiencies regarding firms’ expectations about future demand.
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Finally, the endogenous growth model considers constant long run values for the

consumption – physical capital ratio, for the shares of human capital used in each

productive sector and for the positive long run rate of growth of per capita economic

aggregates. Thus, the single variable that exhibits endogenous fluctuations is&t , that

is, the physical capital – human capital ratio. For this variable, figure 15 displays the

corresponding long term time trajectory. The referred ratio can assume multiple long

run values according to the different parameterizations of the demand equation, and

for most of them endogenous cycles are evidenced. Nevertheless, the growth rate of

the various per capita aggregates is constant and, for the selected parameter values,

equal to: � ! � !� � � � �( ) ( ) .B 1 0008.

Figure 15: Endogenous growth model: �t time series (transients=100,000)

Final Remarks

The paper takes the simple assumption that firms make mistakes and often adopt

basic non optimal rules when predicting future demand. Thus, investment decisions

depart from the ones leading to the levels of investment that underlie the structure of

the several most influential intertemporal growth problems. The considered growth

setups may be seen as describing long term trends of growth, which are sketched over

a competitive market structure where any kind of imperfection is ruled out. The new

assumption may be understood as a market inefficiency that induces the presence of

endogenous cycles.

We have studied the dynamic properties of the demand expectations rule. There is

a bifurcation line that locally separates a region of stability from a region of

instability; the local analysis is important to perceive where the change in the

topological properties of the model occurs but it does not tell the full story. Through

numerical examples, one has understood that the local instability area is indeed a
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region where cycles of various periodicities can be found. For some parameter values

these cycles are completely a-periodic, that is, chaos exists (i.e., time series display

sensitive dependence on initial conditions).

On a second stage, the non optimal investment rule was associated to a

neoclassical growth setup (Solow and Ramsey models) and to an endogenous growth

framework. As a result, the growth models maintain their basic features (i.e.,

neoclassical growth models continue to generate a long term growth rate that on

average is zero, while the endogenous growth model implies a positive long run

growth rate) but endogenous fluctuations arise: in the Solow/Ramsey models,

physical capital and consumption time paths exhibit cyclical motion; the same is true

for the physical capital – human capital ratio in the two-sector endogenous growth

framework.
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