UDC: 004.42 _
Original scientific paper

DATA SOURCE WRAPPERS BASED ON DEFINITE
CLAUSE GRAMMARS

Alen Lovrendi¢

University of Zagreb, Faculty of Organization and Informatics, Varazdin, Croatia
E-mail: alovrenc@foi.hr

The problem of the integration of heterogeneous data sources can be divided into two
separated subproblems. The first one is the problem of solving semantic inconsistencies and
conflicts between independent sources. This problem is dealt with in [4],[5],[6] and [12]. In
this paper we shall deal with the second subproblem — the problem of translation among
different query languages that data sources may use. Grammar templates will be created for
some of them, using DC grammars. We will show that DC grammars are good enough to
represent all the properties of query languages that are syntactically of the first or a higher
order.

Keywords: heterogeneous sources, integration, wrapper, query processing, grammars.

1. INTRODUCTION

In this paper, we will deal with one of the problems with the integration of
heterogeneous data sources. The basic terms for this field are defined in [12],[13] and
[4]. A system for heterogeneous data sources integration is made up of two basic parts.
One part — the mediator is described in detail in [4],[5],[6] and [12]. The other part,
well actually — parts, are known as wrappers. The wrapper is an interface system
whose role is to translate queries from the language that is used by the mediator into
languages that are used by underlying sources, and to translate answers from the form
in which the underlying sources represent into the form the mediator can understand.

We will show that definite clause grammars (DCG) are a good framework for
building language templates. In this paper, we are interested in specific subclass of
programming languages — the class of query languages. This is because our aim is to
build a wrapper, i.e. a query language converter.

The problem that we are going to address in this paper is that of language
translation. We will not examine the other problems of structural heterogeneity (such
as type mismatches, formats, codes etc.), and semantic heterogeneity (such as
synonyms, homonyms, etc.), addressed in [1] here, and we are not going to address the
problems of inconsistency of sources, addressed in [4],[5],[6] and [12]. The problem
we will examine and try to solve is dealt with in [7],[8] and [9]. But in these papers a
language called QDTL is proposed for the query language description. The QDTL is a
descriptive language that describes the syntax of some logic-based language. However,
in this paper we will use grammars for the syntax description.

211

Lovrenci¢ A. Data source wrappers based on definite clause grammars

We will use DCG as the grammar for the language syntax representation. DCG is,
in fact, a context-free grammar (CFG) that is implemented in Prolog-like languages.
As we well know, CFGs define context-free languages (CFL), which can be
recognised by pushdown automata. Readers who are interested in the types of
grammars, languages and automata that represent them can refer to [3]. CFLs are
closely connected to Turing machines, the famous mathematical model for an
algorithm. So, it is not surprising that DCGs are good enough to represent query
languages, which are functional languages, and do that not contain any problematic
constructs, such as if...then...else structures, gofo command, or loops etc.

The language that will be the host language for the DCG will be HiLog ([2]).
HiLog is a Prolog-like language of higher-order syntax and first-order semantics. This
higher-order syntax makes HiLog more appropriate for meta-programming, so it will
be easier to implement DCG query templates and its semantics. The second reason we
choose HiLog is that there is a HiLog implementation developed by SUNY at Stony
Brook called XSB ([11], [14]), and, what is also important is that this implementation
has tabled, SLG resolution, which is safe for partially stratified programs. So HiLog
with SLG resolution, as the procedural semantics, has great capabilities.

2. THE HETEROGENEOUS DATA SOURCE SYSTEM

Firstly, we have to define what a system that integrates heterogeneous data sources
actually looks like. As was said before, this system has two fundamental parts. The
first part is the mediator or the supervisor. The mediator is a knowledge base that
contains rules that describes ways of using data sources. The mediators role is to
resolve conflicts and inconsistencies between underlying data sources, as they arise. In
other words, the mediator is the system that acts as the interface between the user and
the underlying sources as an interface. It allows the users to see the whole system with
all the underlying data sources, as a single, consistent data source.

@

Wrapper 1 Wrapper 2 Wrapper 3

Data
Source 2 Data
Source 3

Figure 1: The Heterogeneous Data Source System

212

Zbornik radova, Volume 24, Number 2(2000)

In Figure 1 the simple heterogeneous data source system is presented. It contains
one mediator for the query language that the users use to access all the underlying data
sources and it also contains the wrappers that are the interfaces between the mediator
and underlying data sources.

Because of the difference between the syntax, the semantics and the power of
query languages for the underlying data sources, wrappers are needed to translate the
mediator’s query from the language used on the mediator to the query languages of the
underlying data sources, and to translate answers given by the underlying source into
the language of the mediator.

But, a wrapper is not only a translator. Its other powerful function is to empower
underlying data sources by extending their query capabilities. This is possible because
a wrapper can have some selection, projection and joining capabilities that can be
performed on data that is given as an answer from the underlying data source. The
wrapper’s role is to equalise the query capabilities of the underlying data sources with
the query capabilities of the mediator query language. In this way, the mediator is
obligated to distinguish between the differences in the query capabilities of underlying
data sources.

We will describe now what the data sources in such heterogeneous data source
system could actually be. It is obvious that any type of a database could be a data
source. In [4], an example is given in which a relational database and a deductive
object-oriented database are data sources. Legacy sources can be data sources in the
heterogeneous data source system, too. That means that any for example say a UNIX
file with UNIX command grep, can play a role of the data source. Computer programs
that take input and give an output could be data sources for this system, too. Web
pages could also be data sources. So, various data sources can be integrate into the
system. It is important to say that the designer of the heterogeneous data source system
is not necessarily the designer of the underlying sources. We will think of data sources
as independent databases, that we are generally not able to administrate. This means
that we do not necessarily have any other grants on the underlying data sources, except
read-only access. So, we are not suppose to change the data sources schema and we
are not able to accommodate data sources with our system. We should use them as
they are, read data from them, and make the best of the answers they give.

More complex heterogeneous data sources integration systems are possible, than
just the system that is shown in Figure 1. Other heterogeneous data source integration
systems can be used as data sources for a bigger system of this type. Figure 2 shows
another, more complex heterogeneous data source system.

In the system shown in Figure 2, Mediator I the mediator of the main system, and
Mediator 2 is mediator of heterogeneous data source system and it serves as the data
source for the main system. Regardless of the form of Mediator 2, (which can be the
same as the form of Mediator 1), the system to which Mediator 2 is the supervisor, has
a wrapper. This is because, regardless of similarity with the mediator of the main
system, the syntax of these two systems are not the same, and the translation between
these two syntax has to be done.

213

Lovrenci¢ A. Data source wrappers based on definite clause grammars

Mediator 1

-

Wrapper 1 Wrapper 2

Data
Source 1 Data
Source2

Wrapper 3

Wrapper 4

—

Data
Source 3

Wrapper 5

Figure 2: A Complex Heterogeneous Data Source System

3. WRAPPER CONSTRUCTION

As was shown in the figures from the previous section, every data source in the
heterogeneous data source integration system has its own wrapper. A heterogeneous
data source integration system can have many underlying sources and it is necessary to
build a wrapper for each one of them. So, a lot of programming could be necessary in
order to build wrappers for all the data sources. Because of this, a theory for wrapper
building is necessary. The main goal of this theory is to define, as much as possible,
things that are common to all the wrappers, and to build those base things together for

all the wrappers in the system.

The Following figure shows main components of the wrapper and the data that

flows through it.

214

Data
Source 4

Zbornik radova, Volume 24, Number 2(2000)

A
(:TJZ‘:; Answer
Query Input Query
Templte > Query Filter
Llibrary Processor Processor
Set of
directly Ot
supported ata
component Coml:):nent source
queries sgheze answer
Y
Dfver Answer
»
Component processor
—x answers ———————

Data
Source

Figure 3: A Data Source Wrapper

A query is accepted by the input query processor first. The input query processor
transforms the query into a form that can be compared with query templates from the
query template library. According to the result of that comparison, the input query
processor transforms the input query into one or more component queries that the
underlying source is able to process, and sends these component queries to the driver.
The driver transforms queries into the query language that the underlying source
understands, and sends these queries to the underlying data source, then it gets the
answers from the data source, and it transforms answers into a form that the mediator
understands. The answers are proceeded to the answer processor. The answering
processor combines component answers, according to the component query scheme,
into a single answer. This answer is sent to the filter processor where the answer is
filtered. The filtered answer is the answer to the input query.

It is easy to see that in this concept of a wrapper only a driver and a query template
library are data source dependent, that and all other components can be built globally,
for all of the wrappers together.

215

Lovrenci¢ A. Data source wrappers based on definite clause grammars

3.1. Supported Queries

As was said before, data sources can have very different query capabilities. Some
of them can have very poor query capabilities. For example, legacy sources (data files
with a searching command) have just got rudimental query capabilities. One of the
aims of the wrapper is to enhance query capabilities for those sources. To do that, the
wrapper uses four components — the input query processor, the query template library
to decompose the input query, and the answer and the filter processors to combine the
answers to the component queries into the answer to the input query. The input query
processor transforms the input query into one or more queries that can be run on the
underlying data source, if it is possible to get an answer from the underlying source
that can be transformed into an answer to the input query. Queries that can be
processed on the wrapper and on the data that can be obtained from the underlying
data source are called supported queries. In other words, supported queries are queries
that can be processed by the wrapper and the underlying data source together.
According to the wrapper’s participation, the query processing supported queries can
be divided into:

- Directly supported queries — Queries that can be directly processed by the data
source. For this type of queries wrapper only does the translation.

- Logically supported queries — Queries that can be transformed into an
equivalent and directly supported query.

- Indirectly supported queries — Queries that cannot be processed by the data
source, but can be transformed into the set of directly supported queries whose
answers can be combined, by selection, projection and join operations, into an
answer to the input query.

It is obvious that directly supported queries make a subclass of the class of
logically supported queries. In the same manner, logically supported queries form a
subclass for the class of the indirectly supported queries.

To process the indirectly supported query a definition of a query plan is needed.
The query plan defines the way we process queries. The plan contains a set of directly
supported queries that are called component queries, which can be processed by the
data source, and the filter. The filter is a query that is processed on the wrapper using
selection, projection and join operations, in answer to the input query.

Generally, the filter could be any query that uses the answers of component
queries. But it is not necessary to define the filter so widely. It is sufficient to define
the filter as a query that uses the answers to the component queries as relations, and
projection, selection and join as operations on them. This means that the filter cannot
use any other data that is not given in the answer to some component query.

Now, we shall give definitions that define the terms informally introduced above.

Definition 1: A query q is a logical consequence of a query q’ if an answer to the
query q can be produced from an answer to the query q’ by a projection
and a selection on the database that supports both queries directly.

216

Zbornik radova, Volume 24, Number 2(2000)

Directly supported queries are queries to which the database can give an answer.
Definition 1 will allow us to formalize indirectly and logically supported queries. It is
obvious that every indirectly supported query has to be the logical consequence of the
join of some directly supported queries.

To define indirectly supported queries we need another definition:

Definition 2: Let q be a query. A filter query f, is every query that has the following
form:
answery(Y), <cond(Y)>

where answer, is an answer to the query q, and cond is a conditional
query on the variables from the vector Y.

Let us define clause:

answery(Y):- <q>.

which describes s predicate answer, whose intention is an answer to the query q. In
other words, answer, describes an answer to the query q. Then the filter query on the
query q is every query that contains an instance of the answer, for some vector Y, and
conditional atoms. Conditional atoms are atoms of the form

<terml>O<term2>

where @€ {<, >, =, \=, >= =<}. It has to be said that the vector Y can contain unnamed
variables _, which embody projections in Prolog-like languages. This is a Prolog-like
definition of the filter query. In the relational algebra-like language, a conditional
query can be defined as a query that contains only selections and projections as
operators.

Definition 3: Let q; and q, be queries. We can say that the query q is indirectly
supported by the query q, if there is a filter query fg, that is equivalent to
the query q;.

Now we will define the meaning of indirectly supported query by some other
query. But, this is not enough to cover all of the indirectly supported queries. Namely,
there are queries that are not indirectly supported by one directly supported query, but
by the join of several directly supported queries. Definition 3 can easily be extended
into a definition that includes this case too.

Definition 4: Let qy, ..., q, be queries, and let q be a join of these queries. Then we can
say that the query q is indirectly supported by the set of queries qy, ...,
q, if it is indirectly supported by q.

3.2. Query templates

In this section, we will introduce query templates — templates that describe the
query capabilities of the query language of the data source. Many ways of defining
query templates can be found in the literature related to this area, but we will use DCG
to define them. The reasons for this are given in the introduction to this paper.

217

Lovrencic¢ A. Data source wrappers based on definite clause grammars

To define the query capabilities of some data source, we have to define the queries
that the source can process. Normally, a data source supports some class of queries
that can be described by looking at several syntactic roles. So the natural way to define
the query capabilities of a query language is to define its grammar. But, in our case,
wrappers will get the queries from the mediator in the mediator query language. It
would not be rational to translate every query from the mediator and then check if this
query is supported by the data source. It is more rational to define the grammar of the
sublanguage of the language of the mediator which, when translated, is directly
supported by the data source. This means that we will define the grammars of the
sublanguages of HiLog. The translation of the Prolog-like language into some standard
query language (relational algebra, for example) is described in detail in [1].

With regard to the language capabilities of Prolog-like languages, a problem arises,
namely that the grammar should include, and recognise, many variants of the same
query. The problems are that the order of the atoms in Prolog-like languages are
irrelevant, and the join and selection operations could be defined in an implicit way.
For example, if we have the relations P(A,B), and Q(B, C), and we want to make the
natural join of these two relations, we could write the following query:

2= p(XsY)’ q(Y:Z)' (1)

In this query, the join is defined implicitly, by the repeating of variable Y from the
first atom, in the second atom. If we want to avoid an implicit definition of the join in
this query, we could write this query in the following way:

7-p(X,Y), q(U,Z), U=Y.)

The query (2) is equivalent to the query (1), but it is much easier to analyse
because the join operation is defined explicitly by the third atom.

In the same way, if we want to introduce the selection into the query (1), so that we
would get only those answers that are build from the records from the Q relation, in
which the value of the second argument is equal to 1, the query would then have to be:

?- p(X,Y), q(Y,1). 3)

In the query (3), both operations, the join and the selection operatoins are defined
implicitly. To define them explicitly, we need to write the following query:

= p(X9Y)’ q(U’Z)7 U=Ya 7-1. (4)

It is obvious that every query can be written in such way that all of the relation
operations are defined explicitly. The following definition gives a formalisation of the
queries where all the operations are defined explicitly.

Definition 5: We said that the query is in the descriptive normal form (DNF) if the
following conditions are met:

218

Zbornik radova, Volume 24, Number 2(2000)

(1) In the atoms of the form p(ty, ..., t,), all t;, i=1, ..., n are variables or
queries in the descriptive normal form.
(2) In atoms of the form p(ty, ..., t,), every variable occurs only once.

It is obvious that every query could be rewritten in DNF. The following
proposition proves that and gives an algorithm for transformation of queries into DNF.

Proposition 1: For every HiLog query there is an equivalent HiLog query in DNF.
Let query q

2= pl(tlla L) tnl)a sie'dy pm(tlm’ Siviey tnm),<00ﬂd>.

be a query, in which cond is some conditional query that uses constants and
variables which appear in the first part of the query. We can always write a
query in such a way that allb the conditional atoms come at the end of the
query. This is because the order of the atoms in a query is irrelevant as long as
the query has a finite answer.

We will read the query from left to right, then examine it to see if it is in the
DNF or not, and if it is not we will transfer the query so that it will be in the
DNF.

The algorithm is as follows:

1. Seti:=1

2. Examine if the atom p;(ty;, ..., tmi) is in DNF. If it is not. Transfer the query
to the q” so pi(tyis ---5 tmi) is in the DNF.

3. Set i:=i+1. Go to the step 2.

It is obvious that this algorithm will have exactly m steps for the query q, and
that, after it has finished, the transformed query will be in the DNF. The only
thing that is not clear is the possibility of performing one step of the algorithm
in the finite time. The following procedure will examine if the atom p; is in
DNF and, if it is not, transform the query q in which the atom p; is the first
atom that is not in the DNF into the query q’, in which the atom p; is in the
DNF.

1. Set j:=1
2. If t; is the constant c, then transform the atom p; by introducing a new
variable Xj; in place of the term t;; and add a conditional atom Xj=c at the end
of thequery.

3. If the term t; is the variable Y that appears in the query for the second time,
then transform the atom p; by introducing a new variable Xj; in place of the
term t; and add a conditional atom X;=Y at the end of the query.

4. If the term t;; is an atom, then repeat this procedure for that atom.

S. Set j:=j+1. Go to step 2.

219

Lovrenci¢ A. Data source wrappers based on definite clause grammars

To prove a finiteness of step 2, we should be able to introduce a new variable
name in a finite time, and in fact we can do just that. For step 3 we should be
able to find out if the variable appears in the query for the first time and to
introduce a new variable name in a finite time, and it is also possible to do
this.

To prove the finiteness of step 4 we should recall that HiLog formulae are of
finite length, so after, at most the finite number of recursive steps, we will
reach the first order atom, i.e. the atom whose arguments are variables and
constants only.

The only thing that remains to be shown is that the transformations that are
defined in the algorithm are proper. This means that they transform a query
into an equivalent query, and that it is obvious.

It is shown that the algorithm is finite and correct. The complexity of this
algorithm is O(2") where n is the number of variables that appears in the query. To see
that we should recall that the algorithm for Sk6lemization, since predicate calculus is
NP-complete because of the task of introducing new variables into the formulae.
Namely, to introduce new variables into the formula, exponential time regarding the
number of the variables in the formula is needed.

Let us suppose that we have data source that has one relation, say R(A,B), and
query language for the data source is implemented and it can do selections on the
attribute A. Plus, let the query language of the data source only do selections based on
the equality of the value of the attribute A to the constant.

In this case, the query capabilities of this data source in the relational algebra-like
language can be described by the following query template:
cA=<conxtanl>(R)
The DCG query template for this source is
query ">[{ra[XaYlaqa[:,[XaZ]]]a
{var(X),var(Y) ;anot([A],[]),not(X==Y),atomic(Z)}.

Another data source that we will examine is an extension of the first one. Let the
data source allow all possible selections on the relation R. Then a query can be
described by the following query template

query -->[[r,[X,Y],t]], cond, {var(X),var(Y), not(X==Y)}.

Where the cond defines the conditional query. The cond is defined by the
grammar below

scond --> [[Comp,[Term1,Term2]]],
{comp([Comp],[]),term([Term1],[]),term([Term2],[])}.
scond --> [[';',[Cond1,Cond2]]], {cond([Cond1},[]),cond([Cond2],[])}.
scond --> [[not,Cond]] ,
{cond(Cond,[])}.

220

Zbornik radova, Volume 24, Number 2(2000)

cond --> scond.
cond --> scond,cond.

term --> [X],{var(X)}.

term --> [X],{not(var(X)),atomic(X)}.
comp --> ['<'].

comp --> [">'].

comp --> ['=<"].

comp --> [">="].

comp --> ['="].

comp --> ["\="].

In this grammar, the definition for the variable cond describes the recursively
conditional query as a simple conditional query (scond), or as a conjunction of a
simple a conditional query and a conditional query (that is not necessary a simple one).
The simple conditional query is defined by three grammar clauses. The first one
defines a binary comparison condition, where comparison operators are given by the
definition of the comp variable. That clause defines a simple conditional query as a
binary operator and two terms. The term in this definition is constant (atom or number)
or a variable. The second clause defines a simple conditional query as a disjunction of
two conditional queries. This is necessary because of way that HiLog (and other
Prolog-like) languages process the DCG. Only the conjunction is an ordinary
connective in DCG, so a disjunction has to be defined explicitly. The third clause
defines the negation of the conditional query as a simple conditional query.

And at the end of report we will give the DCG template for the data source that
allows all possible selections, projections and joins.

query(X,Y) --> rel(X,Y).
query(X,Y) -->rel(X1,Y1), cond(X2,Y2), {append([','],[X1],X3),
append(X3,[X2],X4),
X 7*=.. X4,append(Y1,Y2,Y)}.
query(X,Y) --> cond(X,Y).

rel(X,X1) --> [[R,X1,A]], {relation(R,N), length(X1,N), anot(A),
append([R],X1,X)}.

rel(X,Y) --> [[R,X1,A]],rel(X2,Y1), {relation(R,N), length(X1,N),
anot(A), append([R],X1,X3),
append([','],[X3],X4),
append(X4,[X2],X5),X *=.. X5,

append(X1,Y1,Y)}.
scond(X,Y) --> [[Usp,[Term1,Term2]]l, ~ {comp([UspLl),
term(Y1,[Term1],[]),
term(Y2,[Term2l,[]),

append([Usp],[Term1],X1),
append(X1,[Term2],X2),
X *=.X2, append(Y1,Y2,Y)}.

221

Lovrenci¢ A. Data source wrappers based on definite clause grammars

scond(X,Y) —> [[';',[Cond1,Cond2]]], {cond(X1,Y1, [Condl1],[]),
cond(X2,Y2,[Cond2],[]),
append([';'],[X1],Y1),
append(Y1,[X2],Y2),
X *=..Y2,append(Y1,Y2,Y)}.
scond(X,Y) --> [['not',Cond]] , {cond(X1,Y,Cond,[]),
append(['not'],[X1],Y2),
X *=.Y2}.

cond(X,Y) --> scond(X,Y).
cond(X,Y) > scond(X1,Y1), cond(X2,Y2), {append(X1,X2,X),
‘ append(Y1,Y2,Y)}.

term([X]) --> [X], {var(X)}.
term([]) > [X], {not(var(X)),atomic(X)}.

comp --> ['<'].
comp --> [>'].
comp --> ['=<"].
comp --> ['">="].
comp --> ['="].
comp --> ["\='].

In addition to the query template above, we have to define the predicate relation/2,
which contains names of relations in the data source, and the arity of these relations. In
this way, we have built a more general template that can be easily used for any data
source that has these query capabilities. It is very interesting to do so, because this
query template defines the selection, projection and join capabilities of relational
databases. Also, the predicate append/3, that concatenates two lists given in the first
and the second argument into the single list, is used.

3.3. Plans

Our goal is to build a wrapper system that extends the query possibilities of the
underlying data source and translates queries from the language of the mediator to the
language of the underlying data source and vice versa. This means that part of the
query will be processed in the underlying source and part of the query will be
processed in the wrapper. We said before that a wrapper can do selections, projections
and joins on data from the answers to the queries processed in the underlying data
source. But the data source may allow some projections, selections and joins itself. So,
it is obvious that sometimes there is more than one way to process any indirectly
supported query. The question arises: which of these ways is the best? Generally, the
tendency is to proceed as many operations as possible in terms of the data source and
to minimise the wrapper’s participation in query processing.

The formalisation of the possible ways of processing a query is query plan defined
by the following definition:

222

Zbornik radova, Volume 24, Number 2(2000)

Definition 6: A plan P for the indirectly supported query q on the data source d is the
set of the queries q;, ..., q, that are directly supported by d, and the filter
query f, so that query q is equivalent to the query

?-Qiy eees qus £+

In this set, q;, ..., q, are called the component queries of the plan P.
It is easy to see that the plan for the directly supported query is that query alone.
Plus, the plan for the logically supported query is a directly supported query that is
equivalent to that query.

The problem is that there could be more then one plan for a query. We have to
define which plan is the best, so that we can choose it. In [4], algebraic optimal plans
are introduced to solve this problem, but this is out of the range of this paper. We will
use any plan here. Every plan should process a query correctly, and choosing between
these plans is the task of the optimization of query processing.

The second problem that arises here is the problem of generating plans for the
query. The plans for the query are built in the same way as the plans for the query
execution for the relational databases. Any reader interested in this field can refer to
[10]. In [4], a HiLog program that creates an algebraic optimal plan is given, and it can
be used with the query templates that have been introduced in this paper.

4. CONCLUSION

In this paper, the term of data source wrapper has been introduced. We have shown
how the wrapper can be built and integrated into the heterogeneous data source
integration system.

A term of query template was introduced, so more general wrappers can be built.
For the building of query templates definite clause grammars can be used. It was
shown that DCGs are suitable for the task of building query templates.

To make queries easier to process a descriptive normal form was defined, we
showed that every HiLog query can be transformed into an equivalent HiLog query in
DNF. The transforming algorithm is given.

There are some open questions that were not examined in this paper. The
classification of query plans that was introduced in [7] and [4] can be used for the plan
for indirectly supported query building. The building plan for HiLog queries with
regards to DCGs as query templates was not examined in the literature and could well
be an interesting theme to examine.

Building query templates for some common data sources, such as deductive,
object-oriented and temporal databases, could be another interesting extension of this
paper. Building of the wrapper, based on the ODBC driver for the XSB HiLog is the
practical extension that could be very useful. A wrapper that would be created in this
way could be used for the wide class of data sources that could allow an ODBC
connection.

223

Lovrenci¢ A. Data source wrappers based on definite clause grammars

REFERENCES

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

S. Ceri,G. Gottlob, L. Tanca. Logic Programming and Databases. Springer-Verlag,
Berlin, 1990.

W. Chen, M. Kifer, S.D. Warren. HiLog: A Foundation for Higher-Order Logic
Programming. Journal of Logic Programming, Vol. 15, No. 3, 1993, pp. 187-230.

J.E. Hopcroft, J.D. Ullman. [Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, 1979.

A. Lovrenc¢i¢. Amalgamacija baza znanja. Master thesis, Faculty of Organization and
informatics, 1999.

A. Lovren¢ié. Knowledge Base Amalgamation using Higher-Order Logic-Based
Language HiLog. Proceedings of 10" International Conference on Information and
Intelligent Systems, Varazdin, Croatia, 1999.

A. Lovren¢i¢, M. Cubrilo. Amalgamation of Heterogeneous Data Sources Using
Amalgamated Annotated HiLog. Proceedings of 3rd IEEE Conference on Intelligent
Engineering Systems, INES'99, Stara Lesna, Slovakia, 1999., pp. 285-290.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J.D. Ullman. A Query Translation
Scheme or Rapid Implementation of Wrappers. Conference on Deductive and Object-
Oriented Databases, Singapore, 1995.

Y. Papakonstantinou, A. Gupta, L. Haas, Capabilities-Based Query Rewriting in
Mediator systems (extended version). Distributed and Parallel Databases vol. 6, no. 1,
1998.

A. C. Rakesh, R. Chandra, A. Segev. Processing Matching-Joins in Multidatabases.
technical paper, 1996.

[10]R. Ramakrishan. Database Management Systems. McGrow-Hill, Boston, 1999.
[11]K. Sagonas, T. Swift, D.S. Warren, J. Freire, P. Rao. The XSB System Version 2.2

Volume 1: Programmers Manual, State University of New York, Stony Brooks, 2000

[12]V.S. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions on Database

Systems, Vol. 19, No. 2., 1994. pp. 291-331

[13]].D. Ullman. Information Integration Using Logical Views, International Conference on

Databases Theory, invited paper, Delphi, Greece, 1997., pp. 19-40.

[14]D.S. Warren. Programming in Tabled Prolog, Draft Version, SUNY. Stony Brook, 1995.

224

Received: 14 January 2000
Accepted: 25 May 2000

Zbornik radova, Volume 24, Number 2(2000)

we

Alen Lovrencié¢

OMOTACI IZVORA ZNANJA TEMELJENI NA GRAMATIKAMA
DEFINITNIH KLAUZULA

Sazetak

Ovaj rad se bavi drugim od dvaju osnovnih problema koji se javljaju pri integraciji
heterogenih izvora znanja u jedinstveni izvor, koji sve podatke sa izvora nad kojim je
izgraden, prezentira korisniku na jedinstven nacin — prevodenjem upitnog jezika integratora u
upitne jezike izvora, I obrnuto, prevodenjem formata odgovora koje daju izvori u format
razumljiv integratoru. Prvi problem integracije heterogenih izvora znanja — razrjeSavanje
konflikata izmedu podataka s raznih izvora obraden je u [4][5] i [6].

U ovom se radu uvode omotadi izvora znanja, koji rjesavaju gore spomenuti problem. Stovise,
omotaci omogucéuju rjesavanje joS jednog bitnog problema koji se javlja kod propitivanja
heterogenih izvora znanja — prevladavanje razlika u upitnim mogucénostima izvora. Drugim
rije¢ima, omotaci izvora znanja ujednacavaju upitne moguénosti izvora koje omataju.

Kako bi se olaksao i smanjio posao koji je potrebno uloZiti za izradu omotaca izvora znanja,
razvija se jezgra koja je zajednicka omotacima za sve izvore, a upitne se mogucnosti izvora
definiraju pomocu biblioteka upitnih obrazaca, koji se grade koristenjem gramatika definitnih
klauzula.

Kljucne rijeci: heterogeni izvori znanja, integracija, omotac, obrada upita, gramatike.

225

