INVOLUTES AND EVOLUTES IN n-DIMENSIONAL SIMPLY ISOTROPIC SPACE $I_n^{(1)}$

Blaženka Divjak
University of Zagreb, Faculty of Organization and Informatics, Varaždin, Croatia
E-mail: bdivjak@foi.hr

Željka Milin Šipuš
University of Zagreb, Department of Mathematics, Croatia
E-mail: milin@math.hr

In this paper, the notions of the isotropic involutes (of order k) and the isotropic evolutes in n-dimensional simply isotropic space $I_n^{(1)}$ are defined. We determine the formula of involutes of a given admissible curve in $I_n^{(1)}$ and the curvature and the torsion of involutes and evolutes in $I_n^{(1)}$. The system of differential equations which determines the evolute of a given admissible curve in $I_n^{(1)}$ is found. The explicit formula of the evolutes of admissible curve in $I_n^{(1)}$ is given. The definitions of involutes and evolutes, which are used in this article, are motivated by the analogous definitions for Euclidean case from [2].

Keywords: admissible curve, involutes, evolutes, n-dimensional simply isotropic space.

Mathematics subject classification: 53A35

1. CURVES IN $I_n^{(1)}$

Let I be an interval, $I \subseteq \mathbb{R}$ and $f : I \rightarrow I_n^{(1)}$ vector function given in affine coordinates as

$$\overrightarrow{OX}(t) = (x_1(t), \ldots, x_n(t)) : = \mathbf{x}(t), \ t \in I.$$

The set of points $c \in I_n^{(1)}$ is called a C^r-curve if there is an open interval $I \subseteq \mathbb{R}$ and C^r-function $(r \geq 1)$ $f : I \rightarrow I_n^{(1)}$ with $f(I) = c$.

A C^r-curve is a regular C^r-curve provided

$$\dot{\mathbf{x}}(t) = (\dot{x}_1(t), \ldots, \dot{x}_n(t)) \neq 0, t \in I,$$

and if f is an injective transformation a curve is called a simple C^r-curve.

A regular C^r-curve $(r \geq n-1)$ is nondegenerate if the set of vectors

$$\{\dot{x}(t), \ldots, x^{(n-1)}(t)\}$$

is linearly independent for all $t \in I$.

A curve \(c \subset \mathbb{I}^{(1)}_n \) is said to be an admissible \(C^r \)-curve (\(r \geq n-1 \)) when \(c \) is a simple, nondegenerate \(C^r \)-curve (\(r \geq n-1 \)) without the isotropic osculating hyperplanes.

Let \(c \), which is defined on a closed interval \([a,b]\), be an admissible curve in \(\mathbb{I}^{(1)}_n \). Then
\[
s := \int_a^b \left(\dot{x}_1^2 + \ldots + \dot{x}_{n-1}^2 \right)^{1/2} \, dt
\]
is called the isotropic arc length of the curve \(c \) from \(x(a) \) to \(x(b) \). (From now on, \(s \) always denotes a parameter of the arc length.)

For the admissible curve \(c \) (\(x=x(s) \)) we can define \(n \)-frame \(\{t_1, \ldots, t_n\} \) in any point, as has been done in [1] or [4] for example. Then, there are functions \(\kappa_1(s), \ldots, \kappa_{n-1}(s) \) so that the Frenet formulae
\[
(t'_i) = \kappa_i(t_2)
\]
\[
(t'_i) = \kappa_i(t_{i+1}) - \kappa_{i-1}(t_{i-1}) \quad i = 2, \ldots, n-1,
\]
\[
t'_n = 0
\]
hold. The functions \(\kappa_1(s), \ldots, \kappa_{n-1}(s) \) are called the isotropic curvatures of the curve \(c \).

The definitions of involutes and evolutes, which are used in this article, are motivated by the analogous definitions for the Euclidean case from [2].

2. INVOLUTES

2.1. Involutves in \(\mathbb{I}^{(1)}_n \)

Definition 1. Let \(c \), given by \(x = x(s) \), \(x : I \to \mathbb{I}^{(1)}_n \), \(I \subseteq \mathbb{R} \) be an admissible \(C^r \)-curve (\(r \geq n \)) parameterized by the parameter of the arc length. The orthogonal trajectories of the first tangents of the curve \(c \) are called the involutes of the curve \(c \).

Theorem 1. A one-parameter family of involutes of an admissible curve \(c \) is represented by the formula
\[
\bar{x}(s) = x(s) + t_i(s)(k - s),
\]
where \(k \) is an arbitrary constant and \(s \) is the arc length of the curve \(c \).

Proof. The involute of the curve \(c \) (\(x=x(s) \)) is characterized by
\[
\bar{x}(s) = x(s) + u(s)t_i(s)
\]
where \(u(s) \) is a function of \(s \) on \(I \). Then the differentiation of the relation (2.2) and the Frenet formulae (1.1) give the following equation.
(2.3) \[\ddot{x}'(s) = (1 + u'(s))t_i(s) + \kappa_i(s)u(s)t_j(s). \]

In accordance with \(\ddot{x}'t_i = 0 \), we have \(1 + u'(s) = 0 \) and furthermore,

(2.4) \[u(s) = k-s, \quad k = \text{const}. \]

Inserting the relation (2.4) into (2.2) we obtain the expression (2.1) as desired.

Corollary 1. Two different involutes of an admissible curve \(c \) are equidistant.

In addition, we wish to generalize the notion of an involute.

Definition 2. Let \(c (x = x(s)) \) be an admissible curve. Curves, which are orthogonal to the system of \(k \)-dimensional osculating hyperplanes of \(c \), are called the *involutes of order \(k \)* of the curve \(c \).

The involutes of order \(k \) are given by

(2.5) \[\ddot{x} = x(s) + u_1(s)t_1(s) + \ldots + u_k(s)t_k(s), \quad k \leq n-1. \]

In order to determine the functions \(u_1, \ldots, u_k \) from (2.5) we differentiate (2.5) and by using the Frenet formulae (1.1) we have

(2.6) \[
\begin{align*}
\ddot{x}' &= (1 + u_1' - u_2\kappa_2) t_1 + \sum_{i=2}^{k-1} (u_i' + \kappa_{i-1}u_{i-1} - \kappa_i u_{i+1}) t_i + \\
&\quad + (u_k' + \kappa_{k-1}u_{k-1}) t_k + \kappa_k u_k t_{k+1}.
\end{align*}
\]

Since we have \(t_iy' = 0 \) for \(i = 1, \ldots, k; \quad k \leq n-1 \) we obtain

(2.7) \[
\begin{align*}
1 + u_1' - \kappa_2 u_2 &= 0 \\
u_i' + \kappa_{i-1}u_{i-1} - \kappa_i u_{i+1} &= 0, \quad 1 = 2, \ldots, k - \\
u_k' + \kappa_{k-1}u_{k-1} &= 0.
\end{align*}
\]

from (2.6) after a scalar multiplication by \(t_1, t_2, \ldots, t_k \).

The system of differential equations (2.7) is the same as in the Euclidean case and admits a uniquely determined set of solutions \(u_1, \ldots, u_k \), having already prescribed the initial values at the point \(s = a \) of the curve \(c \).

According to the above, the involute, which is defined in Definition 1, is actually the involute of order 1 and then the relations (2.7) are reduced to (2.4).

If \(c \subset I_{n}^{(m)} (m < n) \) is an admissible curve the involutes of \(c \) could be defined in the same way as is done above. Obviously, Theorem 1, Corollary 1 and Corollary 2 are true in a case when \(k \leq n-m-1 \).

2.2. Involutes in \(I_{3}^{(1)} \)

Corollary 2. Let \(c \), given by \(x = x(s) \), be an admissible curve in \(I_{3}^{(1)} \) where \(s \) is the parameter of the arc length and \(\{t(s), n(s), b(s)\} \) the 3-frame of the given curve. Then the involute \(\tilde{c} (\tilde{x} = \tilde{x}(s)) \) of curve \(c \) has the following form
\[\bar{x}(s) = x(s) + (k - s)t(s). \]

The proof is analogous to that of Theorem 1.

Corollary 3. If \(\kappa(s) \) and \(\tau(s) \) are the curvature and the torsion of an admissible curve \(c \), then the curvature \(\bar{\kappa} \) and the torsion \(\bar{\tau} \) of the involute \(\bar{c} \) of the curve \(c \) are given by

\[\bar{\kappa}(s) = \frac{\text{sgn} \ \kappa}{|s-k|}, \quad \bar{\tau}(s) = \frac{(\tau')}{\kappa(k-s)}. \]

Proof. The parameter \(s \) is not the parameter of the arc length of \(\bar{c} \), so, as is shown in [4], we have

\[\bar{\kappa}(s) = \frac{\text{Det}(\bar{x}, \bar{x}, \bar{x})}{|\bar{x}|^3}, \quad \bar{\tau}(s) = \frac{\text{Det}(\bar{x}, \bar{x}, \bar{x})}{\text{Det}(\bar{x}, \bar{x}, \bar{x})}. \]

On the other hand, the differentiation of equation (2.8) implies that

\[\bar{x}(s) = (k-s)\kappa n, \]
\[\bar{x}(s) = -(k-s)\kappa^2 t + [(k-s)\kappa' - \kappa]n + (k-s)\kappa \tau b, \]
\[\bar{x}(s) = [2\kappa^3 - 3(k-s)\kappa \kappa']t + [-\kappa'(k-s)^3 - 2\kappa' + (k-s)\kappa'']n + \]
\[[2(k-s)\kappa \tau + (k-s)\kappa \tau' - 2\kappa \tau]b, \]
\[\bar{x}(s) = (k-s)\kappa n, \]
\[\bar{x}(s) = -(k-s)\kappa^2 t + [(k-s)\kappa' - \kappa]n. \]

Now, it is easy to see that

\[|\bar{x}| = |(k-s)\kappa|, \]
\[\text{Det}(\bar{x}, \bar{x}) = (k-s)^3 \kappa^3, \]
\[\text{Det}(\bar{x}, \bar{x}, \bar{x}) = (k-s)^3(\kappa \tau' - \kappa \tau) \kappa^3. \]

And now from the above relations and (2.10) we deduce (2.9).

Example 1. The involutes of the helix

\[x(s) = \left(a \cos \frac{s}{a}, -a \sin \frac{s}{a}, \frac{p}{a} s \right) \]

are the plane curves

\[x(s) = \left(a \cos \frac{s}{a} + (s-k) \sin \frac{s}{a}, -a \sin \frac{s}{a} + (k-s) \cos \frac{s}{a}, \frac{p}{a} k \right) \]

\(k = \text{const.} \)

We could ask ourselves if there are any other admissible curves in \(U_1 \) which have plane involutes. Because of (2.9) we may conclude that \(\bar{\tau} = 0 \) if and only if
\[\left(\frac{\tau}{K} \right)' = 0. \] Thus, \[\frac{\tau}{K} = \text{const.} \] So, only those admissible curves in \(I^{(i)}_1 \) which have plane involutes are the helices.

3. EVOLUTES

3.1. Evolutes in \(I^{(i)}_n \)

Definition 3. We say that a curve \(c^*(x^*(s)) \) is an evolute of an admissible \(C^n \)-curve \(c(x=x(s)), c \subset I^{(i)}_n \) if \(c \) is the involute of \(c^* \). The parameter \(s \) is the parameter of the arc length of \(c \).

The question that must be asked is: when does an evolute of a given curve exist and what does this evolute look like? The following theorem, which has the same form as in the Euclidean case (see [2]), answers the first part of this question.

Theorem 2. Let \(c: I \rightarrow I^{(i)}_n \) be an admissible curve and \(s \) the parameter of the arc length. The evolute of \(c \) exists if and only if there is a nonisotropic unit field \(a(s) \) and a real function \(p(s) \) such that

\[\tau + a'p = 0. \]

Let \(c^*(x^*(s)) \) be the involute of \(c (x=x(s)) \). Then, there is a unit field \(a(s) \) and a function \(p(s) \) so that

\[x^*(s) = x(s) + p(s)a(s) \]

and

\[x'^*(s) = \lambda(s)a(s). \]

By differentiating \(x^*(s) \) we get

\[(\lambda - p')a = \tau + a'p. \]

Multiplying the relation \(3.4 \) by \(a \) we obtain

\[\lambda - p' = 0 \]

and then, the relation \(3.4 \) becomes \(3.1 \).

\[\Rightarrow \] Now we suppose that \(3.1 \) holds. Define \(x^*(s) \) by

\[x^*(s) = x(s) + a(s)p(s) \]

and by differentiating that by \(s \) we get

\[x'^*(s) = \tau_1 + a'p + ap'. \]

Comparing \(3.6 \) and \(3.1 \) we conclude that

\[x'^* = ap' \]

which means that vectors \(x^*-x \) and \(x'^* \) are linearly dependent. In addition, we have
B. Divjak, Ž. Milin Šipuš. Involutes and evolutes in n-dimensional simply isotropic space

\[t_1x^{*} = t_1ap' = a'pap' = 0, \]

since \(a \) is a unit field. Therefore \(x' \) is orthogonal to \(x^{*} \) which implies \(c \) is the involute of \(c^{*} \).

Now, we shall try to find the expression for the evolute \(c^{*} \) of a given admissible curve \(c (x=x(s)), c \subseteq I^{(n)} \) which is referred to as the parameter of the arc length \(s \).

Obviously,

\[(3.7) \quad c^{*} = x^{*}(s) = x(s) + p(s)a(s), \quad p(s) \neq 0, \]

where \(a(s) \) is a unit field orthogonal to \(c \) and therefore, collinear with the first tangent of \(c^{*} (x^{*} = \lambda a) \). So, we have

\[(3.8) \quad a = \sum_{i=2}^{n} a_i t_i \]

and since \(|a| = 1 \) it follows that

\[(3.9) \quad \sum_{i=2}^{n-1} a_i^2 = 1. \]

By differentiating (3.7) by \(s \), we get

\[\lambda a = t_1 + p' a + p \sum_{i=2}^{n}[a_i t_1 + a_i(\kappa_i t_{i+1} - \kappa_{i-1} t_{i-1})]. \quad (\kappa_n = 0) \]

and then,

\[(\lambda - p') a = (1 - \kappa_1 a_2 p)t_1 + p[(a_2' - \kappa_2 a_3)t_2 + \sum_{i=3}^{n-2}(a_i' + a_{i-1}\kappa_{i-1} - a_{i+1}\kappa_i)t_i + (a_{n-1}' + a_{n-2}\kappa_{n-2})t_{n-1} + (a_{n}' + \kappa_{n-1}a_{n-1})t_n]. \]

So now we have

\[(3.10) \quad \lambda - p' = 0 \]

and

\[(1 - \kappa_1 a_2 p)t_1 + p[(a_2' - \kappa_2 a_3)t_2 + \sum_{i=3}^{n-2}(a_i' + a_{i-1}\kappa_{i-1} - a_{i+1}\kappa_i)t_i + (a_{n-1}' + a_{n-2}\kappa_{n-2})t_{n-1} + (a_{n}' + \kappa_{n-1}a_{n-1})t_n] = 0. \]

At the end, we will have the following system

\[\begin{align*}
1 - \kappa_1 a_2 p &= 0 \\
\kappa_2 a_3 &= 0 \\
\kappa_3 a_4 &= 0 \\
\kappa_i a_{i+1} - a_{i-1} a_i &= 0 & i = 3, ..., n-2 \\
\kappa_1 a_{n-1} &= 0 \\
\kappa_2 a_n &= 0 \\
\sum_{i=2}^{n-1} a_i^2 &= 1
\end{align*} \]

which gives us the evolute of \(c \) (up to a constant).
When we consider an admissible curve c from $I_n^{(a)}$ the analogous system to system (3.10) does not determine the evolutes of c completely because the constants a_{n-m+1}, \ldots, a_n aren't actually in that system.

3.2. Evolutes in $I_3^{(1)}$

If we put $n=3$, the system (3.10) becomes

$$
\begin{align*}
a_2 &= \pm 1 \\
1 \mp p\kappa &= 0 \\
a_3 \pm \tau &= 0,
\end{align*}
$$

and then, we have

$$
(3.12) \quad p(s) = \pm \frac{1}{\kappa(s)} (= \pm \rho(s)), \quad a_3(s) = k - \int_0^s \tau(\sigma)d\sigma.
$$

Inserting this into (3.7) we get the following corollary:

Corollary 4. The equation of evolute c^* of an admissible curve c $(x=x(s))$ in $I_3^{(1)}$, where s is the parameter of the arc length on c, has the following form:

$$
(3.13) \quad c^*\ldots x^*(s) = x(s) + \rho(s) \left[n(s) + (k - \int_0^s \tau(\sigma)d\sigma)b \right].
$$

The projection of (3.13) on the basic plane $x_3=0$ is

$$
\tilde{x}^* = \tilde{x}(s) + \rho(s)\tilde{n}(s)
$$

and this is a formula of an evolute in the Euclidean case.

Corollary 5. The curvature κ^* and the torsion τ^* of the evolute c^* of a curve $c \subset I_3^{(1)}$ depend on the curvature κ and torsion τ of c in the following way:

$$
(3.14) \quad \kappa^*(s) = \frac{\kappa^3(s)}{|\kappa'(s)|}, \quad \tau^*(s) = -\frac{\kappa^3}{\kappa'} (k - \int_0^s \tau(\sigma)d\sigma).
$$

Proof. If c^* is given by (3.13) we have

$$
\begin{align*}
\dot{x}^* &= \rho'n + \rho'(k - \int_0^s \tau(\sigma)d\sigma)b, \\
\tilde{x}^* &= -\rho'\kappa t + \rho''n + \rho''(k - \int_0^s \tau(\sigma)d\sigma)b, \\
\ddot{x}^* &= -(2\rho''\kappa + \rho'\kappa')t + (\rho'' - \rho'\kappa^2)n + \rho''(k - \int_0^s \tau(\sigma)d\sigma)b, \\
|\dot{x}^*| &= |\rho'|, \\
Det(\dot{x}^*, \ddot{x}^*) &= \rho^2\kappa, \\
Det(\dot{x}^*, \ddot{x}^*, \dddot{x}^*) &= (\rho')^2 k^3(1 - \int_0^s \tau(\sigma)d\sigma).
\end{align*}
$$

Formulae (2.10) complete the proof.
Example 2. The evolute c^* of the helix, given by (2.11), is an isotropic straight line
\[c^* \ldots x(s) = (0, 0, ak). \]
In the projection on $x_3 = 0$ it shows that the evolute of a circle is the point.

Corollary 6. The evolute of a given curve is a plain curve if and only if c is a plane curve.

Proof. Namely, $\tau^* = 0$ if and only if $\kappa = 0$ or $\int r(\sigma) d\sigma = k$. The condition $\kappa = 0$ contradicts the fact that c is admissible. The second condition can be written as $r = 0$ which means that c lies in a nonisotropic plane.

Corollary 7. If a curve c has a constant torsion $\tau_0 \neq 0$, then the torsion of its evolute has the form
\[\tau^* = -\frac{k^3}{\kappa'}(k - \tau_0 s). \]

REFERENCES:

Received: 31 July 1999
Accepted: 8 February 2000

Blaženka Divjak
Željka Milin Šipuš

EVLVENTE I EVOLUTE U n-DIMENZIONALNOM JEDNOSTRUKO
IZOTROPNOM PROSTORU

Sažetak
Članak se sastoji od tri dijela. Prvi, uvodni dio, definira pojam dopustive krivulje u n-
dimenzionalnom jednostruko izotropnom prostoru i navodi Frenetove formule kao specijalni
slučaj situacije u n-dimenzionalnom m-struko izotropnom prostoru $I_n^{(m)}$ opisane u [3]. U
drugom dijelu dana je formula evolventi dopustive krivulje, kao i sustav diferencijalnih
jednačbi koji određuje evolvente k-tog reda u $I_n^{(1)}$. Nadalje, izvedena je fleksija i torzija
evolventi dopustive krivulje u trodimenzionalnom jednostrukom izotropnom prostoru $I_{3}^{(1)}$ u ovisnosti o fleksiji i torziji dane krivulje, a dan je primjer evolvente cilindrične spirale. Treći dio bavi se evolutama dopustive krivulje u $I_{n}^{(1)}$. Nađen je sustav diferencijalnih jednadžbi koje određuju evolutu dane dopustive krivulje u $I_{n}^{(1)}$, dana je eksplcitna formula evolute dopustive krivulje u $I_{3}^{(1)}$, kao i fleksija i torzija takve evolute u ovisnosti o fleksiji i torziji dane krivulje. Razmotrene su i neke posljedice izvedenih formula, te pitanje evolventi i evoluta dopustivih krivulja u općem slučaju $I_{n}^{(m)}$. Upotrijebljene definicije evolvente i evolute motivirane su analognim definicijama za euklidski slučaj koje su izrečene u [2].

Ključne riječi: dopustiva krivulja, evolvente, evolute, n-dimenzionalni jednostruko izotropni prostor.