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The increasing number of data sources that are usedfor decision support in business meant it
was necessary to integrate all sources and the ir unique representation to a user. The sources
we may want to integrate can be internal (local databases, etc.) or external (Internet, etc.).
Each one of these sources may have a difJerent query language, with a difJerent syntax,
difJerent semantics and querying power. Because of this difJerent kinds of problems may
arise. The most common problems are inconsistency, partiality of data, and conjlicts between
sources. We need a language powerful enough to solve those problems. In this paper 1 will
show the way to solve these problems using a logic-based language HiLog as a mediator
language. DifJerent strategies to solve these problems will be presented, as well as HiL og
solulions for those strategies.
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1. INTRODUCTION

1.1. History of database theory

For more than 25 years databases have been extensively studied. Databases are
large structures of data usually stored in the secondary memory, and well-organized
and easy to query and easy to use.

In the early 90s the database field changed dramatically. New database model s
have been introduced, for example the object-oriented database model, the deductive
database model etc. Logic-oriented languages are being us ed more and more,
especially in theoretical research, as database query languages. There are many special
deduction strategies that have been conformed for database querying. Global and loeal
network ing has been introduced into database theory, and that has goal s that may be
reached in distributed database research. Uncertainty has been introduced into
database theory, so the theory has become more realistic.

One of the main areas of database research is the integrating of different databases,
be they local or accessible through WAN, in a unique database model. The first model
for database integration that is well known today and that has already been
implemented is called a data warehouse. This data warehouse is away of integrating
more databases that can be accessed, and produce synthetic data form the analytical
data those databases contain. To represent synthetic data, a data cube model is
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invented, and for searching unknown relationships between data, data mining was
introduced. But, the data warehouse model had some drawbacks. First of all when
building a data warehouse it is necessary that all of the databases that have to be
integrated are relational, that the data models for them are completely known, and that
the integrator has unrestricted access to all data in the underiying databases. Second.
an even greater disadvantage of data warehouses is that the warehouse database is
filled periodically. Therefore, data in the warehouse is historical, not on-line. Because
of this, and because of the long time period needed for filling operations, the data
warehouse concept is useless for application domains with a large amount of data that
can change quickly.

Because of the disadvantages with the data warehouse concept, a new concept has
been invented. This concept is with an on-line interpretation of the underiying
databases, with a language translation between these underiying database query
languages and the query language of the whole system. The new concept is called a
knowledge base amalgamation.

1.2. Integrated knowledge-base system

The concept of knowledge bases is also a new concept in database theory and it is
connected to the usage of logic-based query languages. As we well know, databases
are used for storing great amounts of data. In the knowledge base, knowledge is stored
in the same way as data. The term knowledge as it is used in artificial intelligence, is
different from the philosophical meaning of the term. In the sense of knowledge bases,
knowledge is complex data. K.nowledge represents implicit data, that is, knowledge is
not data that is presented to the user, but it is part of algorithms, formulas, etc. that are
used to compose new data that is not explicitly stored in the knowledge base.
K.nowledge bases are connected to logic-based query languages because logic
programs are naturai representations of knowledge bases, where the facts represent
data, and clauses represent knowledge. So, with this reasoning it can be said that the
terms knowledge base and deductive data base are synonyms.

In Figure 1 we can see the graphical representation of an integrated database
system with 3 underlying sources. Notice that we do not use the term database for any
underiying sources. It is because those sources do not have to be databases in the
classical sense. It is very often the case that underiying sources are legacy sources -
data files, or Internet legacy sources - HTML files, or a data structure, such as a
Prolog program etc.

The main parts of this system are the mediator and the wrappers. In this system we
have one mediator and three wrappers. Wrappers are modules that are, basically,
translators of the underiying source query languages for the mediator query language
and vice versa. But, they are more than that. The query languages of the underiying
sources can be different in their syntax, and in their querying power, too. For example,
the legacy sources have less querying capabilities than in relational databases, and
classical relational databases have less querying capabilities than deductive databases.
Secondly, an even more important goal of these wrappers is to equalize querying
capabilities of the underiying sources and the mediator. There are different techniques
for that, and they are explained in [3].
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Figure 1. A simple integrated system

The mediator is the module that integrates information given by the sources, and is
translated by the wrappers, into one coherent knowledge base. The mediator is the
module that resolves inconsistencies and conflicts that are produced by integrating
data from different, independent sources.

In this paper we shall refer to a source and its wrapper as asingle unit. So, all
sources in this paper take queries and give answers in the same language, i.e. the
language of the mediator. We shall not study the wrapper construction, or techniques
to improve the query capabilities of sources. The part of the integrated system that we
shall concentrate on is the mediator, and the strategies to resolve inconsistencies and
conflicts between sources. We shall introduce a new query language for the mediator
that is based on a syntactically high-order logic language HiLog. HiLog is a Prolog-
type language with higher-order syntax and first-order semantics. It is much more
clean syntactically than Prolog, because many non-Iogical elements in Prolog have
been introduced that are in conflict with the first-order semantics of Prolog. The
deductive procedure involved in HiLog is an improved resolution procedure, the so
called SLG-resolution. The SLG-resolution is a tabled variant of the SLDNF-
resolution that is implemented in Prolog. The SLG-resolution is also known as an
OLDT-resolution. It is interesting that the SLG-resolution is even more appropriate for
database querying than bottom-up deduction that is specially invented for logical
programming in databases. So, the bottom-up procedure is safe for so-called stratified
programs, and the SLG-resolution is safe for larger class of programs, the class of
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partially stratified programs. Lastly, let us say that HiLog is, like Prolog, an untyped
language. It has a higher order syntax and first-arder intensional semantics.

This higher-order syntax means that variables can appear in places in the formula
where the predicate ar the function symbol normal!y appears. Another way to define
higher-order syntax is to say that in a language with higher-arder syntax arguments of
the predicate there can be other predicates. In a first-order syntax the arguments of
predicates can be terms, which are, in the case of first-order syntax, constants,
variables and functions.

First-order semantics means that variables can be defined only over the domains of
individuals. This means that a variable can take as a value any object, but cannot, as is
possible in higher-order semantics, take arelation or function over individuals as a
value.

Untypeness means that, unlike predicate calculus, HiLog approves of more than
one predicate with the same predicate symbol, but with a different arity. HiLog and
Prolog are untyped languages. In predicate calculus, which is a typed language,
predicate is uniquely defined by a predicate symbol. In typed languages every
predicate symbol is related to its arity, and the symbol that is used as a predicate
symbol cannot be used as a constant or a function symbol. Because of this every
predicate symbol is mapped to some relation. Function symbols in typed languages are
similar. In untyped languages, such as Hilog, we can define parameter symbols that
can take the role of the predicate, the function and the constant symbol, in term s of the
position they appear in the formula. The same symbol can also define one relation and
one function of any possible arity. This affects the way the semantic structure is
defined. It has to be defined as an infinite tuple of functions and relations for every
parameter symbol.

The intensionality of semantics is another important property that separates HiLog
from predicate calculus. When you are in the world of first-order, intensionality or
extensionality doesn't mean much. An extensional language, like predicate calculus,
assigns proper relations to every predicate syrnbol, and a proper function to every
functional symbol. Intensional languages, like Hilog, assign intension or meaning to
every parameter symbol. Then, a semantic structure is defined as the relation between
intension and proper extension, i.e. relation or function. To assure extensibility of a
language it is necessary for intensions and extensions to be undistinguished. The way
to do that is to introduce extensional axioms to logic. This is also related to equality
theory embodied in logic. Extensional equality says that two predicate symbols are
equal if they both represent the same relation. Intensional equality, on the other hand,
says that two predicate symbols are not equal, regardless of the relations they
represent, until they are explicitly equated. That means that in the intensional equality
theory two predicates p and q can represent the same relation, and atom p=q can stil!
be false. It is well known that strong, extensional equality can make a language
undecidable. Strong extensional equality embodied in predicate calculus is the reason
why the predicate calculus is not decidable. On the other hand, Hilog, with its higher
order syntax, but when it only has trivial intensional equality embodied, is decidable.
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2. THE LOGIC-BASED LANGUAGE HILOG

The main characteristics of the language of HiLog are mentioned in the previous
section. In this section those properties are going to be formalized. It will only be those
definitions of the language given, that are different in HiLog and in standard predicate
calculus.

2.1. The syntax of HiLog

First we have to define the alphabet, i. e. the set of symbols from which the letters
for creating the words of the language are taken.

Definition 1: (The alphabet)
The alphabet of Hil.og contains:
1. An infinite set of parameter symbols S,
2. An infinite set ofvariables V,
3. A set of logical connectives {-" r-; v, ~, B},
4. A set ofquantifiers {v', 3},
5. Parentheses ), (.
Sets S and V have to be disjoint.

There is one significant difference in defining the alphabet here from that of
predicate calculus. When the alphabet of predicate calculus is defined it is necessary to
separate the constant, function and predicate symbols. That is because predicate
calculus is a typed language. On the other hand, as we said in the previous section,
HiLog is a non-typed language. That means that some symbol regarding semantic
context may represent a constant, a function of any arity, or arelation of any arity. The
meaning of a symbol is defined by context in which it appears in the formula. Because
of this, in the definition of the HiLog alphabet there is no request that appears in the
definition of the alphabet of predicate calculus, that sets of constants, function symbols
and predicate symbols have to be disjoint. We only have dem and for the disjointness
of a set of variables and a set of parameter symbols.

What is to be defined are terms, i.e. the words of the language, the well-formed
formulas, and the sentences of the language.

Definition 2: I. Every parameter symbol and variable is a term
2. If t, tlo..., t; are terms, then t(t, t/, ..., tn) is also a term .
3. Terms are only those expressions that can be generated by using
rules 1 and 2 of this definition a finite number of times.

Definition 3: The atomic formula or atom is every HiLog term.

Now we will show the standard definition for the formulas:

Definition 4: 1. Every atom is well-formedformula (wjj).
2. If F is wff then (-,F) is also wff.
3.If F and G are wffs and eE {/\, v, ~,B} then FeG is also wff.
4. IfF is wff, KE{\i, 3} and VE Vvariable in F, then (KvF) is also
wff.
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5. Wffs are only those expressions that can be created by using
rules 1-4 a finite number of times.

These definitions show another significant difference between HiLog and predicate
calculus. While in predicate calculus we distinguish between terms and formulas, in
HiLog every term is also a formula. That means that there are expressions like p,
p(P,p), p(g(a),p(a,b)) and so on which are wffs of HiLog but not wffs in predicate
calculus. The first expression is not a predicate calculus formula but it is a predicate
calculus term. For same reason the first expression is a Prolog term, but it is not a
Prolog formula. The second expression is aHilog and a Prolog formula, but it is not a
predicate calculus formula, because the parameter symbol p appears in the expression
and has two different functions - the predicate symbol of arity 2 and the constant
symbol. The third expression is the same, where p appears as a predicate symbol of
arity 2 and a function symbol of arity 2.This definition is the one that makes the syntax
ofHiLog to be of a higher-order.

All other syntax definitions - the definition of a closed formula, the conjunctive
and disjunctive norma I form formulas etc. - are the same formally as they are in
predicate calculus. But they create different classes of objects because they are built on
a different set of formulas.

2.2. The semantics of HiLog

There are many more differences between HiLog and predicate calculus in
semantics than there are when you look at their syntax.

In predicate calculus, a semantic structure is defined as a pair <U,I> where U is
the domain, and I is an interpretation, a function that is defined through two mappings:

1. 'J - a mapping that for every n-ary, n>O function symbol defines the function
tr-su,

2. P-a mapping that for every n-ary, n;::1) predicate symbol defines the relation on
Un

In this case constants can be treated as O-ary function symbols, so 'J can be used to
interpret constants too. Now, for a predicate symbol p I(p)=P(p), and for a function
symbol or a constant symbol f I(f)='J(f). In the case of predicate ca1culus the alphabet
is defined in such away that sets of predicate symbols and function symbols are
disjoint.

As we said before, a semantic structure in HiLog is defined in different ways, in
order to make the language intensional.

Definition 5: The semantic structure ofHiLog is a quadruple M=<U, Ulrue,!, 7>
where:
1. U is a nonempty set of intensions for the domain of M,
2. Ulrue~U set specifies which of the elements from U are
intensions of the true propositions,
3. I:S-+U is a function that associates an intension with every
logical symbol.138
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4. J: U ~ Il[u' ~ U ]is a function, such that for every UE U
*=1

and k> O klh projection of J(u), which is also denoted as ul).
and is a function [cI-4U].

In this definition U has a similar function as it has in the semantic structure of
predicate calculus. The difference is that in predicate calculus U was the domain of
interpretation and contains extensions for constant symbols. In HiLog U is a set of
intensions, for the set S of parameter symbols. Next, since each parameter symbol can
be constant, we need to know which of them are true in the interpretation M. A subset
of U, Ulrue is introduced because of this and it contains true propositions. In predicate
calculus we didn't have to introduce this set. In predicate calculus all the term s do not
have a truth-value.

We have 1. This I is not the same I introduced in predicate calculus semantic
structure. In the HiLog semantic structure I is an intensional function that associates an
element from the domain U to each parameter symbol. In predicate calculus I was an
interpretation, that had a function similar to set Ulrue in the HiLog semantic structure.

The next element of the HiL og semantic structure is J. Remember that in predicate
calculus J was a mapping from a set of function symbols to the set of functions such
that for each n-ary function symbol JE'c J(j) is n-ary function from U to U. So, in
predicate calculus it is J:'c-4[ cl-4U]. Because HiLog is an untyped language, the
arity of the symbol is not defined in the alphabet. Each symbol can have every possible
arity. Since each arity symbol represents a different function. So, it is not enough to
associate asingle function to each symbol. We have to associate with a symbol one
function for each arity. That means that we have to associate an infinite tuple of
functions to each parameter symbol from S. So we define J as it is defined in
definition 5. We didn't use the set S here because it is better to use U for defining
functions and I for mapping from S to U.

In order to finish a description of the semantic structure in Hilog, we have to see
how set p, that assigns an infinite tuple of relations to every parameter symbol,
disappears from the HiLog semantic structure. In Hilog, in the same way that we did
for J, we have to associate the parameter symbol with the infinite tuple of relations, for
every parameter symbol can represent a predicate symbol of any possible arity.

It is necessary to define how we can interpret HiLog regular formulas like X(a)
where X is a variable. In predicate calculus it was a defined variable assignment
v:V-4u' However, v(X) is an element of the semantic domain S. So in order to
interpret X(a) it is necessary to, with respect to v, associate functions and relations to
elements of U, not to elements of ,C. As was said before, we can use function I to
associate elements of U to parameter symbols. To interpret the formula mentioned
above, it is necessary to extend the interpretation to variables. In this way we introduce
variable assignment to the set (; of all terms, as follows:

- v(s)=I(s) for every parameter symbol from S
- v(I(t" ... ,tn»=J(v(t»(v(t)), ... ,v(tn))
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There are two different ways to define the truth of a formula t(tj, ... ,t,,) where t is
treated as a predicate symbol. One way is to define truth with respect to an-ary
relation that is associated with v(t) by p. In this case we have:

v(t(t I, ... ,tn))=A: v( t))( v(t,), ... ,v(tn))'

Another way to interpret the above formula is with respect to O-ary relation which
is associated with V(t(tl' ... ,tn)) by P. In this case we have

v(t(t I, ... ,tn))=A: v(t(t" ... ,tn»)·

Both of those ways give the same semantics. For amore uniform treatment, we
will use a second alternative.

It is obvious that if we use a second alternative, there is no need for P to be
expIicitIy defined in the semantic structure. All we need is to highIight the true
propositions from U, and store them in a new set Ulrue' Now, the structure defined in
definition 5 is explained in detail.

When a semantic structure is defined, the next step is to define when the structure
M is a model for the formula F. It is obvious what this means that a grounded formula
is satisfied in some structure M: A grounded formula F is satisfied in the structure M,
and is denoted by Mr=F, iff FE Ulrue'

Satisfaction for a nongrounded formula is defined in the same way as for predicate
calculus, using the definition of satisfaction for grounded formulas and the variable

. assignment for M.

2.3. HiLog as a programming language

To use logic as a programming language it is necessary to restrict the syntax and
semantics of the language to clauses.

The definition of a clause, Horn clause, definite clause, program, goal, and query
in HiLog is formally the same as it was in predicate calculus.

We need to define a Herbrand universe and the Herbrand base ofHiLog in order to
achieve the procedurai semantics of HiLog and the semantics of amalgamated HiLog
that are going to be developed next.

Definition 6: The Herbrand universe JI U of language ,c of HiLog is a set of all
grounded terms oflanguage,C.

This is a well known definition used in every logic-based language. The universe
of language is defined with respect to the definition of the terms in the language. The
next definition is also the same for all formal languages - the definition of the
Herbrand base.

Definition 7: The Herbrand base JI!.! is the set of all grounded atoms of a
language.

Because of definitions 2 and 3, for HiLog, definitions 6 and 7 imply the next
corollary:
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Corollary 1: j{U=j{H.

The proof of this corollary is obvious.

The corollary 1 is a property that is often appears in languages with a higher-order
syntax. The next definition gives us the fundamental term of logic programming, the
Herbrand interpretation. It is well known that some formula is satisfiable iff there is a
Herbrand interpretation where the formula is true. So, to prove that the formula is
satisfiable, we only have to find a Herbrand interpretation which is a model for the
formula. On the other hand, if there is no Herbrand interpretation that is a model for
the formula, it can be concluded that the formula is antitauthology.

Definition 8: The Herbrand interpretation j{J of HiLog is every subset of the
Herbrand base.

It is one of the many ways you can define the Herbrand interpretation. This
definition MEANS that j{J(u)=l iffuEj{J.

What is needed next is to define the strategy of deduction. There are two basic
strategies for deducing facts. A top-down strategy called resolution, and a bottom-up
evaluation. The second one was invented for deductive databases, in order to resolve
the drawbacks of a resolution: the one-at-time strategy of giving answers and infinite
loops that often appear. But, the bottom-up evaluation has a drawback of its own - it
works properly only with stratified programs. The best we can do here is to implement
a tabled resolution (SLG-resolution), that is safe with respect to infinite loops, and
that works properly for a larger class of programs - the so called partially stratified
programs. The SLG-resolution will not be explained here. Any readers who are
interes ted in SLG-resolution can find detailed information in [6].

3. STRATEGIES FOR SOLVING INCONSISTENCY IN THE
AMALGAMATION OF INDEPENDENT SOURCES

As we said in section 1, those sources that we want to integrate are independent.
They can be a database on the local machine or on the LAN or WAN, knowledge
bases, legacy sources, programs, web pages, sensors and so on. The underlying model
of these sources may be unknown. We are only aware of the view that is presented by
the source designer. It is also important to mention that there is no way of changing the
design of either the source or the view. This means that we can only as sume a read
priority to sources. This concept enables us to define the integrating system which is
independent of the definitions of sources. It is not necessary to change the syntax or
the semantics of the sources to integrate them into an integrated system.

So all we can do is to receive data from a source as it is and interpret them with a
wrapper in the way we need them and integrate them in the unique and consistent
knowledge presented to the user.

But the independence of the data sources can cause some problems. The first
problem is the incompleteness of the data. The data source can contain only a part of
the attributes we need for some object we are deal ing with. Some other sources can
contain other parts of information for the object. This problem is partially solved by a
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wrapper, and partially by a mediator. The wrapper has to interpret this partial
inforrnation, and compose that information in a record that is used for that object by
the mediator. This means that the wrapper adds nulls to the unknown data from the
sources. The mediator uses information derived by the wrapper, and decides how to
treat it and how to integrate it with information about the object taken from other
sources. Information received from different sources can be inconsistent. This means
that different sources may retrieve contrary data for each instance of an object. This
inconsistency has to be resolved before information can be presented to the user. There
are two basic strategies for resolving inconsistency:

- Naive strategy - Present all the received data to the user, whether they are
inconsistent or not.

- Pessimistic strategy - Remove all the contradictory data from the answer, and
present to the user only those answers about which a consensus of all the data
sources was made.

It is obvious that both of these strategies have advantages and drawbacks. The
naive strategy will give more answers to the user and the user can then make more
competent decisions with respect to those answers. But, that strategy is not good if the
system has to make a decision on its own. It is not good if the system has to be
reliable, too. In this case we have to use a pessimistic strategy. The pessimistic
strategy will present to the user only those answers that are 100% true according to the
underlying sources. On the other hand, by using a pessimistic strategy some interesting
answers can be "cut off".

Sometimes it is hard to decide which strategy to use. Usually it is not convenient to
use the same strategy for all objects. Even more, sometimes it is a fact that some
sources are more reliable for some types of information than for others. But, by using
this pessimistic strategy, an answer will be "cut off' even if the most unreliable source
disagree with it. Therefore, there is one, more complex strategy we can introduce - the
strategy of source hierarchy. This strategy introduces the reliability of sources with
regard to some information. Reliability can be expressed in the terms of the probability
that a source will have reliable information about the object. Using this strategy it is
possible to present the probability for some answer to the user, or to present only those
answers that have a high probability. The problem with this strategy is that a great
amount of programming is needed to define all probabilities. If there is n sources and
m relevant objects in a system, to define reliability for each source for each object it is
necessary to define m-n probabilities. But it is possible that, for example, source SI has
a reliability of 0.7, source S2 reliability 0.3 and S3 0.2, but if sources S2 and S3 agree
about this inforrnation, then it will have a reliability of 0.8. But if the system has this
nonlinear property, then to define all probabilities, it is necessary to define 2n·m
probabilities, and that could be a problem for a larger number of data sources.

Therefore, we shall introduce a flexible strategy that will be used in amalgamated
systems. Firstly, we will define a default method to deal with inconsistency. For the
default strategy we will use a pessimistic strategy. This strategy is implemented in the
amalgamation management system to deal with inconsistency when it is not otherwise
defined. But, for the implementation of some other strategy a logic-based language is
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used in the mediator. The advantages of this strategy are that there is no need to define
every possible combination of source reliability, and that it is more f1exible then any
other strategy that has been described before, because this strategy allows one to
implement any other strategy that has been explained.

4. FORMAL THEORY OF AMALGAMATION USING HILOG

First we have to define an extension of the standard HiLog to make it more
appropriate for programming an amalgamated system. We will define a logic-based
language called amalgamated HiLog, which is, as is shown in [2], only a syntactic
extension, that can be implemented in pure HiLog. Let there be n local data sources.
Every data source i can be formally rep resen ted by the local database, that is
represented by the local HiLog program BPi. So, our goal is to integrate local
programs BP" ... , BPn into one consistent program. To deal with these different
programs it is necessary to define a mediator data base or mediator program that
contains the knowledge necessary for dealing with heterogeneous sources. If we label
the local sources with numbers 1, ... , n and the mediator system with s then we will
have our next de fini tion:

Definition 9: The alphabet of BP-Ianguage1:BP is created from:
-{1,2, ... ,n,s}
- an infinite set of BP-variables

Definition 10: A BP-term is a nonempty finite subset1:BP'

The theory of amalgamation can be developed for any logic-based language. The
language that is the foundation for building an amalgamated language is called a base
language. In our context, the base language for amalgamation is HiLog. Our next
definition defines the atom of an amalgamated language.

Definition 11: Let D be a BP-term and let c: be aHiLog atom. Then a..:[D] is
called an amalgamated atom.

The amalgamated formula is defined in the usual way, as it was defined in
definition 2. The difference is that for amalgamated formulas we use amalgamated
atoms.

So, as we have seen, the syntax of amalgamation is very simple. There are
amalgamations added to atoms of the base language. The formulas of an amalgamated
language are built in the same way as the formulas of a base language are generated.
To make this language useful, we need to define the semantics of this language.

The truth of an amalgamated atom is defined with respect to the local programs
BPi. An amalgamated atom of form a..:[i] is true iff an atom o: is true in a local
program BPi. That is obvious. But, how can we define the truth of an amalgamated
atom a..:[D] where is D, IDI> I? That depends on the strategy we use. If we use a
pessimistic strategy, then a..:D is true if a..:[i]is true for all iED.

If, on the other hand, we use a naive strategy, then a..:[D] is true if there is at least
one iED such a..:[i] is true.
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Now we know how to interpret almost all the amalgamated formulas.

Now we can formalize them. For the moment we shalI exclude the symbol s from
the BP-Ianguage. That symbol will be treated separately later.

Definition 12: Let M; be a semantie strueture for loeal databases BP;, i=l, ... , n.
Then semantie strueture for the language J:Amaf is n-tuple
M=<Mf, ••• ,M,,>.

Now, we ean define an amalgamated interpretation as

Definition 13: 1. For iE{l, ,n} MFa:[i] iffM;Fa
2. For DE {l, ,n} MFa:[D] ifffor all iED is M;Fa.

We will now have the semanties for pure amalgamation, based on the pessimistie
strategy. But, we want to define another program that eontains the amalgamated
formulas, and represents away of amalgamating loeal programs. We shalI eall that
program a mediator or supervisor. In the mediator we ean define way to amaigamate
the sourees that differ from default strategy, in our ease the pessimistie strategy.

Beeause of the mediator in definition 9 we introduee the symbol s. Generally, that
symbol is like any other amalgamation symbol. But, it is not necessary to examine all
the amalgamated formulas with this symbol. We shalI define a restrieted elass of
formula that is suffieient to represent all these defined in the mediator.

At first, we ean exclude all those atoms that have an amalgamation that eontains s
or any other symbols. Namely, we shalI de fine the axiom for that as:

a:([s]uD) = a:[s].

That means that we shalI examine only those formulas that have atoms whose
amalgamation is the form set 2{1··,n}U{S}.

Now, it is normal in all logic-based programming languages to restriet the class of
formulas that a program can contain to clauses. So, loeal databases will eontain HiLog
clauses, and the mediator will eontain amalgamated clauses, i.e. claus es made from
amalgamated atoms.

We will now introduee the so-called amalgamation axiom scheme. The loeal
program BP; defines the atoms with an amalgamation i, and the mediator defines the
atoms with an amalgamation s. Now we have to define the way to resolve the problem
of truth for atoms that have an amalgamation that eontains more than one symbol. In
order to simplify the programming of an amalgamated system, we need to define the
set of intristic axioms, that is built into the system, and make a base for amalgamated
deduction. These are axioms that define the pessimistic strategy.

Definition 14: The amalgamation axiom scheme is a set of clauses of the form
B:[D]~ 1\ B:[D'] wbere Dc.{l , ... ,n} orD=[s].

0c1J'cJ)

By introducing the axiom scheme from definition 14 into the system, we can
symplify the mediator program because the programmer only has to write those
claus es that differ from the chosen pessimistic strategy. With these built-in axioms we
obviate the writing of approximately of 2" clauses.
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But, we shali restrict the class of queries that the system can process. As we said
before, we will presume that the user does not know the structure of an amaJgamated
system. So, the onJy queries that the user can ask are the queries to the mediator,
because the mediator is an interface between the user and the sources. So, queries that
the users ask will consist of atoms whose ama!gamation will be [s]. In this case, the
user couJd write queries in pure Hilog, without any ama!gamations, and then before
processing a query, amaJgamations can be added to all the atoms in a query. On the
one hand, that obviates the user from writing amaJgamations in their query, but on the
other hand this restricts those cJauses necessary to be defined in the mediator onJy to
those that have the head with amaJgamation [s]. Those kind of clauses are called s-
amalgamated clauses. They are introduced in the next definition:

Definition 15: The S-amalgamated clause is the clause with the head of the
form u:[s].

We can make ademand such that all the cJauses in the mediator shouJd be s-
amaJgamated clauses now.

Now we shalI make the connections between the !oca! programs BPi, written in
pure Hilog, and the mediator program written in ama!gamated Hilog.

Definition 16: Let H be aHilog program that represents the JocaJ database BPi.

Let C be aHilog clause, CEH. Let C have the form

Then we can define an amalgamated transformation AT(C) as
the amaJgamated clause

u:[i]:-ut=[i], ... , un:[i], not un+l:[i], ..., not un+m:[i].

We also define an amalgamated transformation of the HiLog
program H as AT(H)={AT(C) : CEH}

We can now define a loeal for interpretation given in the JocaJ database.

Definition 17: Let Mloc be a local semantic structure of the local database BPi.

This means that the semantic structure defines truth in the JocaJ
database. Then the loeal of Mloc is the set of amaJgamated
structures {M : for M and for every ground atom u we have
Mt=u:[i] iffMloct=u}.

This definition gives the semantics of the ama!gamated transformation. Now it is
interesting to see if this transformation preserves the truth of atoms, and formuJas.
That means that we want to see that clause e is true in H iff AT( c) is true in AT(H).
We will now take two theorems from [2].

Theorem 1: Let BPi be aHilog program. IfMloct=BPi then for all M from the JocaJ
of Mloc with respect to BPi satisfies Mt=A T(BPJ
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Theorem 2: Let BPi be aHiLog program and Mlae be the local structure such that
there exists structure M in the local of Mloe with respect to BPi that is
a model for AT(BPj). Then Mloe is a model for BPj•

Proofs of these two theorems are given in [2] but with small differences in
notation. These two theorerns are very important in amalgamation theory because they
show us that an amalgam that is going to be defined preserves the semantics of all the
local databases.

Definition 18: Let BPI, ... ,BPn be local databases that are written as HiLog
programs. Let S be the mediator written in amalgamated HiLog.
Then we define amalgam as

"SuUAT(B?;) uamalgamation axioms
i=1

An amalgam represents all clauses that are defined in the amalgamated system in
one way or another. In other words, an amalgam represents all the clauses that we use
for deduction in an amalgamated system.

5. CONCLUSION

Throughout this paper we have introduced a language for the amalgamation of
heterogeneous independent data sources. A logic-based language called amalgamated
HiLog was proposed as a language that is appropriate for defining an amalgamated
system and the relations in it. lt was shown that this language is correct and that the
semantics of this language preserves the semantics of the local databases.

Let us sum up away to define cIauses and queries in a system. Local sources are
wrapped by their wrappers, so we can assume that local sources are HiLog programs.
Local sources are connected to a mediator, a program written in amalgamated HiLog.
The connection between the right interpretation of those components is assured by
theorems 1 and 2. After this there is another transformation between amalgamated and
pure HiLog. A user writes his queries in pure HiLog, and for every atom in his
amalgamated version with amalgamation, the [s] query is automatically created. So we
use an amalgamated transformation to transform a query, and use theorems 1 and 2 to
assure that we get the right transformation.
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AMALGAMACIJA BAZA ZNANJA KORIŠTENJEM LOGIČKOG
JEZIKA VIŠEG REDA

Sažetak
Povećanjem broja izvora podataka koji se koriste pri odlučivanju dolazi do potrebe za
integracijom svih izvora, čime se ostvaruje jedinstvena reprezentacija svih podataka. Izvori
podataka koji se integriraju mogu biti interni (lokalne baze podataka, datoteke itd.) i eksterni
(Internet, itd.). Svaki od izvora može imati različit upitni jezik. Upitni jezici izvora mogu
imati različitu sintaksu i semantiku, ali i ekspresivnost. Ove razlike mogu uzrokovati različite
probleme. Najčešći problemi koji se javljaju jesu nekonzistencija podataka s raznih izvora,
parcijalnost podataka i konflikti među izvorima. Stoga je potrebno definirati jezik koji će biti
dovoljno moćan da razriješi te i druge probleme koji mogu nastati pri amalgamaciji izvora
znanja. U ovom se članku pokazuje način rješavanja gore navedenih problema korištenjem
logičkog jezika HiLog kao jezika medijatora sustava. Također, u radu se obrađuju različite
strategije rješavanja problema amalgamacije heterogenih izvora znanja te implementacija tih
strategija u Hilogu.

Ključne riječi: integracija, baze znanja, logičko programiranje.
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