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We consider incorporating knowledge and time in multi-agent systems. Five temporal
operators o, ¥, ¢, U, W are decribed . The following facts are proved: (a) for all formulas
F in LK (propositional logic + knowledge operator K) if states s and sl are equal, then F
holds in s iff F holds in sl, (b) the same result does not hold in LKT (LK + the temporal
operators). Finally, we characterize two propositions that state when the formulas Ki(F) =
*Kj(F) and Ki(F) = vKj(F) hold.
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1. INTRODUCTION

The idea of formal logical analysis of multi-agent systems is described in [1], [2],
[31, [4], [5] and [6]. A very interesting result that states that a knowledge base can be
modeled as a multi-agent system is given in [1].

In this paper, we shall characterize incorporating knowledge and time in multi-
agent systems. Some new results regarding the properties of temporal operators and
knowledge operators will be proved.

The paper consists of five sections and an Appendix containing some proofs. In
Section 2, we introduce the basic notions of multi-agent systems. In Section 3, we
characterize in detail incorporating knowledge and time in multi-agent systems.
Section 4 contains the proofs of Proposition (Base): all the basic temporal operators
can be defined in terms of the operators o and U, and Proposition (¥ ¢):¥ ¢F holds
iff F holds infinitely often, and #¥F holds iff F holds almost everywhere.
Conclusions are given in Section 5. The Appendix contains the proofs of Proposition
(LK): for all formulas F in LK we have if states s and sl are equal, then F holds
in s iff F holds in sl; Proposition (LKT): the result in Proposition (LK) does not
hold in LKT; Proposition (Ki = #Kj): if agent i knows F, then agent j eventually
knows F under the condition that some premise U (defined later) holds; and
Proposition (Ki = ¥Kj): if agent i knows F, then agent j always knows F under
the condition that some premise Ul (defined later) hold
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2. BASIC NOTIONS

In this section, we introduce the basic concepts and notations.

Suppose we have a group consisting of m agents, named 1, 2,.., m . An agent may
be a man (a real agent), a software module or a communicating robot (an artificial
agent). An agent may even be a component of a computer system (a wire or a message
buffer). We assume these agents wish to reason about a world that can be described in
terms of a nonempty set P of primitive propositions. A language is just a set of
formulas, where the set of formulas LK of interest to us is defined as follows:

(1) The primitive propositions in P are formulas;

(2) If F and G are formulas, then so are —F, (FA G),(FVv G),(F = G), F <
G), and Ki(F) forall i € {1, 2, .., m}, where Ki is a modal operator.

A Kripke structure M for an agent group {1, 2,.., m} over P is a (m + 2)-tuple

M=(S, L, k1, k2,.., km), where S is a set of possible worlds, I is an interpretation
that associates with each world in S a truth assignment to the primitive propositions in
P, and kI, k2,.., km are binary relations on S, called the possibility relations for
agents 1, 2,.., m, respectively.

Given p € P, the expression I[w](p) = true means that p is true in a world w in
a structure M. The fact that p is false, in a world v of a structure M, is indicated by
the expression I[v](p) = false.

The expression (u, v) € ki means that an agent i considers a world v possible,
given his information in a world u. Since ki defines what worlds an agent i
considers possible in any given world, ki will be called the possibility relation of the
agent i.

We now define what it means for a formula to be true at a given world in a
structure.

Let (M, w) =F mean that F holds or is true at (M, w). Definition of = is as
follows:

(a) M, w) =p iff I[w](p) =true, where p € P;

b) M,w)EFAG iff M,w)EF and M, w) EG;

© MW EFVG iff M,w)EF or M, w)EG;

d MwWEF=G iff M, w)EF implies (M, w) EG,;

e) M,w)EF< G iff M,w)EF=G and M, w)EG=F;
® M, w)==F iff (M,w)rF,thatis, (M, w) =F does not hold;
(g MEF iff M, w)=F forall weS.

Finally, we shall define a modal operator Ki, where Ki(F) is read: Agent i
knows F.

(h) (M, w)E=KIi(F) iff M,t)=F forall t e S such that (w,t) € ki.
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In (h) we have that an agent i knows F in a world w of a structure M exactly
if F holds at all worlds t that the agent i considers possible in w.

Multi-Agent Systems

A multi-agent system is any collection of interacting agents. Our key assumption
is that if we look at the system at any point in time, each of the agents is in some state.
We refer to this as the agent’s local state. We assume that an agent’s local state
encapsulates all the information to which the agent has access. As each agent has a
local state, it is very natural to think of the whole system as being in some (global)
state. The global state includes the local states of the agents and the local state of an
environment. Accordingly, we divide a system into two components: the environment
and the agents, where we view the environment as everything else that is relevant.
Also, the environment can be viewed as just another agent. We need to say that a
given system can be modeled in many ways. How to divide the system into agents and
environment depends on the system being analyzed.

Let Le be a set of possible local states for the environment and let Li be a set of
possible local states for agent i , i=1,.,n. Wedefine G=Lex L1 x..xLn tobe
the set of global states. A global state describes the system at a given point in time.
Since a system constantly changes (it is not a static entity), we are interested in how
these systems change over time. We take time to range over the natural numbers, that
is, the time domain is the set of the natural numbers, N.

A runover G is a function r: N — G.

Thus, arun over G can be identified by a sequence of global states in G . The run
r represents a complete description of how the system’s global state evolves over
time. Thus, r(0) describes the initial global state of the system in a possible execution,
r(1) describes the next global state, and so on.

If r(m) = (se, sl,.., sn), then we define r[e](m)=se and r[i](m)=si, for i=1,.., n.
Note that r[i](m)=si is the local state of the agent i at the (global) state r(m).
A system R over G is aset of runs over G. The system R models the possible
behaviors of the system being modeled.
Knowledge in Multi-Agent Systems

We assume that we have a set P of primitive propositions, which we can think of
as describing basic facts about a system R. Let I be an interpretation for the
propositions in P over G, which assigns truth values to the primitive propositions at
the global states. Thus, for every p € P and s € G, I[s](p) € {true, false}. An
interpreted system IS is a pair (R, I).

Now, we define knowledge in an interpreted system IS.
Let IS=(R, I) be an interpreted system. A Kripke structure for IS, denoted
M(S) = (S, I, k1, .., kn), is defined in a straightforward way.
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S={r(m)|r € R, m € N}, that is, S is the set of the global states at the points
(r,m) in the system R.

The possibility relations k1, k2,.., kn are defined as follows.

Let r(m) = (se, sl,.., sn), r’(m’) = (se’, s1’,.., sn’) be two global states in S. We
say that r(m) and r’(m’) are indistinguishable to an agent i iff si=si’.

Thus, the agent i has the same local state in both r(m) and r’(m’). We define

ki = {(r(m), r’(m’)) € S x S| r(m) and r’(m’) are indistinguishable to the agent
i},i=1,2,.,n.

Accordingly, (r(m), r’(m’)) € ki iff si=si’, i=1,2,.,n.

There is no possibility relation ke for the environment because we are not
usually interested in what the environment knows.

Now, it is evident what it means for a formula F in LK to be true at a state r(m)
in an interpreted system IS. For instance, we have

(IS, r(m)) = p iff I[r(m)](p) = true, for all p € P.

(S, r(m)) = Ki(F) iff (IS, r’(m’)) E F for all r’'(m’) € S such that (r(m),
r’(m”)) € ki.

We say that a formula F in LK is valid in an interpreted system IS, denoted IS
E=F,iff

(IS, i(m)) = F for all r(m) € S.

Let us note that we do not assume that the agents compute their knowledge in any
way, or that they can necessarily answer questions based on their knowledge. We
interpret knowledge as an external one, ascribed to the agents by someone reasoning
about the system.

To be able to make temporal statements, we extend our language LK by adding
temporal operators, which are new modal operators for talking about time. This
language will be denoted by LKT., and will be used for reasoning about events that
happen along a single run r in the system R.

We define here five temporal operators: o (next time), ¥(always), ¢ (eventually),
U (until), and W (waiting-for, or unless).

The Next Operator o
oF, read next F, is defined by (IS, r(m)) = oF iff (IS, r((m+1))=F .

Thus, oF holds at state r(m) iff F holds at the next state r(m+1).

The Always Operator ¥
vF, read always F, is defined by (IS, r(m)) = ¢F iff (IS, r(m’)) = F forall m’>m.
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Accordingly, ¥F holds at state r(m) iff F holds at state r(m) (now) and at all
later states.

The Eventually Operator ¢
oF , read eventually F, is defined by (IS, r(m)) = ¢F iff (IS, r(m’)) =F for some m’>m.

Thus, ¢F holds at state r(m) iff F holds at state r(m) or some state in the
future.

The Until Operator U
F UF1,read F until F1, is defined by (IS, r(m)) =F U F1 iff
(IS, r(m’)) EF1 forsome m’>m and (IS,r(m’’)) =F forall m”’ with m<m” <m’.

The until formula F U F1 predicts the eventual occurrence of F1 and states that
F holds continuously at least until the first occurrence of F1.

The Unless (Waiting-for) Operator W
F W Fl,read F unless F1, has the following semantics.
(S, r(m)) =F W F1 iff (IS, r(m)) EF U F1 or (IS, r(m)) = ¥F.

Thus, the formula F W F1 expresses the property that F holds continuously
either until the next occurrence of F1 or throughout the sequence of states.

Note that our interpretation of oF makes sense because our notion of time is
discrete. All the other temporal operators make perfect sense even for continuous
notions of time.

2. SOME PROPERTIES OF LKT-FORMULAS

We have defined the five temporal operators: o, ¥, ¢, U, and W . In the following
proposition we shall show that we can take o and U as our basic temporal operators,
and definev, ¢, and W intermsof U.

Proposition (Base)
We have
(1) ISE¥F < —e¢—F 2) ISEeF< TrueU F.

Proof (1)
Letr(m)eS be an arbitrary state. We would like to show (IS, r(m))=¥F<>— ¢ —F .
Because (IS, r(m)) = ¢F iff (for all m’ > m) [(IS, r(m’)) = F] iff

(for all m* > m)[(IS, r(m’)) ¥ —F] iff (IS, r(m)) # & —F iff (IS, r(m)) = — ¢—F, we
have (IS, r(m)) = ¥F << — ¢—F, as desire

101




M. Malekovié. Multi-agent systems: incorporating knowledge and time

Proof (2)

Because IS = True, we have (for all m € N)[(IS, r(m)) = True ]. Now, we
proceed as follows.

Let r(m) be an arbitrary state in S. We need to prove (IS, r(m)) =¢F< True U F.
Because (IS, r(m)) = ¢F iff (for some m’ > m)[(IS, r(m”)) = F] iff

(for some m’ > m)[(IS, r(m’)) &= F] and

(for all m”” with m <m”’ <m’)[(IS, r(m’’) = True] iff (IS, r(m)) = True UF.
Consequently, (IS, r(m)) = ¢F < True U F.

Proposition(v ¢)
We have
(1) (S, r(m)) = v ¢F iff the set {m’| (IS, r(m’)) =F} is infinite.

(2) (S, r(m)) = ¢ vF iff (for some m’)(for all m>’ > m’)[(IS, r(m”)) = F]

Proposition (¥ ¢) says that ¥ ¢F holds iff F holds infinitely often, and ¢ ¥F
holds iff F holds almost everywhere.

Proof (1)

(IS, r(m)) = v #F iff (for all m’ > m)[(IS, r(m’)) = ¢F] iff
(for all m’ > m)(for some m’’ > m’)[(IS, r(m”)) E F] iff {m”’ | (IS, r(m”’)) &
F} is infinite.

Proof (2)

(IS, r(m)) = ¢ vF iff (for some m’ > m)[(IS, r(m’)) & ¢F] iff
(for some m’ > m)(for all m”” > m’)[(IS, r(m’’) = F], that is, (IS,r(m)) = ¢ ¥F
iff F holds almost everywhere.

We can see that the temporal operators defined talk about events that happen only
in the present or the future, not events that have happened in the past. These operators
suffice for many applications, but it is not a problem to define temporal operators for
reasoning about the past. The past temporal operators will be considered in a
forthcoming paper.

In the following proposition, we state that if r(m) and r’(m’) are equal states,
then F holds in r(m) iff F holds in r’(m’). The result is true for every formula F in
LK.

Proposition (LK)

Let IS = (R, I) be an interpreted system. Then

(forall r(m), r’(m’) e S)(for all F € LK)[r(m)=r’(m’) =
(IS, i(m)) =F < (IS, r’'(m’)) EF].
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Proposition (LK) does not hold in LKT. To show that, we shall construct (in the
Appendix) an interpreted system IS = (R, I) such that r(m), r’(m’) € S and r(m)=
r’(m’), but (IS, r(m)) = ¢p and (IS, r’(m’)) = —¢p for some proposition p € P.

Proposition (LKT)
Proposition (LK) does not hold in LKT.

Now, we shall consider some of the important agent properties. These properties
relate the knowledge of two agents, and are important if we wish to introduce an order
in the set of agents. Understandably, this order can be very helpful when we analyze
the respective multi-agent system.

In the following propositions, we shall use a set S[j, r](m’) defined by
S[j, r](m’) = {ri(mi) | (r(m’), ri(mi)) € kj}. Thus, S[j, r](m”) is the set of the states in
S that agent j considers possible in the state r(m’).

Proposition (Ki = ¢Kj)
If U: (for some m’ 2 m)[r(m) x S[j, r](m’) c ki], then
(for all F e LKT)[(IS, r(m)) = Ki(F) = ¢Kj(F)].

Proposition (Ki = #Kj) states that if agent i knows F, then agent j eventually
knows F, under the condition that U holds.

Proposition (Ki = vKj)
If Ul: (for all m’ > m)[r(m) x S[j, r](m’) < ki], then
(for all F e LKT)[(IS, r(m)) = Ki(F) = ¥Kj(F)].

Accordingly, agent j always knows F if agent i knows F, under the condition
that Ul holds.

3. CONCLUSIONS

We have described incorporating knowledge and time in multi-agent systems. We
have proved

Proposition (Base): all the basic temporal operators can be defined in terms of the
operators o and U, and proposition (¥ ¢):¥ ¢F holds iff F holds infinitely often,
and ¢¥F holds iff F holds almost everywhere. The proofs of Proposition (LK): for
all formulas F in LK we have if states s and sl are equal, then F holds in s iff
F holds in s1; and Proposition (LKT): the result in proposition (LK) does not hold in
LKT are given in the Appendix. Also in the Appendix, we have given the proofs of
Proposition (Ki = #Kj): if agent i knows F, then agent j eventually knows F
under the condition that the premise U holds; and Proposition ((Ki = ¥Kj): if agent
i knows F, then agent j always knows F under the condition that the premise Ul
holds.
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Because the theory of multi-agent systems is a very important formal tool for
describing and analyzing real systems, in a forthcoming paper we shall investigate the
language LKT extended with the past temporal operators. Also an open problem
remains: how to characterize a graphical representation of the language LKT ?

APPENDIX

Proof (Proposition (LK))

The fact is evident for a Boolean combination of propositions. Now, let F have
the form F = Ki(G). We have (IS, r(m)) = Ki(G) iff (for all ri(mi) € S)[(r(m),
ri(mi)) € ki = (IS, ri(mi)) &= G] iff (for all ri(mi) € S)[(r’(m’), ri(mi)) € ki = (IS,
ri(mi)) = G] iff (IS, r’(m”)) = Ki(G), as desired.

Proof (Proposition (LKT))

Let r and r’ be two runs as follows.

r: r(0), r(1),.., r(k),... r’: 1r’(0), r’(1),.., r’(k),...; where r(0)=r’(0).

Next, we define the interpretation I of IS like this:

I[r(0)](p) = true and I[r’(m’)](p) = false for all r’(m’). Consequently, we have

(IS, r(0)) = ¢p and (IS, r’(0)) = —ep
Proof (Proposition (Ki = ¢Kj)

Assume U and V:(IS, r(m))E= Ki(F). We would like to show (IS, r(m)) = ¢Kj(F).
From the assumption V, we have

(for all ri(mi) € S)[(r(m), ri(mi)) € ki = (IS, ri(mi)) = F]. Let m’ > m be such
a point that r(m) x S[j, r]J(m”) c ki. We shall prove (IS, r(m”)) &= Kj(F).
Let rj(mj) € S be an arbitrary state such that (r(m’), rj(mj)) € kj. It follows
tj(mj) € S[j, r)(m’). Thus, from V we have (r(m), rj(mj)) € ki. Therefore, (IS,

rj(mj)) &= F, that is, (IS, r(m’)) = Kj(F). Accordingly, we have (IS, r(m)) &
¢ Kj(F), as desired.

Proof (Proposition (Ki = vKj))
Assume Ul and V1: (IS, r(m)) k& Ki(F). We need to show (IS, r(m)) &= ¥Kj(F).
From V1 we obtain (for all ri(mi) € S)[(r(m), ri(mi)) € ki = (IS, ri(mi)) &= F].

Let m’>m be an arbitrary point. We have to prove (IS, r(m’)) = Kj(F).

Let rj(mj) be an arbitrary state such that (r(m’), rj(mj)) € kj. It follows rj(mj) €
SO, r)(m’).

Thus, from U1 we obtain (r(m), rj(mj))eki. Therefore,(IS, rj(mj))= F.We conclude

(IS, r(m’)) = Kj(F). Because (for all m’ > m)[(IS, r(m”)) &= Kj(F)], we have
(S, r(m)) = vKj(F).
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Mirko Malekovié¢
VISEAGENTNI SUSTAVI: UGRADIVANJE ZNANJA I VREMENA

Sazetak

U ovom clanku razmatrali smo znanje i vrijeme u viseagentnim sustavima. Karakterizirali
smo pet temporalnih operatora: o, ¥, ¢, U i W, azatim smo dokazali nekoliko propozicija
koje utvrduju veze izmedu temporalnih operatora i operatora znanja.

Kljuc¢ne rijeci: baze znanja, operatori znanja, prosudivanje o znanju, temporalni operatori,
teorija znanja, viSeagentni sustavi.
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