UDC: 007.5
Original scientific paper

STRUCTURED AND OBJECT-ORIENTED METHODS IN A
COMPLEX IS PROJECT

Josip Brumec, Vesna DuSak, Neven Vréek

University of Zagreb, Faculty of organization and informatics, Varazdin
E-mail: jbrumec@foi.hr or vdusak@foi.hr or nvrcek@foi.hr

Object-oriented and structured methods are not mutually exclusive, although each of them
has their advantages when used in developing a specific type of information system. For that
reason, some characteristics of real systems and their ISs, that determine the choice of
methods, are analysed in this paper. It has been concluded that for the development of
complex ISs, especially those that integrate business and technological processes, a
combined use of structured and object-oriented methods gives the best results. The way
structural and object methods are integrated into a consistent methodology for the
development of ISs is also shown in the paper. The results are illustrated with examples from
a large-scale project, which was carried out by the authors.

Keywords: IS development,object-oriented methods,structured methods, BMS-methodology.

1. PROBLEM DEFINITION

When object-oriented methods appeared [20], [9], [4] or [3], some practicians
wrongly concluded that object methods will completely displace the structured
methods of IS development. James Martin, who was at first a great advocate and
promoter of structural methods in IS development [16], in his later books speaks even
of "object revolution" [17]. Nevertheless, at the same time with theoretical explanation
and the practical employment of object methods, certain authors, for example [21], try
with analytical consideration to determine those areas of use within which object-
oriented methods are better used than structured ones and vice versa. In that sense a
very important analysis was made by Ian Graham in [12] where he concluded that the
use of an object approach in developing application software gives poor results unless
the object-oriented system analysis and design have not been carried out before. In
their new book [2] authors M. Blaha and W. Premerlani give a detailed analysis of
various kinds of data models and differentiate between those for which object-oriented
databases (OO-DB) are better used and those for which it is better to use relational
databases (DB). Since their conclusions agree with the basic thesis of this paper, we
have included a summary of their results in Table 1.

119

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Table 1. Areas of object and relational database use [2]

Relational DBMS 00-DBMS

* Business information systems with a large DB * Engineering applications (CAD/CAM, CIM, CASE)
(>20 tables, > 1000 records per table) * Multimedia applications (picture, text, sound)

* Decision support systems (ad hoc questions) * Knowledge bases for expert systems

* Application using 4GLs (a lot of screens, forms | * Extremely distributed applications used with various
and reports) . technical equipment

* New applications, relying upon the existing * Applications with specific requests (user defined data
relational data bases types, inheritance, long transactions, multiple program

* Systems with great safety demands (authority, versions, etc.)
security, DB-redesign) * Programmable electronic devices

Areas of particular interest, when considering design methods, are information
systems for production systems. These ISs contain various types of applications
enumerated in Table 1, because to manage the entire business process, it is necessary
to connect business and technical activities that complement and substitute each other.
In modern information systems of that kind large databases are used, ad hoc questions
are created, a lot of screen pictures and printed reports are used and top security is
demanded. All of this leads to the using of relational databases. At the same time,
connection with CAD/CAM is required, work is done distributively and with various
hardware, picture and sound are connected, the concept of inheritance is applied (a
customer demand is turned into an order, a customer's request and bill of material
"becomes" an order which, after being executed, "turns into" a dispatch list and an
invoice), long transactions (EDI) are used and a great deal of equipment of different
types in the technological process is operated directly (NC-machines, the management
of work activities in the technological process, automatic dispatching, the robots and
manipulators in a storehouse, etc.) [15]. For all of these things to function object-
oriented methods and OO-DB need to be used. Designing of such systems is a real
challenge for a computer expert in which structural and object-oriented methods are
not mutually exclusive, but they must be integrated in order to complement each other.
Problems arising with the designing of such information systems, as well as examples
of methodological processes that can be used in solving them, are the topics discussed
within this paper. Practical use of this suggested approach is illustrated by a project
designed for a chemical company, which is referred to as the “case study” here.

2. THE SELECTION OF STRUCTURAL AND OBJECT-ORIENTED
METHODS FOR DESIGNING A COMPLEX BUSINESS IS

A great number of methods and techniques used in designing information systems
are discussed theoretically and applied practically. It is important for a designer, in the
process of designing a particular IS, to fully recognise the goals, characteristics and
principles of a real, functioning business-manufacturing system and to choose and
integrate into a consistent whole those methods and techniques that will provide the
best effect. A group of methods and techniques connected in a particular way to solve a
particular problem are called a methodology. We will consider a methodology

120

Zbornik radova, Volume 22, Number 2(1998)

appropriate to the information system development of a business manufacturing
system and will, therefore, call it BMS-methodology!.

The result of each methodology application is an information system model
consisting of: the organisation model, the process model, the data model and the
resource model2. In this paper we will discuss only a part of this BMS-methodology,
namely the part dealing with process and data modelling.

The suggested BMS-methodology, shown in Table 2, consists of specially chosen
and specifically interrelated methods and techniques, that are gradually applied to
perform individual steps while modelling the entire information system. Steps 1 - 5
refer to the phase of IS/IT planning, steps 6 and 7 refer to the analysis of a functioning
production system, while steps 8 - 12 refer to the design and the development of the
application software.

The sequence of steps or problems in IS designing are shown on the left of the
table, and the methods used for designing each of them are shown on the right-hand
column of Table 2. Depending on the type of problem they are trying to solve and the
manner in which that solution is carried out, these methods can be divided into the
following: strategic (sign §), structured (#) and object-oriented (2). Some of the
methods (for example DFDs or an action diagram) can be used in several of these
steps. Table 2 shows the names of the methods, as well as a number of important
reference books that give us a great deal more information about these various
methods.

The critical points in the above process, i.e. those which computer experts usually
pay too little attention or disregard completely, are steps 1, 2, 5 and 8. Additional
difficulties arise from the fact that entities and concepts in different methods are not
the same. For example, a business technology matrix works with data classes, DFDs
with data flows and storages, an ERA-model works with objects and relations, a
relational model with relational schemes and keys, and an object scheme works with
classes. These constructs are interrelated, but their characteristics and meanings are
different. It is, therefore, impossible to formalise the transfer of one concept to
another. An IS designer must have the necessary knowledge, experience and
inventiveness. And that is why, as we stated in [5], we still do not have ICASE.

' This name comes from the idea that there is no general methodology appropriate for designing each type of IS,
but that there are methods which can be part of several specific methodologies. It is difficult to imagine that
those same methodologies could be used in the designing of ISs for the engineering industry, banks, hospitals,
the army or for sale on the Internet, although the same methods can be used in designing all of them (e.g.
action diagrams or ERA). That problem deserves special consideration and is not a part of this paper.

? The concepts “information system design” and “information system model” are not synonyms as is often
suggested colloquially. IS design must provide a complete plan for the improvement of BMS and deals with
terms like: the application strategy of information technologies, BMS restructuring, an estimate of the effects,
the design and implementation of a new IS, communications, end-user education, etc. Therefore, "IS
designing" has a different meaning from "IS modelling".

121

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Table 2. Steps, methods and techniques of BMS-methodology

Problem/step in designing or modelling

Methods and techniques:
§ -strategic; # - structural; ©-object oriented

. Co-ordinate the strategic plan of business
system development with the available
information technologies

§ BCG-matrix [24]
§ SF model [19]
§ Porter's "value chain" model [19]

2. Adjust the system to the business strategy

§ BPR[18]
Business system scheme (rich picture) [25]

3. Define the processes in the business and
manufacturing system

BSP-decomposition [18]
BSP-analysis of the basic resources life cycle

S

. Define CSF and any information necessary
for system management

§ Rockart's CFS analysis [19]
Ends-Means analysis [19]

W

. Define the optimal architecture of the
information system

Business technology matrix [16], [5], [6], [7]
Affinity analysis [16], [14], [8]

N

. Describe the basic business processes

Data flow diagram (DFD) [16]

~

. Describe in detail the business processes
and the prerequisites for their realization

Data flow diagram (detailed)
Action diagram [16]
Decision trees and tables [13]

8. Design the general structure and functions
of the application software (procedures,
events, object classes, inheritance and
transition of objects)

Il O | | R

HIPO-diagram
o Event scheme [10]
o Designing objects and classes [2]
o Transition diagram [10]

9. Develop a data model

ERA-model [1], [11]
o Object-model [10]

10. Design a detailed structure and the
functions for specific programs and
procedures

Action diagram [16]
o Object scenario [10]

11. Develop a relational data model

Relational model [11]
Normalisation [11]

12. Develop the software

CASE and 4GL [16], [23]
o 00-CASE and C++ [2]

As the methods mentioned in Table 2 are generally well-known, we won’t give a
description and explanation of their use. We will only describe briefly the Coad-

notation [10] for applied object methodologies.

122

Zbornik radova, Volume 22, Number 2(1998)

3. STRUCTURAL-OBJECT INTERACTION IN DESIGNING
A PROGRAM SYSTEM

Step 8 in Table 2 is a new IS and it is the transition from the analysis of a
business-manufacturing system to the design of the software for its information
system. This is also where we start talking about the interaction and the integration of
structural and object methods. At this stage, it is necessary to make a general structure
for the application software that will fully support the business technology developed
in the previous steps. We can consider the HIPO-diagram to be the best practical
notation for describing the general software structure with regards to the amount of
knowledge a designer has at that moment.

INPUT PROCESS OUTPUT
AP 1 -A description of the 1st application
Input 1 Program 1.1 Output 1
Input 2 A short description of the process and Output 2
- its algorithm. Refer to supplement if .
<Input RSh 1> a detailed description or object model <Output RSh 1>
<Input RSh 2> is needed. <Output RSh 2>
Program 1.2

Program 1.n

AP m -A description of the m-th application

Program m.1

Program m.n

Figure 1. A HIPO-diagram giving a general description of the application software

The HIPO-diagram (HIPO being an abbreviation for Hierarchy + Input, Process,
Output), shown in Figure 1 is a description of application software in which programs
are arranged within a certain program area (Hierarchy), and for each program the
input data necessary for it to function is stated (/mput), the basic algorithms for
program processing are described (Process), and the output data resulting from
program processing is given (Output). At the input and output stage of each program,
the data necessary for program processing is defined, some of which is in the classical
media (Input, Output), but there are also those that will later be transformed into
relational schemes and realised as relational DBs (<Input Rsh>, <Output
Rsh>). When describing the process, which can’t simply be explained in one
sentence, a supplement is added in which the program algorithm is elaborated in more
detail. This elaboration will be done within step 10 of the BMS-methodology either by
using structural methods (an action diagram) or object-oriented methods (an object
model and object scenario). Thus the applied HIPO-diagram is a summarised view of
the entire application software, and it is also the starting point for a detailed
development of specific programs, either by structural or object methods.

123

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Programs supporting the standard business activities and depending upon
relational data models will be generated on the basis of an action diagram by using
standard CASE tools and will be completed with the appropriate 4GL. Programs
connecting business activities with equipment for automated manufacturing,
production control management or raw material and product transportation will be
made using object methods. The use of these object-oriented methods is necessary in
those cases where the process in the business-manufacturing system depends on the
events that influence the condition of that system or when business and technological
processes proceed in parallell, in real time, and have an influence on each other.

There are several notations for object-oriented analysis and object-oriented
software development because object technologies are still being developed and
standardized. For the object modelling Coad’s notation [10] was used here because it
is, according to the author's experience, the most appropriate for this phase of IS
development.

The basic construction of object methodologies is an object, representing the
abstract unity of data (the data describing a certain thing or phenomenon that must be
taken into consideration) and processes (the procedures, the methods, the operations,
the services) that can be performed by the object or on the object. These processes
describe the behaviour of an object over the course of time. Any number of objects
described by the same attributes, and on which the same processes can be performed,
make up a class or a type of objects. Coad notation represents these classes of objects
with a rectangle (with bold lines and rounded corners) within which three separate
parts are written: the name of the class, its attributes and its processes. All the
individual objects of the same type are represented by a rectangle with thin lines
Figure 2.

p e st e
MEMBER BOOK Books bo .
MembCode n 1|| BookCode Progam:{BoOKs barowing
MembName BookTitle
MembSurname BorrowCode
chooseBook showList
borrowBook registerBormmow
chooseBook 1| MEMBER.chooseBook(Keyword;BookCode)
showList 2| BOOK.showList{(Keyword;MembCode)
IF 3| IF MembCode=""
borrowBook 4| MEMBER borrowBook(MembCode;)
registerBorrow 5| BOOK.registerBorrow{MembCode;BorrowCode)
ENDIF 6

Figure 2. Object notation - the object model and the object scenario

Objects are connected in their activities, so their relations are represented by lines
above which two characteristics are usually written: connection (this is symbolised by
a directed triangle) and cardinality (marked 0, 1 or n). Cardinality shows how many
objects of a certain type enter into a connection with objects of a second type. A model
of such relations is called an object model, and this is shown in the upper part of
Figure 2. The behaviour of the objects in a real system and the appropriate program,

124

Zbornik radova, Volume 22, Number 2(1998)

with all the important factors having been taken into consideration, is described in the
object scenario which is shown in the lower part of Figure 2. In addition the object
scenario contains a sequence of statements in the following form:

OBJECT TYPE.process (request;answer)

In order to illustrate the object modelling technique, we will give a simplified example
in Figure 2 of an easily understandable program for borrowing books as part of a
library information system. Two objects are used in the program (MEMBER and
BOOK) whose cardinality is 0,n on the part of MEMBER (i.e. one member can
borrow at least 0 or at most # books), and 0,/ for the BOOK (i.e. a book can either be
lent to no one or to only one member at that time). Three attributes are defined for
each object (MembCode, ..., BorrowCode) and two processes (chooseBook, ...,
registerBorrow). The object scenario is, according the statements on the right side of
Figure 2, read in the following way:

1 object MEMBER starts a process borrowBook and sends a request to the object BOOK by giving
the parameter KeyWord, and expecting data BookCode for the chosen book;

2 object BOOK, activated by object MEMBER, starts a process showList and displays the present value
of the data BorrowCode;

3 IF BorrowCode ="' (empty) it means that the chosen book has not been borrowed yet, so the
MEMBER who started the process can borrow it;

4 if the chosen book is available, object MEMBER starts a process borrowABook and puts on display
his/her data MembCode;

5 the previous process starts a process registerBorrow of the object BOOK in which input data
MembCode is recorded as BorrowCode;

6 ENDIF is the end of the loop that begins in statement 3.

If a greater number of object types participate in a relation than in the above
mentioned simple example, and if the data flows between them in both directions, then
the object model and the object scenario are drawn separately. Using methods
mentioned earlier the following relations, that are important for the program
development, are modelled: the problem domain (i.e. which objects and their relations
are solved in the program), any inferaction with the system (i.e. which object begins a
certain process), the user interface (i.e. what the data is and in what form it will be
presented to the user) and any data management (i.e. what data about certain objects
will be saved and also how it will be saved).

4. THE INTEGRATION OF STRUCTURAL AND OBJECT METHODS
IN A REAL IS PROJECT

The business-manufacturing system, whose entire effectiveness needs to be
improved by using new information technology, is a firm that could be described as
the continuous manufacturing of standard products of a process type [22]. Generally
this type of firm can be, in a general taxonomy of the production systems, marked
(described) by the abbreviation CMSP. Throughout the paper this abbreviation will

125

J. Brumec et al. Structured and object-oriented methods in a complex IS project

also stand for the firm name. A real production system called CMSP is shown in
Figure 3. Its basic characteristics are:

a)

b)

Product assortment consists of nearly 20 products, each of them manufactured in
20-100 varieties. Product documentation and the manufacturing technology are
made in the form of a prescription, called the formula. Whenever a new variety of
a product is needed, a new formula is made and analysed. The production process
is automated, with the packing of products into packages for sale being an integral
part of the manufacturing process. The biggest problem is the necessary adjustment
of equipment whenever a new variety of product is made. For that reason the firm
produces larger quantities of products than currently needed, according to the
estimate for the customers' future demands. Finished products are stored, and later
dispatched upon demand. The storehouse also receives unpacked products, so that
manufacturing process can sometimes become simply a matter of putting the
products into their packages and then they’re ready to be sold.

The firm has about 2000 regular customers and receives daily about 50 customer
orders, with approximately 10 items on each order. These orders are usually
collected by the sales agents, and the customers expect the the goods to be
delivered in the shortest possible time (maximum: three days). The products are
delivered to customers all over the country in small vans owned by the firm.

The firm has a small number of suppliers they use most of the time. The basic raw
materials are chemical substances but the packages used for the finished product
are also very important.

Raw materials, PRODUCTION
selling packages Srierio DEPARTMENT
supplier SALES
Raw material Customer DEPARTMENT

receiving list order

MATERIALS WAREHOUSE

Semi-products

% Packages
Raw materials o
:@@ mi m@ Semi-products

] [y delivery list

FINISHED PRODUCTS
WAREHOUSE

I I/I I/I |
Production T

order N

¥

Ll

Products

Material PRODUCTION
pick-up list

Raw materials, packages 1 Teanslent st
and semiproducts B ge/rni-pr?ducts, forpacking
Siverlist // onveye syste
Finished products
packing list
Finished products

Figure 3. The basic manufacturing and business flows of a CMSP

126

Zbornik radova, Volume 22, Number 2(1998)

The firm’s management, along with its business consultants, determined the
strategic goals for the firm and how to improve its business in the following ways:

a) Accelerate the collection of customers' orders and make sure that all that needs
to be ready for a given day is ready, so that at least 90% of orders received
during any working day can be delivered the next day.

b) Adjust the quantity of the stored, finished products so as to meet customers'
demands and to meet the expenses of the production resources adjustment.

c) As recycling is impossible (because chemical processes are irreversible), it is
necessary to reduce the shrinkage to the level of the world’s best firms in that
industrial branch.

In defining the above list of goals the principles of Porter's "Value chain" analysis
were used. The main business flows were also reengineered, as shown in Figure 3.
During reengineering, the effect of new IT was estimated in some of the important
business processes (e.g. in order collecting, in delivery automatization, and in
production process management). The matrix of a new business technology was made
after that and the IS architecture for CMSP was optimized. It was concluded that the
entire IS can be divided into seven subsystems, within which the shortest business
flows were defined. Using BCG-analysis and Porter's "Value chain", the priority for
the design of specific IS subsystems was established. For each of these subsystems a
detailed process model was made using DFD techniques, with a special emphasis on
those processes in which the new information technology would be applied. An
example of the process model for the subsystem SALES, considered to be one of the
most important ones, is shown in Figure 4.

How using IT to improve a certain process and exactly how it improves it cannot
be fully measured without a complete process analysis. In order to make such an
analysis, it is necessary to use modelling and description techniques not ordinarily
used by computer experts. Figure 5 shows the analysis and the final results of the
development process for Product Shipment (as defined on the right side of the
DFD in Figure 4). To produce the information the “rich picture” technique was used.

The dispatching process is a critical point in CMSP management for two reasons:
each customers' order must be fulfilled within 24 hours after has been received, and in
the process of packing and dispatching there must be no mistakes (which are possible
with manual work, epecially when considering the similarities between the products
and the packages). In order to avoid making these mistakes, the store functions were
separated from the dispatch functions, throughout BPR. The system shown was named
transient warehouse, and it consists of a wall unit with 200 cells sized 50x50x80 cm.
The cells are emptied from the front, when the products are dispatched to the
customers, and then filled in from behind, when the quantity of products is at a
minimum. The system of storing and filling the cells is a separate process, and this
proces is not shown in Figure 5.

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Customers order CUSTOMERl¢ Invoice / packing list
4
b
Sle
218
ols
N
Collecting | Customers data
of inquries |
A
CONTRACT
3 Customers data .
Products
Reports for management| ordering CUSTOMER
g
£ @
Sfs 32
A Order for shipment ‘AL‘—
SALES Products
ORDER Fulfiled order shipment Invoice
<€
y L
To Management o 0
g 35 g
{1 g
Jdls o5 3
A - v
‘Sales order [€
processing Products data PRODUCT INVOICE
e
§ &8
3 o
g b
Sl IS
2ls 3
35 g
Manufacturing PRODUCTION .
order ORDER
To Production From Laboratory

Figure 4. A process model for the subsystem SALE

In order to further emphasise that only with a total understanding of all the details
in a certain process, can the use of appropriate information technologies be considered
(including the choice of hardware, software modelling and work procedure
definitions), we will describe the process Product shipment by quoting a part of the
text from the project documentation made while working on this particular part of the
project.

128

Zbornik radova, Volume 22, Number 2(1998)

[D [l |
item 01 3¢{ {d-[Jof[em 02 [f[teem 03 em 99 J00-Adjef{tem100 |

TC I

o

I 3

aannnonono IYITITITINITA A N Aanannnoonanonononnn

7 Ord.: 3597\
§ dtem 01 75 |
=i Item 99 867

To network/data server

Figure 5: The scheme for the Product Shipment process

"For all orders, depending on their priority that’s determined by a delivery deadline, a semi-
automated dispatch procedure is carried out (shown schematically in Figure 5). After an
employee chooses an order on the dispatch computer (DC), all its items are automatically shown
above the transient warehouse cells (TC). Above every cell (from which the products must be
taken to fulfil a chosen order), a small lamp switches itself on, and the quantity of the products
needed is written on on a small LCD display (D). The employee takes the ordered product item
(1) and packs it into a package (P), then that goes down the conveyer belt (C). After he takes out
the ordered quantity of these chosen products, he presses the key next to the screen (notifying
that the order was executed) and the lamp switches itself off. When all the items of the order are
fulfilled, packets of these products then go to an electronic scale with a switch (S), where the
correctly fulfilled order is additionally checked by comparing the weight of the packet with the
calculated weight of the ordered products. If the weights correspond, a packing list and invoice
are printed (the bar code printer BCP is at the end of the conveyer belt) twice (one of them goes
to the customer, the other one goes to the subsystem ACCOUNTING), as well as the customer's
address and post-code. Both of which are written in bar code (and then taped to the appropriate
place on the package). The package is then automatically sent to the loading conveyer belt (the
process known as Loading and transportation of products). If the actual and calculated
weights do not correspond, the package is put on a separate line for further checking. A copy of
the packing list, with the customer's receipt for products received is returned after delivery to the
process Orders processing in order to register the completing of that order. A detailed outline
of this process, as well as the procedures used when actual and calculated weights do not
correspond, are described in the program PRODUCT SHIPMENT."

The above text shows that structural methods alone are not enough when you want
to develop a software to support the described work procedures and connect a business
information system with the automated production equipment. Therefore, it is
necessary at this stage to integrate object and structural methods. In accordance with
section 2 of this paper, a part of the HIPO-diagram for this particular case study is

shown in Table 3.

129

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Table 3: Programs and procedures in the application SALE (case study)

Aplication: SALE

Program: CUSTOMERS and
CONTRACTS

Input Processes-subprograms Output
- <CUSTOMER> 1. Collecting of customers' - <CUSTOMER>
- <EMPLOYEE> inquiries - <CONTRACT>

- Customer's commercial data
- Annual contracts: quantities,
terms of delivery, etc.

Input and updating of the data on
customers, their inquiries and any
annual contractsx

- Summary of customer groups
- Summary of annual contracts

Program: PRODUCT

ORDERING (A)+(S)
- <EMPLOYEE> 1. Sales order entry (A) - <SALES ORDER>
- <CUSTOMER> Input of orders in sales agent's - Checking the quantity of
- <PRODUCT> notebook computer, customer's products in warehouses and the
- <CONTRACT> order print and sending the order orders for speciﬁc products

- Textual data from annual
customer's contract
- Customer's order

to a firm via a computer network

2. Sales order entry (S)
Receiving and input of customer's
order, print them and send them
to the customer

- Checking customers' paying
abilities

Program: SALES ORDER
PROCESSING

- <CONTRACT>

- <CUSTOMER>

- <PRODUCT>

- Product type and quantity in
stock

1. Sales order processing
Check the received orders, calcu-
late the discounts. If the quantity
of product in stock is minimal,
launch a production order

- <SALES ORDER>
- <PRODUCTION ORDER>

Program: PRODUCT
SHIPMENT

- <SALES ORDER>
- <PRODUCT>

1. Distribution of the ordered
products in the warehouse
cells

A detailed description of process
analysis in an object model

- Signal on the front side of the
warehouse cells: signal lamp
switches on, the number of
packages and items is printed
out

- <SALES ORDER>
- <PRODUCT>

2. Management of product
delivery from warehouse cells
A detailed description of the
process in an object model

- Delete data, feedback after
issuing.

- Priority list of warehouse cells
that need refilling

- <SALES ORDER>
<PRODUCT>
<CUSTOMER>

3. Preparing of invoices
Compare the weight of the
ordered and delivered products,
print the invoice, charge the
buyer, lower the stocks. Make a
denial of invoices possible.

- <INVOICE>

- <PRODUCT>

- Print out the bill/packing list

- Customer's post-code, printed
in bar code

- <SALES ORDER>
<PRODUCT>
- <CUSTOMER>

4. Export
Additionally make the export
invoice and the accompanying
documentation

- <INVOICE>

- <PRODUCT>

- Export invoice and
- documentation

130

Zbornik radova, Volume 22, Number 2(1998)

Program: CARGO
DISTRIBUTION

- Moving hand data

1. Moving hand manipulation
Starting, stopping and
manipulating its functions using a
built-in firmware

- Signalling moving hand
position and the efficiency of
product transfer

- <SALES ORDER>
- <CUSTOMER>

- <EMPLOYEE>

- <VEHICLE

- Moving hand data

2. Cargo distribution
- A detailed description of the
process in the object model
- Records of vehicles and
employees that transport
products

- <TRANSPORT ORDER>
- Printed transportation order

Program: CLOSING
DELIVERY

-<SALES ORDER>

- <TRANSPORT ORDER>

- Customer's receipt for the
delivered products

1. Closing customer orders
Mark the order as fulfilled

- Summary of the fulfilled orders

- <SALES ORDER>
- <INVOICE>
- <PRODUCT>

2. Processing complaints
Record a complaint, a denial of
the invoice with the items, change

- Summary of complaints

the amount of the customer's debt

- Customer's complaint

Certain programs were described in more detail in the form of an action diagram,
but since this design method is generally well known, it will not be described in this

paper.
Programs integrating business and technical processes were modelled by the
previously mentioned object methods in Coad notation. For example, Figure 6 shows

the object scheme, and Figure 7 shows the object scenario for Product shipment in
this case study.

When designing such programs, some of the object oriented CASE-tools will be
used. A great number of specific program procedures for control of technical
equipment in a transient warehouse (e.g. electronic control of the transient warehouse
cells, the LCD which displays the data for the quantity of ordered products, light
signalling, feedback etc.) will be written in C++ and will be linked up with the
firmware equipment.

131

J. Brumec et al. Structured and object-oriented methods in a complex IS project

g — —
BarCodeWriter Customer
o opState n n |[code
FPW = Finished barCodeWiterS| name
Products labelOrder address
Warehouse determineOrdCode bonitet
—_—— telFax
1 1 dispatchmentPlace
—
FPW AcceptedOrders R e
title number
address deliveryPlace . Orderitem
acceptinventory n deliveryDate 1-n -1 1][quantity
dispatchinventory status h status
signalMinQtyFPW dispatchltems dspProdByltem
e closeOrder —_—
labelOrder 1
ProblemDomain
n
BarCodeWriter T R
FPW TrayDockCS TrayDock Item
AcceptedOrders opState number itemCode
Customer dockNumber trayDockitemCode itemName
Orderltem TrayDockCSSI dynamics price
It el BusControlS| i TrayDockCS 0-1 1 taxNumber
TemD " activateMonitoring TrayDockCSS| c qtyInFPW
faycloc monitor acceptitem minQtylinTrayDock
TrayDockCS deactivate calculateDynamics qtylnTray
openDockDoor reachedMinQty qtylnLot
signalDoorOpen checkitemAndDock minQtylnFPW
closeDockDoor adjustQty adjustQtylnFPW
readinputSensor releaseltem calculate TrayQty
writeDisplay checkQty checkQtyInFPW
readKeyboard —_——— signalMinQtyInFPW/|
deleteDisplay dispatchitem
Lot e e
BusControlSI
TrayDockCSSI busfddress
controlBusAccess
gus/c\;ddres!SSI datalnterchange
Systeminteraction hus k;":; : DM::IZUfegrﬁange
checkBusStatusr malfunctionDiag :
BarCodeWriterSl datalnterchange connect BarCodeWiterS|
BusControlSI malfunctionDiag query write Code
TrayDockCSSI executeCode adjust signalMalfunction
readSensor disconnect —_—
writeDisplay activate
readKeyboard deactivate
ITrayDockCSUI
—_——
TrayDockUI display TrayDockQty|
diplayCurrentWork
writeNumberOfLots displayMalfunction
Userlnterface writeNumberOfitemd closeOrder
dispatchSignal executeOrder
TrayDockCSUI malfunctionSignal skipOrder
TrayDockUI readKeyboard displayRefilPriority
deleteFromList
activate
deactivate
activate TrayDock
deactivate TrayDock
DataManagement ItemDM TrayDockDM CustomerDM
ltemDM item trayDock customer
TrayDockDM e a———w
CustomerDM —— ———
AcceptOrdersDM AcceptOrdersDM | | OrderitemsDM
OrderltemsDM acceptedOrder orderltem

132

Figure 6. An object model for part of a real project (case study)

eel

FPW) AcceptedOrders|| ||Orderitem TrayDock TrayDockCS Item BarCodeWriter
acceptinventory dispatchitems dspProdByitem acceptitem activateMonitoring adjustQtyInFPW labelOrder
dispatchinventory closeOrder calculateDynamics monitor calculate TrayQty determineOrdCode
signalMinQtyFPW labelOrder reachedMinQty deactivate checkQtylnFPW
checkitemAndDock openDockDoor signalMinQtyInFPW|
adjustQty signalDoorOpen dispatchitem
releaseltem closeDockDoor
checkQty readlnputSensor
writeDisplay
readKeyboard
deleteDisplay &
dispatchinventory
W-dispatch/tems
WHILE
-»dspProdByltem
heckQtylnFPW
IF
signalMinQtyinFPW
signalMinQtyFPW <
ELSE
IF status<>0
W-dispatchitem
ENDIF
releaseltem
»checkitemAndDock
IF
writeDisplay
prea ng yboard
IF
deleteDisplay
adjustQty <«
» checkitemAndDock|
IF
- reachedMinQty
ENDIF
P calculateDynamics
djustQtylnFPW
» checkQtyInFPW
IF
- signalMinQtyinFPW
signalMinQtyFPW <
ENDIF
ENDIF
ENDIF
ELSE
» reachedMinQty
ENDIF
ENDWHILE
IF
P closeOrder
» labelOrder
determineOrdCode
P labelOrder
ENDIF

)

O D NP AWN

o
©

41
42

Figure 7. An object scenario for a part of a real project (case study)

43

FPW.dispatchinventory(AcceptedOrders)
AcceptedOrders. di:
// dispatch all order items
Orderitem. dspProdByltem(quantity)
Item.checkQtyInFPW(qty, minQtyInFPW; enoughitem)
IF NOT enough item in FPW
Item. signalMinQtylInFPW(;status)
FPW.signalMinQtyFPW(;Item)
ELSE
IF enough items in FPW
Item. dispatchitem(;qty)

TrayDock releaseltem(qty)
TrayDock.checkltemandDock(minQtyFPW;stat)
IF enough items in tray dock
TrayDockCS.writeDisplay()
TrayDockCS.readKeyboard(;status)
IF status
TrayDockCS. deleteDisplay()
TrayDock.adjustQty(qty)
TrayDock.checkltemAndDock(minQtyFPW;stat)
IF reached min. qty. in TrayDock
TrayDock.reachedMinQtyl(; TrayDock)

TrayDock. calculateDynamics(qtyl;dynamics)
Item. adjustQtyInFPW(qtyl)
ltem.checkQtyInFPW(qty, minQtyInFPW; enoughltems)
IF reached min. qty. in FPW
lem. signalMinQtyInFPW(;status)
FPW.signalMinQtyFPW(;Item)

TrayDock.reachedMinQtyl(;trayDock)

IF processed last order or process stoped
AcceptedOrders. close Order()
AcceptedOrders./abe/Order()
BarCodeWriter.determineOrderCode(Customer code)
BarCodeWriter./abel/Ordery)

(8661) 42quunN ‘77 awnjo ‘vaopp.d y1uioqz

J. Brumec et al. Structured and object-oriented methods in a complex IS project

5. CONCLUSION

Object-oriented and structured methodologies of information systems modelling
and application software designing are not mutually exclusive, but they are
complementary. It is especially evident in designing complex business-management
systems, in which business and technical processes must be integrated. Choosing
which method to use in the process and data modelling isn’t solely up to the computer
expert (as they tend to use certain CASE-tools or programming languages) but it
depends on the nature of the problem at hand.

MRP systems have been evolved over a long period of time and they have not
been based on a certain methodology. This inconsistency in approach is the main
reason why there is no relevant literature to cover this area. Existing publications are
mainly concerned with the functions of a business manufacturing system that is the
subject of an analysis and not with the methodologies used therein. This article
presents a different approach to this problem, with the emphasis on the methodology.
It shows a methodology with which complex business manufacturing systems can be
analysed in order to obtain the appropriate information system.

Together with the necessary theoretical explanation, we have shown the
possibilities of integrating structured and object-oriented methods and techniques for a
case study and recommended a HIPO-diagram as the modelling technique for that
phase of the information system development in which this integration actually takes
place. For those programs designed by object techniques we recommended Coad
notation. Its usage is exemplified in the case study which relies on the work results
from a real project.

REFERENCES

[1] R. Barker. CASE*Method-Entity Relationship Modelling. Addison-Wesley,
Wokingham, England, 1990.

[2] M. Blaha, W. Premerlani. Object-Oriented Modelling and Design for Database
Applications. Prentice Hall, Upper Saddle River, New Jersey, 1998.

[3]1 G. Booch. Object-Oriented Analysis and Design. The Bejamin/Cummings
Publishing Comp, Redwood City, California, 1994.

[4] J. Bourne. Object-Oriented Engineering. Irwin Inc., Homewood, Illinois, 1992.

[5] J. Brumec. Optimizacija strukture informacijskih sustava. Zbornik radova, broj 18,
Fakultet organizacije i informatike, Varazdin, 1994.

[6] J. Brumec. Epistemologija CASE-alata. CASEG-Sesto savjetovanje o CASE- -
alatima, Opatija, 1994.

[7] J. Brumec. Objektni pristup razvoju I1S-a i CASE-alati. CASES-osmo savjetovanje
o0 CASE-alatima, Opatija, 1996.

[8] K. Chung. A model for the planning of business process reengineering. Journal of
Computer Information Systems, Fall 1998.

134

Zbornik radova, Volume 22, Number 2(1998)

[9] P. Coad, E. Yourdon. Object-Oriented Analysis. 2nd ed. Yourdon Press, Prentice
Hall, New Jersey, 1991.

[10] P. Coad. Object Models-Strategies, Patterns & Applications. 2nd ed. Yourdon
Press, Prentice Hall, Upper Saddle River, New Jersey, 1997.

[11] C. J. Date. An Introduction to Database Systems. 6th ed. Addison-Wesley,
Reading, MA, 1995.

[12] 1. Graham. Object-Oriented Methods. Addison-Wesley Publishing Company,
London, 1994.

[13] J. Hoffer, J. George, J. Valacich. Modern Systems Analysis and Design. The
Benjamin/Cummings Publishing Company, Menlo Park, California, 1996.

[14] K. Klasi¢. Modeli optimizacije strukture informacijskog sustava. Doktorska
disertacija, SveuciliSte u Zagrebu, Fakultet organizacije i informatike, Varazdin,
1998.

[15] K. Kurbel. Produktionsplanung und Steuerung. R. Oldenburg Verlag, Wien,
1995.

[16] J. Martin, J. Information Engineering, 1, 11, III. Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

[17] J. Martin, J. Odell. ‘Object-Oriented Analysis and Design. Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

[18] S. Montgomery. Object-Oriented Information Engineering. Academic Press,
London, 1994.

[19] M. Robson. Strategic Management and Information Systems. Pitman Publishing,
London (1997).

[20] J. Rumbaugh et al. Object-Oriented Modelling and Design. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

[21] P. Sallis et al. Soffware Enéineering. Addison-Wesley Publishing Company,
Sydney, 1995.

[22] T.J. Strader, F. R. Lin, M. J. Shaw. The impact of information sharing on order
fulfillment in divergent differentiation supply chains. Jowrnal of Global
Information Management, Vol 7, Jan-Mar, 1999.

[23] I. Sommerville. Sofiware Engineering. 5th ed. Addison- Wesle} Publishing
Company, Reading MA, 1995.

[24] J. Ward, P. Griffiths. Strategic Planning for Information Systems. John Wiley &
Sons Ltd., Chicester, England, 1996.

[25] E. Yourdon. Modern Structured Analysis. Yourdon Press/Prentice Hall,
Englewood Cliffs, New Jersey, 1989. : '
Received: 17 June 1998
Accepted: 5 October 1998

135

J. Brumec et al. Structured and object-oriented methods in a complex IS project

Brumec Josip
Vesna Dusak
Neven Vréek

STRUKTURNE I OBJEKTNO ORIJENTIRANE METODE U SLOZENOM IS
PROJEKTU

Sazetak

Objektno orijentirane i strukturne metode nisu medusobno iskijucive, iako svaka od njih ima
prednosti pri koristenju u izgradnji specificnih tipova informacijskih sustava. Zbog toga ovaj
rad obraduje odredena svojstva poslovnih sustava i njima pripadajucih informacijskih
sustava koja utje¢u na odabir metoda razvoja informacijskih sustava. MoZe se zakljuciti da se
za razvoj sloZenih informacijskih sustava, posebice onih koji povezuju poslovne i tehnoloske
procese, najbolji rezultati postizu kombinacijom strukturnih i objektno orijentiranih metoda.
U radu je prikazan nacin na koji se strukturne i objektno orijentirane metode povezuju u
konzistentnu metodologiju za razvoj informacijskih sustava te je prikazano njezino koristenje
na stvarnom primjeru.

Kljuéne rije¢i: razvoj informacijskih sustava, objektno orijentirane metode, strukturne
metode, BMS-metodologija.

136

