UDC: 007.5
Original scientific paper

AN EFFICIENT ALGORITHM FOR INFORMATION SYSTEM
DECOMPOSITION

Alen Lovrencié¢

University of Zagreb, Faculty of Organization and Informatics, Varazdin, Croatia
e-mail: alovrenc@foi.hr

A general context for the problem of decomposition within an information system is described
in [3). The problem has been classified as a NP-complete problem, which excludes the
possibility of an optimal solution of the problem in polynomial time. This paper has two
goals: first, to solve the problem within some additional limitations that are usual in the
praxis of decomposition and, second, to provide for an on average faster algorithm to
calculate the optimal decomposition of an information system into subsystems.

Keywords: information systems, algorithm, optimization, complexity.

1. INTRODUCTION

For some 30 years, software engineering has dealt with the problems of increasing
application packages' quality and of the standardisation of procedures for designing
applications. The development of standard procedures and methods, as well as
methodologies as a whole were moving bottom-up. The "lower" methods were the
first to develop closer links to computer engineers and be farther from the packages'
users; later on, the point of interest started ascending higher and earlier in a package's
development stage. This is why more and more attention has been paid lately not only
to the methods that are applied at very early stages of the development of a package,
but as well to the very designing and systematisation of the application domain the
package is to cover. The methods at this stage of the package development process are
usually referred to as the strategic planning methods.

The problem of decomposition within an information system is one of the basic
problems of planning the information systems design. As has already been shown in
[3], the optimality of the solution to this problem significantly influences the further
course of designing an information system and its final quality and the complexity of
its inner relations.

2. CHARACTERISTICS OF THE PROBLEM

The description of the problem of decomposition of an information system has
been shown in detail in [2]. Here, only the basic characteristics of the problem, which
are important for the development of our algorithm, will be shown. The way into the

137

A. Lovrencié. An efficient algorithm for information system decomposition

problem is through a data processes-classes matrix. The processes denote the dynamic
structure (algorithms, programs, etc.), whereas data processes denote the static
characteristics (data structure, databases) of the future system. Each row of the matrix
is defined by a process and each column is defined by a data class. Signs are entered
into the matrix body and they indicate which operations the process in whose row the
sign is performed on the data class, thus denoting the column in which the sign is.
Two kinds of relations between processes and a data class are to be distinguished here.
At most, one process within the system can create data belonging to a certain data
class, whereas several processes can use the data from the data class. See [2] for
argumentation on this assumption. Here is an example of the data processes-data
classes matrix:

Table 1. Process-data class matrix

CqiCyiCy|CqlCslClCy

Bl G
Pzt G
Pl U

P4 U
U

Ps

cco
o

Let us point out that it is possible for a process to create data for several data
classes (process p3, for example), and that there may exist a so-called outer data class
whose data is not created within the system but in its surroundings instead (data class
cg, for example). It is also possible for a process to be "passive" within the system, i.e.
to create no data (process ps, for example) and that the data of a data class is created
within the system, but it is not used in it (data class c5, for example) and the data class
is most likely to be created as a sort of link between the system and its surroundings.

The first step is, by means of a certain function, to convert this matrix into a
processes-processes matrix that defines the relations between the processes. To
develop the algorithm, we assume that this table with certain properties is given. The
property we request for this matrix is symmetry. A part of the argumentation to
support this request has been given in [3], but we are going to try to argue the request
here. In order to argue it, it is necessary to remember the meaning of this matrix and
the goal we want to attain through it. Our goal is to reduce the relations among
subsystems as much as possible. The case of the asymmetrical processes-processes
matrix leads us to the measure of the weight of the relations between processes which
is, in turn, dependent on the process from within, from which the observed relation
originates. However, in this case, this measure by itself does not suffice to define the
quality of decomposition. Namely, there is the amended question of which relation is
stronger in this case, the one with (0.5, 0.5) weight or the one with (0.7, 0.1). There are
two obvious answers to this. We could suggest that this problem be solved by means
of taking the larger of the two weights, or adding them, or averaging them. This could
also be determined by a more complex procedure. However, all the procedures come
down to one: defining the symmetrical weight of the relation. In other words, no

138

Zbornik radova, Volume 22, Number 2(1998)

matter which way the afore-mentioned problem is resolved, the solution shall be the
answer to the following two questions: which of the relations is stronger and by how
much is it stronger? The very answer, if defined generally, shall present the
symmetrical measure of the weights of the relationship.

Finally, the central problem we are to deal with in this paper is obtaining the
processes’ allocation to clusters in such a way that, at the given limitations, the weight
of the relationship between clusters is minimal. The weight of the relationship between
clusters is defined here as in [3]. To solve this part of the problem, the branch-and-
bound method is to be used, i.e. its least-cost variation.

3. PROBLEM DEFINITION AND THEORETICAL DISCUSSION

The first problem to deal with is determining the way to measure the quality of
decomposition. The inclination to determine the means of measuring is to use the
function d:DxD—R" which is metric (for the definition and basic properties of
metrics see [4]). The trouble is, however, that the structure defined by our problem
cannot be defined naturally as a metric space. Namely, the measure determining the
quality of decomposition is based on the quality and the quantity of relationships
between clusters, i.e. subsystems. However, it is easy to see that the measurement of a
system defined in such a way cannot be a metric.

Let there be a function d:DxD—R* measuring the quality and the quantity of
relationships between subsystems. The natural properties of the function are as
follows:

1. V¢;Ve;(d(c;y €;)20)
2. VeiVe; (d(e;, €)=0 < ¢;=¢;)
3. Ve Ve (d(e;, ¢)=d(c5 ¢;))

The problem arises with the fourth property of metrics, i.e. with the samenessless
of triangles. Let us consider three subsystems of the observed system: ¢,, ¢, and c;. If
the decomposition is performed in the standard way, by means of processes, the
subsystems shall be related by mutual data. However, in that case d(c;, ¢3) does not
depend on d(c, , ¢,) and d(c, ¢3) values. We therefore cannot guarantee that the
following will be valid:

4. d(c;, c)+d(c,y, €3)2 d(cy 5 €3).
Let us give an intuitive example:

Example 1. Let there be a system whose graph is

Figure 1. Process connectivity graph

139

A. Lovrencié. An efficient algorithm for information system decomposition

It is clear that the situation presented in Fig. 1 is highly real, where the
weight of the relationship between the clusters ¢; and ¢, amounts to 10,
between ¢; and ¢; 7 and between ¢, and ¢; 20. On the other hand, it is
clear as well that the weight function is not metrics in this example,
considering that it is valid that

d(c;, c)Hd(c,, c3)<d(cy, c3).

The lack of this property makes the problem more complex. Namely, this makes
using the dynamic programming method [7] to solve this problem impossible. The
reason for this is that the method requires the problem to comply with the optimality
retaining principle. We shall not be formally proving here that the dynamic
programming method is not suitable for solving the problem being discussed because
that would take us into an analysis straying away from the goal of this paper.

Let us now describe the input data and the problem-solution requirements. The
input data consists of the processes-processes matrix as described in the previous
section, of the number of clusters the decomposition is to achieve and of two positive
whole number constants that determine the minimal and the maximal number of
processes to be found in a single cluster.

We must point out that if the borders of an information system are well-defined,
then the graph of the system shall be integral, i.e. it will not be possible to break it
down into two or more unrelated graphs. The opposite result would indicate that there
might have been a certain error in defining the input data. If the processes and data
classes are defined properly, we can then speak of a failure to define the borders of the
system. Namely, it means that we have overlooked the fact that we are dealing with
two systems independent one of the other when defining the system and have
considered the two of them to be one.

4. EFFICIENT ALGORITHM OF OPTIMAL SYSTEM DECOMPOSITION

4.1 Algorithm description

The problem is to be solved by the least-cost variant of the branch-and-bound
method. Let us write down the basic items of the problem. The system is described by
the graph G=(V, E), where the vertices represent the processes of the system while the
edges represent the value of the relations between processes. [3] has shown that the
problem of optimal system decomposition boils down to the problem of the minimal
cut of the already defined graph. At this point, a possible misunderstanding needs to
be avoided. In the graph theory, the problem to which our problem has been boiled
down is not a graph cut problem (which can be solved polynomially) but a graph
partition problem which is NP-complete.

However, the additional limitation shall be introduced now. It had not been
introduced in [3] and it appears in this particular case. Namely, we required that there
be at least one process in a subsystem when a general case is implied, which is too
weak a condition in our particular case. Thus when generating the system

140

Zbornik radova, Volume 22, Number 2(1998)

decomposition, the cases in which a subsystem has only one process are not
interesting. We shall therefore reinforce this need by requiring each subsystem to have
minimally m and maximally M processes. The second decomposition parameter was
the s number of subsystems which we want the system to be decomposed into. We
shall continue to use the fact that the optimal composition may be attained at the exact
minimal number of subsystems allowed (see [3]).

The branch-and-bound method requires defining two functions: the function that
evaluates the optimality of the branch development and the "intelligent" function that
ranks the state. The first function enables us to cut off non-perspective branches, i.e.
the branches that certainly will not yield the optimal result, whereas the second
function enables us to determine the development perspective of a field branch and
thus always develop the most perspective branches. The first function of the two has
already been given in [3] and it has been defined there as follows: First, two processes
are defined whose relation weight is maximal and they are marked with M. The first
approximation is the number Cmax=M(n-1)n/2, where n is the number of processes
within the system. It is clear that, regardless of decomposition, the sum of all the
relations between the processes in different subsystems cannot exceed this number
because the number (n-1)n/2 is the maximal number of edges of the graph with n
vertices and M is the number that is equal to or larger than the weight of any edge of
the graph. After the algorithm has found the solution, Cmax is replaced by the sum of
weights of all relations among the processes within different subsystems. Furthermore,
by searching the field tree, we can "cut" the branches where the sum of the weights of
all relations among processes already allocated to different subsystems exceeds Cmax.
It is clear that we are not going to cut off the minimal solution because further
allocation of processes to subsystems makes the sum of the weights of all relations
among the processes allocated to different subsystems rise, or, favourably, the sum
remains the same. Besides that, we can, as well, cut the branches that do not provide
for the defined minimal number of processes within a subsystem or the branches that
exceed the defined maximal number of the processes within a subsystem.

The function is to be somewhat improved now. First, regarding the ranking
function calculation which requires the evaluation of relation weight improvement
among the processes within different clusters that is caused by expanding a branch, the
same function can be used to calculate the first approximation if the whole field is
considered to be one branch for which the estimation is being performed. In this way,
quite a good approximation is instantly obtained and the approximation shall cut off
some non-perspective branches even before the first solution is obtained. Furthermore,
we shall not be limited to cutting only those branches that have already reached a
cluster relation weight which is larger than the cluster relation weight of any already
obtained solution, for in this way some branches are kept whose non-perspectiveness
is easily detected. In other words, the function of estimating the optimality of the field
is to be improved in such a way that to the presently attained cluster relation weight
the minimal attainable weight of every as yet unallocated process is added, assuming

141

A. Lovrencié. An efficient algorithm for information system decomposition

that that process is next to be observed. In other words, the branch development
estimating function is to be calculated as follows:

a First, the weight of relationships between clusters is taken (in relation to the
processes that have already been allocated up to this moment). Let this value be
marked as O.

a Each process of as yet unallocated processes is to be observed in relation to
already allocated ones, and the cluster to which it should be allocated in order
to increase the relation weight minimally is to be determined. When the cluster
is determined, the process is not allocated to it. Instead. only the O value is
increased by the value by which the weight would increase if the process were
allocated to the cluster. When the next unallocated process is observed, it is
again observed only in relation to already allocated processes. In other words,
the branch development optimality function does not allocate unallocated
processes to clusters.

a Finally, after the calculation has been done in the previous step for all processes
as a yet unallocated, the obtained value is compared to the relation weight value
of the solution that is best to this moment; if in this way a value larger or equal
to the already attained minimal relation weight is found, the branch is
proclaimed to be non-optimal and it is cut off.

The ranking function can be defined in various ways. When choosing the function,
two points should be kept in mind: It has to evaluate the final solution to the best
possible extent and it must be as easy as possible to calculate for it is calculated for
each node of the field we enter. This function will help us to pass through as few tree
nodes as possible when calculating the solution.

Therefore, the sum of the weights of already allocated processes shall be known at
any field node. This figure will be the basis for the ranking function. However, this is
not enough. Namely, it is not unimportant at which level of the tree the observed node
is placed. The higher on the field tree the node is located, the more processes are
allocated to it and it is natural that its respective sum of the weight of the processes
allocated to different subsystems is larger. This has to be taken into consideration so
that the development of the higher-level nodes is made possible. This is why the
greedy algorithm is to be used, so that the increase in the weight sum in further
developments of a branch can be estimated.

The ranking function will be defined in a way which also feeds back (aside from
the estimation of perspectiveness of a branch) some suboptimal solutions. The
function shall thus be used not only for ranking the branches but for searching for the
solution as well.

It will also be shown that the algorithm is still NP-complete, regardless of the
introduced limitations. This means that in the worst case the algorithm is not speeded

up by adding the ranking function, although it is speeded up for some less extreme
cases.

142

Zbornik radova, Volume 22, Number 2(1998)

Naturally, the remarks on the unimportance of numerating a subsystem from [3]
are still valid and thus the basic program frame remains similar, only the new
functions of assessing optimality and ranking will be added enabling us to terminate
further development of a branch at any stage and shift to another branch. We will,
therefore, allocate the processes by their order.

4.2. Data structures

Let us first define the structure of the data to be used. This time, the structures are
to be described by means of parameters and that will result in a dynamic quality for
the structure sizes, which also means better memory usage.

The weights of relationships between processes are defined as an orthogonal
linked list. The list is to be implemented by means of an opened hash table. It means
that there will be a tied header list with one header per each process. Each header is to
show a linked list with the processes to which the process from the header is related
and their respective weights. Let us give an example. Let there be a system defined by
the following process table:

Table 2. Process-Process matrix

pt p2 |p3 |p4 |p5S
pt] 21| 1
p2| 2.1 14
3] 114 -
pd 2.2
p5] | 2.2

The structure describing a system that is defined in this way will look as follows:

[p3L0 -] [p314-1 [p2l4 -]

Figure 2. Orthogonal linked list

The allocation of processes to subsystems will be entered in a linked list. The same
structure shall be used to keep the best solution found. As for the example from Table
2, for 2 clusters and the requirement that there are at least two and at most 3 processes
within each cluster, the optimal distribution will be as shown in the following table:

143

A. Lovrencié. An efficient algorithm for information system decomposition

Table 3. Cluster definition

Number Cluster
of processes number
1 1
2 1
3 1
4 2
5 2

which will be written in the structure as shown in Fig. 2

header

N/ pllel] Fpipdel vp3el vpic2 v pslc -

J

Figure 3. Linked list

Apart from these structures, one structure more is needed to retain the data on all
the branches that are currently being observed. This structure will also be an opened
hash table, while the linked list defined in the previous structure is to be used for the
table nodes lists.

This structure will be filled and emptied in a specific way. When a new element
enters the structure, its placement ensures the list being sorted by two criteria. The first
criterion is the estimation of the weight of relationship that the branch may yield. This
estimation will always exceed the real minimal allocation regarding already allocated
processes in the field branch and it will be obtained through the ranking function. All
the branches with the same weight estimation shall be sorted ascending in accordance
to the number of processes already performed in them. In this way, longer branches
with the same weight are preferred. This is justified by the fact that these branches use
more memory, and, also, more processes are performed within them and there are
fewer steps needed to develop the branches fully. Only the first element is always to
be taken out of the linked list, i.e. the branch that is smallest in accordance with our
sorting criterion.

4.3 Algorithm

The first task to be completed is the developement of a function that will calculate
the weight of relationships between two processes. The processes are marked by
natural numbers and the weights of relationships within a system are contained in the
orthogonal list. The procedure will initially find the first of the two processes in the
header list and, after that, it will try to find the second given process in its body list. If
the second process is found, the weight of relationship between the two processes will
be read; if not, the procedure returns 0.

144

Zbornik radova, Volume 22, Number 2(1998)

This procedure is fairly simple. In the orthogonal list A containing the weights of
the relationships between particular processes, the procedure calculates the weight of
relation between two given processes. The procedure takes for granted that the number
of processes is properly given, i.e. the procedure does not check whether the
respective processes exist. The procedure searches the header list of a hash table until
it finds the first process. After that the first process node hash table is entered for the
purpose of searching for the second process. If the process is found, the weight
inscribed in that node returns, and if it is not found, 0 returns, given that the hash table
is designed in a way that it contains values for existing relations only.

It is easy to note that this function has the time complexity T(n) = O(n), where n
represents the number of processes within a system.

As to the structure that keeps the allocation of processes at subsystems, there will
be some operations to insert a new process as well as the operations that will calculate
the function of evaluating the optimality and the ranking function.

The operation that is to calculate the ranking function will imply two subfunctions.
One of them will calculate the optimality function from parameters and the other will,
by means of the greedy procedure, calculate the evaluation of the increase in the whole
weight of relationships between the subsystems in the solution. Let us therefore
develop first the greedy algorithm for evaluating the future increase in the whole
weight of relationships.

The greedy algorithm places a process in the cluster in which that process causes
the least momentary increase in adhesion. The input parameters for this function shall
be the list of already allocated processes, the table of relations, the number of
processes for which the values are to be calculated and the present weight of the
relations among the clusters; it will feed back the estimation of the increase in weight
of relations among the clusters in case of the development of a branch.

The goal of this function is to estimate in a quick way how the weight of the
relationships between the clusters will increase taking into consideration some already
allocated processes. The function will try to allocate the rest of the processes in a way
which provides for each further process to be placed into the cluster in which it will
cause, related to all already allocated processes, the least increase in the whole weight
of relationsips between the clusters. Of course, this algorithm will not always guess
the optimal allocation for the rest of the processes, but it will surely denote the upper
limit that the development of branches is not to exceed. It will thus have influence on
the function of estimating the optimality for that function shall always, when the
ranking function feeds back the value that amounts to less than the least whole weight
of relationships possible, boil down to the estimated value because this value, being
suboptimal, always exceeds or equals the value that it is possible to attain by means of
the development of the branch for which the estimation is performed.

As has already been pointed out, this procedure creates some suboptimal solutions
as well. Each suboptimal solution is checked in terms of being or not being better than
the currently best found, and, if it is better, it becomes the best-obtained solution.

145

A. Lovrenci¢. An efficient algorithm for information system decomposition

If n is the number of processes within a system and m the number of clusters, then
the time complexity of this procedure amounts to T(n,m)=n’ + n-m. The time
complexity of the procedure is therefore squared.

Let us define the branch development estimating function now. First, this function
has to be initialised by some value. As in [3], it can be initialised in such a way that a
link between two processes that has the greatest weight is chosen and then multiplied
by the largest possible number of vertices in the graph. Of course, this first
approximation does not give a real limitation, given that no solution to the problem
can give such a great weight of relationships among the clusters. In order to improve
this initial approximation, i.e., in order to make it work even before the first solution is
found, the ranking function is to be used. The ranking function yields approximate
results that are always suboptimal and thus the optimal solution shall not be "cut off".

The other way to improve the branch development estimating function consists of
replacing the limit value with a new one whenever the ranking function feeds back a
value that amounts to less than the previously obtained upper-limit value. The reason
for it is again based on the fact that the greedy algorithm yields suboptimal solutions
that always amount to equal or greater than the optimal solution and there is no danger
of "cutting off" the optimal solution.

The branch development estimating function is, therefore, to be implemented by
means of the variable WMax which is composed of the following properties:

o The variable is initialised by the value WMax:=Greedy(NIL, A, 1, 0)

a Whenever a solution is found whose whole weight of the relationships between
the clusters is Cm<WMax, then WMax:=Cm is to be used.

a Whenever the ranking function feeds back Greedy(?)<WMax,
WMax:=Greedy(?) is to be used.

When defined in this way, the branch development estimating function shall
evaluate the optimal solution better and it shall be cutting non-perspective branches
faster.

The procedure is quite simple because all that is important has been done within
the Greedy procedure. Here, from the structure that describes the problem space, the
weight yielded by already allocated processes is read prior to recalling the Greedy
function that estimates the increase within a particular branch. Finally, if the obtained
estimation amounts to less than the value of the Wmax variable, than the estimation
value is entered into the variable.

The time complexity of this procedure is equal to the time complexity of the
Greedy procedure.

Now, when the ranking function has been defined, the rest of the procedure is
similar to [3]. Let us define the recalling procedure that accepts as its input the table of
weights of relationships between processes, the requested number of processes and the
minimal and the maximal number of processes per cluster.

146

Zbornik radova, Volume 22, Number 2(1998)

The estimation of the complexity of this procedure shall be performed
combinatorially. The complexity of one step of the main loop is to be determined first.

Its time complexity is T(n,m)= n*+ n-m.

Now, the calculation of the number of tree nodes for the worst case is to be
performed, where "the worst case" means the case when the branch development
estimating function does not cut any branch.

It is clear that the main loop is repeated maximally the same number of times as
the maximal number of nodes that the field tree can contain, assuming that these nodes
are not leaves given that the loop does not have to be repeated for them because they
can be simply evaluated as solutions. As to the minimal and maximal number of the
processes per cluster, the worst case is when a cluster may contain a minimum of
min=1 and a maximum of max=n-m processes. If this is the case, all the allocation
schedules with at least one process per cluster will be considered regular ones and thus
no one branch shall be "cut off" in accordance with this criterion.

The number of nodes in the whole tree should be calculated. Without trying our
hand at the precise calculation of the number of nodes (which, moreover, is not of
crucial importance in estimating complexity), we shall assume that we are dealing
with a complete m-ary tree (which is wrong only for the first m levels if n is large
enough) so the number of inner nodes is strictly less at n™. However, it has been said
that the main loop is to be repeated for each node and that its complexity is estimated
at m-n+n?, which shall yield the whole complexity

T(n,m)<(m-n+n*)-n"
But, as the following is valid

(m-n+n’)-n"

lim =1
m+2

n—ow n

it can be formulated as
T(n,m)=0(n™?)

On the other hand, as the branches are kept as a whole in the data structure and as
each node takes a fixed space, it can be seen that the spatial complexity of the
algorithm is, at worst, equal to the number of tree nodes (taking into consideration
only the first n-1 levels, given that completed branches are not kept in the structure).
The size of the structure that keeps incomplete branches may be of a size equal to the
size of the number of inner nodes. All other structures are of a polynomial size in
relation to the number of processes. The space complexity of the algorithm can thus be
evaluated by

S(n)=o0(n™)

147

A. Lovrencié. An efficient algorithm for information system decomposition

5. PROBLEM COMPLEXITY

In [3] it has been shown that the problem of information system decomposition in
¢ clusters is NP-complete. We will show that this problem can be reduced to the
problem dealt with in this paper, which means that the problem is NP-hard. It is easy
to see that our problem is NP-complete. We can use the non-deterministic algorithm
given in [3] with some minor modifications.

Definition 1:

(m clusters decomposition problem — SD(m))
There is an information system with n connected processes. Let the
weight of the relationship between processes i and j be
w(i,j)=w(j,i)>0. We have to find the partition of P={1,...,n} to m
disjunctive non-empty subsets Py,...,P,, , so
that 3" w(i,) is minimal.

i=1 j=i+1

ieP,

jeP,
k=1

The problem defined in Definition 1 is NP-complete as shown in [3].

Definition 2.:

Theorem 1.

Proof:

148

(m clusters decomposition problem with maximal max and
minimal min processes per cluster - SD(m,min,max))

There is an information system with n connected processes. Let the
weight of the relationships between processes i and j be
w(i,j)=w(j,i)>0. Let min and max be natural for such numbers that
min< [n/mJ and max> [n/m] We have to find the partition of
P={1,...,n} to m disjunctive non-empty subsets Py,...,P, , so that

n-1 n
> Y w(i,j) is minimal, with minimal min and maximal max
Tt
ek,
jeP,
k=l

processes per cluster.

SD(m)ecSD(m,1,n-m)

We take SD(m,1,n-m+1). In such a problem, there is a minimum of
1 and a maximum of n-m processes per cluster.

Let partition P={Py,...,P,} be the solution to problem
SD(m,min,max). Then, in every set P, , 1<i<m, there must be at
least one process, which gives m processes. Each of the n-m
processes that are not placed in the first step can be placed in any
cluster. In the worst case they can be all placed in the same cluster,
in which case this cluster wil contain n-m+1 processes.

So, P is a suboptimal solution of SD(m). We have to prove that P is
the optimal solution for SD(m). Suppose that P is not the optimal
solution. Then, there is the solution P’={P,,...,P_,} so that

Zbornik radova, Volume 22, Number 2(1998)

Theorem 2.

Proof:

n-1 a n-1 n
Z Z w(i,j) <Z Z w(i,j)
o R

jePy jeP,

k=1 k=1

But, partition P’ is the solution for SD(m,min,max), and it is better
then P. That is in contradiction to the assumption that P is the
optimal solution to the SD(m,min,max) problem.

So, it can be concluded that P is the optimal solution of SD(m).

Both problems are defined using the same input, (except min and
max numbers), so these two numbers can be calculated in ®(1), and
thus the problem SD(m) can be reduced to SD(m,min,max) in (1)
time.

Q.E.D.
SD(m)<SD(m,1,n-m)

The proof of this theorem is similar to the proof of the above
theorem

Q.E.D.

The two theorems proved above shall give the next corollary:

Corollary 1.:

Proof:

SD(m,min,max) problem is NP-complete

From theorem 1. it can be concluded that SD(m,min,max) is NP-
hard. But, if the problem SD(m) can be solved in polynomial time
by a non-deterministic algorithm [3], and if the problem
SD(m,min,max) can be reduced to SD(m) in polynomial time by a
deterministic algorithm, which is true by theorem 2., then we could
solve the problem SD(m,min,max) in polynomial time with a non-
determninistic algorithm for SD(m). So, SD(m,min,max) is NP-
complete.

Q.E.D.

6. CONCLUSION

This paper reviews the problem of optimising the structure of information systems
and it uses the results of paper [3], to which this paper is a sequel.

After that, an efficient algorithm is developed and it takes into consideration the
specific features of the problem. The algorithm is based on the least-cost variant of the
branch-and-bound method. The algorithm yields the optimal solution to the problem in
exponential time and in the exponential memory area.

149

A. Lovrenci¢. An efficient algorithm for information system decomposition

Further direction in this work may be oriented toward improving this algorithm by
means of additional heuristics and toward lowering the required memory area, or
toward an approximate scheme of this problem that would solve the problem within
polynomial time and provide for as small a relative error as desired. Of course, if the
latter direction is chosen, it is obligatory to evaluate the relative error for each
approximate algorithm so that the algorithm gains value.

REFERENCES
[1]M. J. Atallah. Algorithms and Theory of Computation Handbook. CRC Press, Boca
Raton, 1998.

[2]J. Brumec. Optimizacija strukture slozenih informacijskih sustava. Zbornik radova,
Vol. 17, Fakultet organizacije i informatike, Varazdin, 1993, pp. 1-23.

[3]A. Lovrenci¢. The problem of optimization of the process of decomposition of an
information system. Zbornik radova, Vol 21, No. 1, Fakultet organizacije i
informatike, Varazdin, 1997, pp. 27-41.

[4]S. Mardesi¢. Matematicka analiza 1. Skolska knjiga, Zagreb, 1988.

[S]M. I.Necerimenko. Algoritmy i programmy reSenija zadaé na grafah i setjah.
Nauka, Novosibirsk, 1990.

[6]C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[71S. Skiena. The Algorithm Design Manual. Springer Verlag, Heidelberg, 1997.
[81D. Veljan. Kombinatorika s teorijom grafova. Skolska knjiga, Zagreb, 1989.

Received: 24 June 1998
Accepted: 30 August 1998

Alen Lovrencié

EFEKTIVNI ALGORITAM ZA DEKOMPOZICIJU INFORMACIJSKOG
SUSTAVA
Sazetak
U radu [3] dan je opcenit kontekst problema dekompozicije informacijskog sustava.
Dokazano je da je taj problem NP-potpun, cime se iskljucuje moguénost nalazenja
polinomijalnog algoritma koji bi rjesavao taj problem. U ovom radu postavijena su dva cilja:
da se u algoritam ukljuce stvarna ogranicenja koja su prirodna pri dekompoziciji

informacijskog sustava u podsustave, te da se razvije algoritam za izracunanje optimalne
dekompozicije informacijskog sustava sa $to manjim vremenom obrade u prosjecnom slucaju.

Kljuéne rije¢i: informacijski sustav, algoritam, optimizacija, sloZenost.

150

