
Lovrencie Alen
THT Cakovec

UDe: 007.5
Original Scientific Paper

The Problem of Optimization of the Process of Decomposition of an
Information System

While developing larger information systems, it is necessary to decompose them into
subsystems for the purpose of easier designing. The intention is, for decomposition to be
performed in a way that results in as small losses in system quality as possible. Conse
quently, there is, a need for defining the system decomposition quality parameters. Once the
parameters are defined, the obvious question arises of an optimal system decomposition
under particular conditions as well as of its time complexity. The respective research shows
that the system decomposing algorithm should, in the worst case, be of exponential time
complexity, the task belonging to the class of the NP-complete tasks.

Key words: algorithm,complexity,process, informationsystemdesign.

1. Introduction

An information system should reflect the processes within the object system it
supports. This does not mean that, when informatization is implied, the existing object
system should be converted as a whole. However, the changes within an
informatization system that are certain to improve it should be accompanied by
respective changes in the object system. If we want to perform such changes, our aim
or ideal should be a completely optimized object system and, accordingly, information
system as well. It is to be pointed out that improvement in a part of the system need
not result in improvement of the system as a whole. This is why each analysis by
means of which the system is broken down into its elements should be performed
cautiously and be fully justified. The decomposition is to be performed in a way that
should result in as small loss in the system quality as possible. This is why the
decomposition quality parameters are to be defined, as well as the algorithm for the
optimal division of the system into its subsystems.

2. The definition of terms and the hypothesis

Let us define the term "process" first.

Definition 1: A process is an array of actions which, by using particular sources
within a business system and a particular time-span, attain a particular
objective.

27



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

Processes within a system use and create information stored in different media
inside or outside the system. The processes are thus related to information and
respective media and it is natural, therefore, to define a data class as:

Definition 2: A data class is a document or a record of any format created by a
process inside or outside the system ,used by one or more processes
inside or outside the system.

The processes and their relations with data classes can be shown by means of a
matrix in which the rows present particular processes within the system, whereas the
columns present the data classes used and created by the processes. A "C" shall mark
the field in which a process line intersects the column of a data class it creates,
whereas a "U" shall mark the field in which a process line intersects the column of a
data class it uses. The theory of making and usage of a process-data class matrix has
been shown by (Brumec, 1993)

Definition 3: Processes Pi and Pj are said to be connected by data class Cm if one of
them creates the class and the other uses it.

Connections among processes within a system are not of the same importance, so
each connection can be attached the respective weight. We assume that a doubled
weight of a connection implies its doubled importance for the system. On the basis of
the connections among processes that have just been defined, the parameters of system
decomposition quality are to be defined . A system is decomposed into a certain
number of subsystems in a way that provides for each process to correspond exactly to
one subsystem. The processes within the same subsystems are called clusters.

Definition 4: Let Pi and Pj be two processes and let Ch",Ck be classes being created or
used by both processes. Let connections that make up these classes have
weights w., ...,Wb Wi~O, i=l, ....k, Then we define the adhesion between
processes Pi i Pj as

k

Ad(Pi,Pj) = LWi
i=l

(1)

Definition 5: Let k, and kj be two clusters and let the cluster k, be composed of the
(i) (i) (j) (j)processes P h•••'P ms and the cluster kj of the processes P h•••'P n- Then

the adhesion between clusters k, and kj is

(2)

Definition 6: Let S be a system decomposed into clusters k, ...,km' Its total system
adhesion is

m m

Ad(S) = L,L,Ad(kl'kj)

1=1 j=l,
j~1

As the opposite of adhesion, the subsystem cohesion stands for connections
among the processes within the same subsystem. However, with the number of
connections within a system being unchangeable regardless of the system

(3)

28



Zbomik radova 1(22), 1997.

decomposition, it is clear that adhesion and cohesion are complementary, i.e. an
increase in adhesion implicates a decrease in cohesion and vice versa.

After the definition of adhesion that provides for the parameters of connections
between two processes and two subsystems (clusters) has been given, it is possible to
set the criteria for system decomposition quality. The system decomposition quality is
reversely proportional to adhesion among clusters.

When decomposing a system, our objective shall be to break down the system into
subsystems in a way that is to provide for the minimal adhesion possible. Attention
should be drawn to the following facts:

• As to minimal adhesion, the most optimal is not to decompose the system at
all. Namely, in that case there is only one subsystem and it is identical to the
whole system so all connections are internal and cohesion is absolute, i.e. there
is no adhesion. This is why optimization requires defining the minimal number
of clusters we want to create.

• If we determine the minimal number of clusters we want to create, the optimal
decomposition on the basis of adhesion can always be attained even with the
minimal cluster number allowed. If a system with more clusters than defined is
implied, two clusters can easily be merged into one, which reduces the number
of outside connections and increases the number of internal connections, i.e.
cohesion is increased (or, at worst, remains the same). Cohesion is increased by
exactly those connections that connect the processes in the two merged clusters.

Having defined adhesion, a hypothesis is made to prove it.

Hypothesis 1: There is no class P (polynomial) algorithm of a system decomposition
into a defined number of clusters in an optimal way regarding
minimal system adhesion.

3. Mathematical terms

The adhesion properties need are contained in the following theorem:

Theorem 1: Let k, and kj be clusters
(1) Ad(kpkJ) ~ 0
(2) Ad(kpkJ) = Ad(kpk,)

Proof: Trivial. Directly in accordance with definitions 5 and 6.
Q.E.D.

In order to simplify the calculation of adhesion between two clusters, let us prove
the following proposition:

Proposition 1: Let there be two clusters, k, and kj and let the cluster k, be composed
of processes p(i)" •••,p(i)m, and the cluster kj be composed of processes

Ul UlP " ...,p no Besides, let C" ••• .c, all be mutual classes for any two

29



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

processes from two clusters. Let there be the weights of connections,
marked as w\' among the processes in accordance weith class Ck. Here
we assume that, when two processes do not have class in common, the
weight of their connection in accordance with the class equals O. The
following is correct then:

m n k

Ad(ki,kj) = L L L W~q
p=lq=1r=l

Proof: In accordance with the equation (2)

(4)

However, in accordance with equation (1), this means

m n k

Ad(ki,kj) = L L L W~q
p=lq=1r=l

because the weights of non-existing connections, t.e. connections for data
classes that are not mutual for two processes, equal O.

Nevertheless, the sum commutativity implies that
m n k

Ad(ki,kj) = L L L W~q
p=lq=1r=l

Q.E.D.

This proof has provided for an important fact: the weight of connection between
two clusters established by means of a class can be determined by summing the
weights of connections established by the processes within the two clusters by means
of the class.

Let us prove another proposition, whose expression is of notable significance.

Proposition 2: If the minimal number of clusters m to be created is given, then the
optimal solution can always be attained with exactly m clusters.

Proof: Let us suppose that a solution with more than m clusters is attained. In
that case we can take any two clusters k, and kj among the solution
clusters and merge them into one, let us say kjj.

In this way all the outside connections, if there are were any, which
connected the two clusters have been turned into inside conne'ctions. In
other words, if the newly originated system is marked with S I, then it is

Ad(SI) = Ad(S) - Ad(ki ,kj)::; Ad(S)

30



Zbomik radova 1(22), 1997.

That means that reducing clusters in this way does not increase the
adhesion of the system.

By this procedure, consisting of a finite number of steps emerging from
any system containing more than m clusters, we reach a system of
exactly m clusters, the adhesion of which amounts to less or is equal to
the adhesion of the original system.

Q.E.D.
4. Proof of NP-hardness

Reffering to (Aho, Hopcroft, Ullman, 1987) and (Knuth, 1973), in which the
definitions have been given for an algorithm, nondeterministic algorithm, the time
complexity of an algorithm and drawing on (Horowitz, Sahni, 1978) and (Garey,
Johnson, 1979), where, besides the aforementioned definitions, the theory of NP-
hardness and NP-completeness have been worked out, we can shortly Summarize
under algorithm we can be consider a finite sequence of instructions in which every
instruction is followed by an unambiguously conceived one; this sequence is
executable in turn within a finite time-span. A nondeterministic algorithm differs from
a deterministic in absence of the imperative of an unambiguously conceived
instruction to follow the previous one; after an instruction is performed, there is
choice as to the instruction that is to follow. Nondeterministic algorithms cannot be
executed on computer, but their theoretical importance is significant. All the above-
mentioned books also offer ways to work out asymptotic evaluations of the time
complexity of algorithms. Only the basic definitions are given here.

From the very definition of algorithm it is obvious that in each instance of a
problem it must be solved within a finite time. Our point of interest is determining the
measure for the time an algorithm of an n size needs to be solved. The measure is
given by the following definitions:

Definition 7: (Time complexity of an algorithm)
Let there be algorithm A that solves the problem. The time complexity
of the algorithm A is the total of all particular time-spans of instructions
as related to the quantity of input data that the algorithm is to perform in
order to solve an each particular instance of the problem and to release
the output into the surroundings.

Note that different instances of the same problem and of the same size can display
different time complexities. This is why in different ~ases the top and bottom limits of
the time complexity can be of special interest, as well as of the average complexity.

Definition of algorithm complexity approximations follows:

Definition 8: (algorithm complexity approximation)
If algorithm A is given and function fA(n) is the function of algorithm
complexity in relation to n, the measure of input size, it can be said that:

31



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

(1) t,(D) = O(g(D» if it is

If A (0)1< clg(D)1
for a constant c

(2) t,(D) = D(g(n» if it is

IfA (n)1$; clg(D)1

for a constant c

(3) t,(n) = m(g(D» if it is

If A (n)1> clg(D)1

for a constant c

(4) t,(D)= D(g(n» if it is

IfA (n)1~ clg(D)1
for a constant c

(5) I,(n) = 8(g(D» if it is

If A (0)1= clg(n)1
for a constant c

The next step defines the problem classes in accordence with time complexity. It
also defines the basic theorem of NP-completness.

Definition 9: (polynomial reducibility)
Let problems PI and P2 be given. We say that problem PI can be
reduced in polynomial time to problem P2, and we write down
PI ex: P2 if there is an algorithm A of the time complexity O(p(n», where
p is a polynomial, and if the algorithm provides transforming the
problem PI into the problem P2, i.e. if the solution of problem PI can be
reduced to the solution of problem P2 by means of algorithm A.

There is a proposition emerging directly from this definition:

Proposition 3:(transitivity)

If PI ex: P2 and P2ex: P3 then it is also PI ex: P3

TriviaL Directly by definition 10.
Q.E.D.

Definition 10: (NP class)

We say that problem PIE NP if and only if it can be solved polynomially
by means of a nondeterministic algorithm.

If P stands for the class containing all problems that can be solved in polynomial
time by means of ordinary deterministic algorithms, the basic question it implies is: is
P=NP? This question has not been answered yet; but there are problems that cannot

32



Zbomik radova 1(22), 1997.

be solved polynomially by presently known tools. These are the so-called NP-
complete and NP-hard problems. The basic motivation for the previous statement is
the basic theorem for a series of the NP-completeness theories. The theorem is based
on reducing the polynomial solving of whole NP class problems to the polynomial
solving of a single problem - problem of Conunctive normal form formula
satisfiability (CNF):

Theorem 2: (Cook)
P=NP if and only if CNF E P.

The theorem shall not be proved here because its proof is by all means non-trivial
and voluminous. Two different proofs of the theorem have been published in (Garey,
Johnson, 1979) and (Horowitz, Sahni, 1978).

On the basis of this theorem, the following two definitions can be given:

Definition 11: (NP-hard problems)
Problem P is said to be NP-hard ifCNF <X P.

Definition 12: (NP-complete problems)
Problem P is NP-complete if CNF <X P and if P E NP.

The previous definitions imply that it is sufficient to prove that a problem, already
known to be NP-hard, can be polynomially reduced to the original problem in order to
prove that the original problem is also NP-hard.

We shall prove that Clustering Problem (CP) is NP-hard and that there is no
programming method known today by means of which it would be possible to solve a
problem which is of the polynomial complexity. We shall also show that the known
NP-hard problem of the maximal graph cut (MC) can be reduced to CP problem. The
NP-hardness of MC problem has been taken from (Horowitz, Sahni 1978), page 546.

Let us define the problem first:

Definition 13: (Clustering Problem - CP)

m processes and n data classes have been given. Each process creates
and uses a certain number of classes. It is important that there can not
be two processes creating the same class. The connection between two
processes is the data class they both use (or one of them uses the class
and the other creates it). The weight of each connection is defined and it
is not negative. k disjunct subsets (clusters) of the P process set are to
be defined in a way which provides for the adhesion, i.e. the total of
connections between connected clusters; to be minimal.

Definition 14: (Graph Minimal Clustering problem - GMC)

A non-oriented weight graph with positive weights is given. A partition
of set V graph vertices is set to be made into k disjunct subsets,
V"V2' ••• ,Vk,
Vi nVj=0, V, uV 2 u ...uV k=V so that the sum

33



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

Lw(i,j) ~ min
IEVp

JeV.
p"q

(5)

Theorem 3: GMC oc CP

Proof: Each graph vertix represents one process. A new data class is created for each
graph edge. In some way, the graph vertices are sorted and the vertix with a
smaller mark value creates the data class defined as belonging to the edge and
the class is used by a vertix with a greater mark value. Loops are not presented.
The connection is attached the weight that the graph edge used to have.

Suppose that the graph has n vertices and m edges (msntn-Ij-cn"). Let, for
example, vertices be situated in a sequence and edges in a two-dimensional
array. It is not needed for the vertices to be presented once more, whereas at
most 0(n2) readings and writings are necessary for the edges to be presented as
a process-data class matrix. We can, therefore restructure the GMC into the CP
problem in polynomial time.

Regarding that a separate class is created for each connection, each data class
will have only one process that creates it and one that uses it. So, the CP
problem is well-defined.

Let us show in addition that the solution of the CP problem provides at the
same time the solution to the GMC problem. The clusters obtained by solving
the CP problem are at the same time the clusters of the GMC problem, whereas
the outside connections in the solution of the CP problem are the cut edges of
the graph in the GMC problem; The graph edges and respective system
connections are of the same weights and the total outside connections weights
in the CP problem shall, consequently, make up the edges in the cut edges in
the GMC problem.

Q.E.D.
Definition 15: (Max-Cut Problem - MC)

Let the weight graph G=(V,E) be given. A Ss;:;;Vset is to be defined so
that:

L w(i,j) -7 max
ieS
ji'.:S

(6)

Theorem 4: MC oc GMC

Proof: Graph G'(V,E') is created, where the weight w'(i,j) = -w(i,j). It is obvious
that, in case of w(i,j) ~ 0, it is w'(i,j) :-:;O. It is also obvious, regarding that
only the

34



Zbomik radova 1(22), 1997.

f h h 1 d ( d h . . 1 ber i n(n -1) hedges 0 t e grap are a tere an t eir maxima num er IS --2- tat,

within the 0(n2) life-span, a G' graph can be created out of the MC problem.
It is also obvious that, if

L. L. w(i,j) ~ max
leS j.s

then S'~E, S':;t:S

II w(i,j) ~ II w(i,j)
leS j.s leS' j.s·

which implicates:

- 2: 2: w(i,j) s -2: 2: w(i,j)
ieS jeS ieS' jeS'

2: 2: -w(i,j) s 2: 2: -w(i,j)
ieS jeS ieS' jeS'

2:2: w'(i,j) ~ 2:2: w'(i,j)
ieS jeS ieS' jeS'

S is, therefore, the solution of the GMC problem at the same time.
Q.E.D.

In (Horowitz, Sahni, 1979), page 546, there is a theorem according to which the
MC problem is NP-complete, i.e. CNF DC MC (CNF - Conunctive Normal Form
Formula Satisfiabi1ity). In (Garey, Johnson, 1978) it is said that the GM DC MC (GM -
Graph Matching) problem is solvable in its general form, whereas the planar graphs
problem can be solved polynomially. The proof of the theorem has been given in the
almanac Complexity of Computer Algorithms, Plenum Press, New York, 1972. in
the article by Karp,R.: Reducibility among combinatorial problems. It is further
elaborated in Hadlock, F.O.: Finding a Maximal Cut in Planar Graphs in
Polinomial Time, SIAM J. Comput. 4, 1975., pp.221-225, as well as in Orlova,
G. I.; Dorfman, Y. G.: Finding a maximal cut in graphs, Eng. Cybernetics 10, 1972,
pp. 502-506.

This has proved the NP-hardness of the clustering problem. It means that, by
means of programming methods known today, it is not possible to find a polymomial
algorithm that would solve this problem. In other words, each algorithm which is
polynomial and that does not solve the problem of nondeterministic choice in a
deterministic and polynomial way cannot be optimal. -

It is not hard to show that the CP problem is NP-complete. A nondeterministic
algorithm is obtained by adding a Choice(S) function to a standard programming
language (Pascal, for example). S denotes a set from which on each step, the
command, picks an element within the 0(1) time so that the final result is the optimal

35



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

solution of the problem (if it exists). With the Choice function defined in such a way,
there is the following algorithm that solves the clustering problem:

Algorithm 1:

CONST maxproc = ... ; {Large enough integer}

VAR S:ARRA Y [l..maxproc, l..maxproc]; {Array which contains process adhesions}

VAR C:ARRA Y [1 ..maxproc] OF INTEGER;

PROCEDURE NedetClu(Pr:S;
VARCl:C);

VAR i,j:INTEGER;

BEGIN
FOR i :=1 TO NoProc DO

Cl[i]:=Choice(Pr,i);
END;

With the Choice function defined above, the algorithm of the time complexity is:

Complex(n) = O(n) (7)

5. Creating an algorithm for optimal clustering problem solving

It has been shown in the previous chapter that the CP problem is NP-complete. The
algorithm we are going to create shall in the worst case be of an exponential time
complexity. However, it shall solve a great number of the instances of the problem at a
speed significantly exceeding the speed as it would be if the worst-case time were
implied. The algorithm shall be based on a well-known method of programming, the
so-called backtracking method. This method always yields an optimal solution with no
need of proving its optimality. The point of the method is in presenting the problem as
a sequence of decisions, i.e. as a tuple (X.,X2,""Xn). There are two approaches used by
the method, Depth First Search and Breath First Search. More general terms regarding
method can be found in (Aho, Hopcroft, Ullman, 1987) and (Horowitz, Sahni, 1978).
An effective algorithm that uses the method can be found in (Syslo, Deo, Kowalik,
1983).

The problem can as well be presented in the following way. A tuple is created for
an informational system with n processes; The ith component of tuple is a number
representing the cluster to which the ith process belongs.

Algorithm 2:We shall choose Depth First search approach. The method shall be as
follows:

1. The first system adhesion approximation is calculated first. It shall be
done by means of finding the connection of the greatest weight and

36



Zbornik radova 1(22), 1997.

supposing that all processes are connected by connections whose
weights are equal to the weight of the connection with the greatest
weight in the system. If the weight of the connection with the
greatest weight is marked M, the first approximation shall be M·(n-
I)·nl2

2. The first process is placed into the first cluster and shall not be
moved because these would not be any changes except the change in
the cluster numbering.

3. Then the Depth First Search (Preorder) of the problem space tree is
used. Unpromising branches are cut, i.e. the branches whose
adhesion has already exceeded the least adhesion previously found.
The branches that do not provide for at least one process per cluster
are also not to be expanded. In addition, if m is the aimed number of
clusters and k<m, the kthprocess should be placed only in the first k
clusters; as to other clusters, it shall result only in a different cluster
numbering.

We shall perform an implementation of the algorithm in Pascal in order to assess
its complexity in the easier way. The algorithm, as it is usual with this method
shall, be performed recursively, which provides for better readability. Naturally, each
recursive programme can be converted into a programme without recursion (the
general conversion scheme is given in (Horowitz, Sahni, 1978), page 20).

CONST MaxProc= ...; {Maximal number of processes}
TYPE Adh = RECORD

ad:ARRAY [l..MaxProc,l..MaxProc] OF INTEGER;
NoProc:INTEGER;

END;
cl= RECORD

clstARRA Y [l..MaxProc] OF INTEGER;
NoProc:INTEGER;

END;

NoCI = ARRAY [l..MaxProc] OF INTEGER;

VAR mad:INTEGER;
cc:cl;

PROCEDURE Recur(P:Adh;
m,k,mc:INTEGER;
VAR ad:INTEGER;
VARc:Cl;
VAR NC:NoCl;
ne:INTEGER);

{The procedure recursively looks for the optimal solution in the way described above}

37



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

VAR j ,1,L,aa,ne I :INTEGER;
BEGIN

nel:=ne;
{If k is less than m, the process is to be placed only in the first k clusters}
IFmc<m THEN

j:=mc+l
ELSE

j:=m;
{The k-th process is placed into cluster by cluster with the procedure Recur
being recurrently called for.Care should be taken not to expand the branches of
the tree which are not promising, i.e. those whose adhesion value exceeds the
one already found, and those that do not provide for at least one process per
cluster}
FOR i:=l TO j DO
BEGIN

{Checking whether the branch still provides for at least one process in
each cluster}

IF NOT «nc[i]>O) AND (nel>=P.NoProc-k+ 1)) THEN
BEGIN

aa:=ad;
{Calculating adhesion when the k-th process is placed into i-th

cluster}
FOR L:=l TO k-l DO

IF c.clst[L]<>i THEN aa:=aa+p.ad[L,k];
{Leaving a non-promising branch of the tree whose adhesion
value exceeds the one already found}
IF aa<mad THEN
BEGIN

c.clst[k] :=i;
Inc(nc[i));
IF nc[i]=l THEN Dec(nel);

IF k<P.NoProc THEN
BEGIN

IF i<j THEN
Recur(P ,m,k+ 1,mc,aa,c,nc,ne 1)

ELSE
. Recur(P ,m,k+ I ,mc+ 1,aa,c,nc,ne I);

END
ELSE
BEGIN

FOR L:=l TO p.NoProc DO cc.clst[L]:=c.clst[L];
mad:=aa;

END;
IF nc[i]= I THEN Inc(ne I);

38



Zbomik radova 1(22), 1997.

Dec(nc[i]);
END;

END;
END;

END;
PROCEDURE BackTrck (P:Adh;

m:INTEGER;
VARc:cl);

{The entrance of the algorithm is an orthogonal list P presented as a two-
dimensional array. The list contains the weights of connections among the clusters and
the natural number m that represents the projected number of clusters. The exit from
the procedure is a list c, presented by means of an array, containing the inscriptions
showing the cluster in which each process is placed}
VAR i,j,Max:INTEGER;

ad:INTEGER;
cl :cl;
nc:NoCI;

BEGIN
{Calculating the first approximation}
Max:=O;
FOR i:=l TO P.NoProc-l DO

FORj:=i+l TO P.NoProc DO
BEGIN

IF P.Ad[i,j]>Max THEN Max:=P.Ad[i,j];
c l.clst[i]:=O;
nc[i]:=O;

END;
{Initializing the array}
mad:=(Max*(P.NoProc-1 )*p.NoProc )/2;
ad:=O;
c l.clst[ 1]:=1;
nc[l]:=l;
{Calling for the recursive procedure}
Recur(P,m,2,1 ,ad,c 1,nc,(m-l ));

END;

Let us remark that the algorithm is not dependent on the definition of the weights
among processes and thus does not have to be used with the weights previously
defined by means of adhesion. Namely, the algorithm provides for the optimal solution
regardless of how the weights among clusters are defined, as long they as are defined
simmetrically. On the other hand, the algorithm provides for the most general form of
the solution of the problem. The problem restriction conditions can easily be added
(for example, the condition of minimally k processes per cluster).

39



Lovrencic A. The problem of optimization of the process of decomposition of an information
system

After some calculating procedures are applied, it can be seen that the algorithm
has complexity

Complex(n) = 0(2")

Complex(n) = Q(n 2 )

(11)

The calculating of algorithm complexity has been presented in (Lovrencic, 1996).

6. Conclusion

The intention of this paper was to prove that the clustering problem is, NP-hard in
terms of duration, i.e. the one that cannot be solved polynomially by means of the
existing programme tools.

Having proved that the problem is NP-hard, we have as well indirectly proved
that each algorithm, regardless of the language it is written in, providing for a
solution for all instances in the polynomial time, is not optimal in terms of minimal
correlation of the system. It is to be pointed out that the proof did not depend on the
definition of the weights of the connections among processes. The only condition is
that the weight function is commutative.

Two ways of the further problem analysis are possible. The first is to record the
problem in such a way that would provide for the polynomial solving. Due to
reducibility of the maximal graph cut problem to the clustering problem, it is possible
to search for such restrictions that would provide for a planar graph as the system
graph, which could be solved polynomially by analogy with the maximal cut problem.

The second way is finding a valid approximative algorithm. If the algorithm is to
be valid, it should allow limiting the error absolutely or relatively, regarding the
volume scale of the solution. It is easy to see that an algorithm that would yield an
absolute approximative algorithm for this problem is also NP-hard. The solution is to
find a relative approximative algorithm or to prove that it is also NP-hard. Otherwise,
only stochastically good algorithms are left. They yield good solutions in most cases.

References:

[1] Aho, V.A.; Hopcroft, J.E.;Ullman, J.D. (1987), "Data Structures and
Algorithms", Addison-Wesley, Reading, Massachusetts.

[2] Brumec, J. (1993), "Optimizacija strukture slozenih informacijskih sustava",
Zbomik radova Fakulteta organizacije i informatike Varazdin, pp. 1-23.

[3] Garey, M.R.; Johnson, D.S. (1979), "A Guide to the Theory of NP-
Completeness", Freeman & Co., San Francisco, (translation into Russian:
Mir, Moskva 1982).

[4] Horowitz, E.; Sahni S. (1978), "Fundamentals of Computer Algorithms",
Computer Science Press, Rockville, Maryland.

40



Zbornik radova 1(22), 1997.

[5] Knuth, D.E. (1973), "The Art of Computer Programming - Fundamental
Algorithms", Addison Wesley, Reading, Massachusetts.

[6] Lovrencic, A. (1996), "Problem optimizacije procesa clusteriranja", Seminar
Paper, Varazdin.

[7] Red.: Necepirenko, M. 1.: Algoritmi i programmy resenija zadac na grafah i
setjah, Nauka, Novosibirsk, 1990.

[9] Syslo, M.M.; Deo, N.; Kowalik, J.S. (1983), "Discrete Optimization Algorithms
with Pascal Programs", Prentice-Hall International, Englewood Cliffs,
New Jersey.

[10] Veljan, D. (1990), "Kombinatorika s teorijom grafova", Skolska knjiga,
Zagreb.

Received: 1996-07-10

Lovrencic A. Problem optimizacije procesa podsustava u informacijskom sustavu

Sazetak

Prilikom izgradnje vecih informacijskih sustava nuzno je, radi lakseg
projektiranja, sustav podijeliti na podsustave. Pritom se tezi tome da se rastav napravi
tako da sustav sto manje izgubi na kvaliteti. Potrebno je stoga definirati mjeru za
kvalitetu rastava sustava. Kad se ona definira, prirodno se postavlja pitanje algoritma
za optimalno dijeljenje sustava pod zadanim uvjetima te njegove vremenske
slozenosti, Razmatranja u tom pravcu dovode do zakljucka da algoritam za dijeljenje
sustava u najgorem slucaju mora biti nadpolinomijalne vremenske slozenosti, s time
da se zadaca svrstava u grupu NP-kompletnih zadaca.

41


