
Jan Paralic
Julius Csont6
Milan Schmotzer
Department of Cybernetics and Artificial Intelligence
Technical University of Kosice
Kosice, Slovak Republic
E-mail: Jan.Paralic@tuke.sk

UDC: 007.52
Original Scientific Paper

Optimal Scheduling Using Constraint Logic Programming

In this paper a methodology to solve scheduling applications (e.g. job-shop) using constraint
logic programming (CLP) is presented. Firstly, the CLP problem definition is briefly
described. Secondly, a new strategy for finding optimal solution is presented. New strategy
consists of three steps. (1) A heuristic capable to find an initial solution of good quality very
quickly (upper bound). (2) A heuristic to find a good lower for optimisation. (3) An effective
strategy for finding the optimal solution within a minimal number of steps. The results
achieved using this methodology on a set of randomly generated job-shop problems are
presented.

Keywords: constraint logic programming, optimisation, scheduling, job-shop.

1. Introduction

Constraint logic programming (Jaffar and Lassez, 1987) is a declarative
programming paradigm derived from logic programming (PROLOG is the most
important representative of the logic programming languages). CLP is particularly
useful for solving constraint satisfaction problems, which are formulated as a set of
variables and constraints between these variables. The goal is to find such an
assignment of values to variables that none of the constraints is violated. In addition,
there can be defined a cost function which has to be optimised in the final solution.
Typical representative of this class of problems are scheduling applications (e.g. job-
shop).

CLP serves powerful tools to handle this kind of problems. Constraints are used
actively to prune the search space in an a priori way. Moreover, there are tools to
define new constraints and way how the constraints are to be handled by the user.
Optimisation is supported as well by predicates which implement the branch and
bound strategy. By this strategy often a large number of iterations are needed to find
an optimal solution. In this paper a better strategy is presented and the results achieved
by solving randomly generated job-shop scheduling problems are shown.

The rest of this paper is organised as follows. In the next section, the CLP problem
definition is briefly described on the job-shop scheduling example. Traditional

Paralic 1., Csont6 1., Schmotzer M. Optimal scheduling using constraint logic programming

optimisation methods used in CLP are described in section 3. New methods for finding
optimal solution in CLP are presented in section 4.-

The results achieved using this method to solve a set of randomly generated job-
shop problems are presented and analysed in section 5. The paper is closed with a brief
summary of the most important results (section 6).

2. Job-shop scheduling using constraint logic programming

2.1. Job-shop scheduling problems

A scheduling problem is defined by a set of tasks and a set of resources. Tasks are
constrained by precedence relationships, which bind some tasks to wait for other ones
to complete before they can start. Tasks that share a resource are not interruptible
(non-preemptive scheduling) and mutually exlusive (disjunctive versus cumulative
scheduling). The goal is to find a shcedule that performs all tasks in the minimum
amount of time.

Job-shop is a special case where tasks are grouped into jobs. Let us suppose there
are n jobs (Jl, J2, ... , In). Each job is divided to a sequence of m tasks [Ji1, •••

Jim]from which every task has to be processed on different machine. So there are m
machines (M1, M2, ••• , Mm) to be considered. Technological constraints demand
that there is an ordering between the tasks in particular jobs (the order in the sequence
is predefined). Each job has its own ordering of tasks. No two tasks from the same job
can be processed simultaneously. The processing times (durations of tasks execution)
are independent of the schedule. Such problems are called n x m job-shop problems.

The terminology of the job-shop scheduling theory has arisen in the processing and
manufacturing industries. But the job-shop defintion fits many scheduling problems
arising in business, computing, government and the social services as well as those in
industry.

2.2. CLP program to solv,e job-shop

Job-shop scheduling can be very easily represented as constraint satisfaction
problem. Variables are starting times of tasks. Between these variables there can be
formulated precedence constraints (for tasks inside jobs) and constraints resulted from
the shared resources (tasks to be processed on the same machine). Finally,
optimisation is often required in the form of the minimal finish time of the whole
schedule. The core of the CLP program can be represented as follows (after the "%"
sign follows commentary).

2

Zbornik radova 2(23), 1997.

job_shop(Variables) :-
input_data(List), % input data - lists of task describing structures
define_variables(List,Variables, End), % defining variables with their initial

% domains; End represents thefinish time
state_constraints(Variables), % stating precedence and advanced disjunctive

% constraints between Variables
optimize(disjunction_as_choise(Variables), End). % traditional optimisation

First, input data in the form of a list of task description data are unified with the
variable List. Each task is represented by a structure t(TaskNr, JobNr, MachNr,
Duration), where

TaskNr is the number of this task (i)
JobNr is the number of the job to which this task belongs (j)
MachNr is the number of machine on which this task will be processed (mij)
Duration is duration of this task (Dij)

In the next two steps the problem is declaratively defined using variables and
constraints between them.

1. Variables

For each task i a variable Tij is defined representing the starting time of the
respective task. Initial domain of each variable is an interval of integers
<O,Max_end> where Max_end is the sum of durations of all tasks. This
corresponds to the worst possible final schedule, if no parallelisation would be
possible. There is one more variable (End) for the finishing time of the whole
schedule. For each task it holds:

End #>= Tij + Dij

2. Constraints

There are two kinds of constraints - precedence and disjunctive constraints .

• Within a job its tasks must be processed in given order. This means in general that
for two tasks k, I of the job j with starting times Tkj, TIj and durations Dkj, D/j in case
that k must be processed before 1, it can be represented in CLP language ECLiPSe
as numeric constraint:

T1j #>= Tkj + Dkj

• On one machine, tasks from different jobs have to be processed, but at each time
there can be processed only one of them. That means for two tasks, i.e. Tij (with
duration Dij) and Tim (with duration Dim) sharing the same machine only one of the
two disjoint alternatives will be true:

disjunction_as_choice(Tij, Dij, Tim, Dim) :-
Tij #>= Tim + Dim.

disjunction_as_choice(Tij, Dij, Tim, Dim) :-
Tim #>= Tij + Dij.

3

Paralic 1., Csont6 1., Schmotzer M. Optimal scheduling using constraint logic programming

These alternatives are out tried on backtracking within the search phase inside
optimisation. In addition, more redundant constraints can be added in order to improve
the constraint propagation and reduce in such a way the search space in advance (see
next section for more details).

3. Optimisation

Optimisation is realised in eLP (see next section for a detailed description) using a
higher order built-in predicate based on the branch and bound method (optimize/2 in
the program above). This predicate has at least two arguments: a goal which has to be
optimised and an evaluation function, which has to be minimised. In our case:

• The goal is to find an order of tasks (schedule), i.e. the right selections among
disjunctions of task pairs. These are represented by the
disjunction_as_choice/2 predicate.

• Criterion which is very often used for an optimisation by the job-shop
scheduling is the minimal total length of the schedule. Here it means to find a
schedule, where the variable End has the smallest possible value (second
argument of the optimize/2 predicate).

3. Traditional optimisation methods in CLP

In the CLP optimisation is usually achieved using a higher order predicate
incorporating a method known from mathematical programming, namely branch and
bound. Predicates with this functionality can be found in CLP languages like CHIP,
ECLipS', cc(FD) and others.

The basic idea is that branch and bound searches for a solution to the problem and
after finding a new solution adds a further constraint that any new solution must be
better than the current best one with respect to the evaluation function. This strategy
also fits very well with the standard backtracking search of most sequential logic
programming systems.

There are esentially two strategies (implemented first in CHIP and are also
available in ECLipS") as presented in (Mudambi and Preswitch, 1995):

MIN_MAX Starting with known upper and lower bounds (C:= and C"in
respectively) for the evaluation function C first finds some solution by standard
backtracking search, using the initial upper and lower bound as a constraint c= #<=
C #<= c:= to prune the search space. Whenever a new solution is found with cost Cn

(an integer number), the search halts and restarts using the tighter constraint C"in #<=
C #<= C; - I to further prune the search space. If no further solutions were found or Cn

= C"in , then the last found solution is optimal.

MINIMIZE In this case the process is the same, but after finding a solution
procedure does not restart the search continuing further in the search space. On the one
hand this approach brings an advantage in comparison with previous approach
avoiding wasted effort in many cases because it does not re-traverse the initial empty

4

Zbornik radova 2(23), 1997.

part of the search tree. On the other hand another problem may occur, called
"trashing". Trashing occurs when many solutions with the same cost are topologically
close in the search space, resulting in a lot of wasted search.

Both strategies can be generalised to search for a solution which is optimal within
some tolerance E (a number between 0 and 1). This approach can partially prevent
trashing and it is in fact often much quicker since it avoids finding many solutions
which are only marginally better than the currently best solution. This is usually done
so that after finding a new solution with cost Cm a new upper bound for the evaluation
function will be CnCE-I) (instead of Cn-I). If no better solutions have been found then
the optimal solution must have cost within the interval <C'" CnE>.

We have improved these methods in order to minimise the number of iterations as
much as possible. The new methods are described in the following section.

4. New optimisation methods

The basic idea behind our improved methods is not to decrease only the upper
bound of the evaluation function, but take the whole interval <cmin

, C?"» and split it
in the middle trying out this value as a new upper bound of the evaluation function. If
a solution is found, the upper bound decreases to the value of its evaluation function.
If no solution exists, the lower bound increases. In both cases the interval will
decrease in each step to its half value.

Both traditional methods (MIN_MAX and MINIMIZE) can be improved in this
way. We call the resulting methods LOGARITHMIC MIN_MAX and
LOGARITHMIC MINIMIZE respectively. The algorithm of the first. one will be
described in the following.

4.1. Logarithmic min_max

1. Find heuristically a good initial solution (see 4.2) and take its cost as upper bound
(Max).

2. Determine the lower bound (Min).

3. Let Limit = Max _ Jl.X(Max ~ Min) .

4. If Limit = Max, then let Limit = Max - 1.

5. Can it be proven that there exists a solution with cost less than Limit? If yes, then
let Max = its_cost, if not, let Min = Limit + 1.

Max =Min
6. Let Deviation = 100 * .

Min

7. If Max = Min or Deviation <= AliowedDeviaton, find a solution with cost equal or
less than Max (we know that there exists a solution with such limitation) and stop,
otherwise go to step 3.

5

Paralic J., Csont6 J., Schmotzer M. Optimal scheduling using constraint logic programming

For a good performance of the algorithm, quality of initial upper and lower bounds
is very important. Stating upper bound means to find an initial solution using a
deterministic heuristic algorithm, i.e. quickly and as good as possible. Stating lower
bound means to estimate the distance of a solution to the optimal one (under this
bound cannot be the optimal solution). Algorithms we've used to get these initial
bounds are briefly described in 4.2.

Proof of the solution existence is done by setting a constraint that the cost of the
solution cannot be greater than Limit and then by finding a solution limited by this
constraint (condition). Some time can be saved in the step 5 if the solution found in
the step 3 can be stored.

The presented algorithm is called LOGARITHMIC MIN_MAX. In every iteration
it divides the interval to half size owing to it needs at about logiMax - Min) proofs of
solution existence. The classic (old) versions of MIN_MAX needed Max - Min - I
proofs of solution existence (in the worst case).

Similar works the LOGARITHMIC MINIMIZE algorithm with the same
difference as by the MINIMIZE when compared with MIN_MX, i.e. after finding a
new - better solution the search continues and does not restart as it does by the
LOGARITHMIC MIN_MAX. Both methods were implemented in CLP language
ECLipS" (Schmotzer, 1997). The results we achieved on a number of randomly
generated job-shop scheduling problems are presented in section 5.

4.2. Finding initial bounds

A classical method for obtaining starting solution is to use priority dispatching
rules (Caseau and Laburthe, 1995): the schedule is constructed chronologically, tasks
are selected one after the other and performed as soon as possible. The algorithm
works as follows: At each step, a set of "selectable" tasks is kept. In the beginning,
this set initialised to the set of all tasks that are first in a job (i.e. tasks that do not
require any other task to be performed before them). One of the tasks in this set is
selected and scheduled as soon as possible on its machine. It is then removed from the
set of selectable tasks and replaced in this set by its direct successor in the job. This
process is repeated until no more tasks are to be selected.

The whole algorithm depends on the selection rule. We tested eight different
priority rules and derived a new one with the best average behavior (Paralic, 1997). It
is a combination of EST (select the task with the earliest starting time) and in case
when more tasks are equal with respect to this criterion, select the one with the
MWKR (most work remaining - the task which has the longest sum of durations of
tasks to be processed in the job after it).

For the lower bound one needs to compute the sum of durations of all tasks within
the same job and for all tasks to be processed on the same machine. From these sums
one can choose the greatest one as lower bound. We further increased this sum adding
the smallest possible starting time from the respective tasks within the chosen job
(machine).

6

Zbornik radova 2(23). 1997.

5. Results

We tested our methods on a number of randomly generated job-shop scheduling
problems of different size. In Table 1 the results of twenty such problems are
presented. Ten problems are of size 8 x 8 (8 jobs, 8 machines) and ten of size 10 x 10.
For each problem (numbered from 0 to 10) the resulted time (in seconds on PC
AMD5x86 133MHz running under Linux operating system) and the number of
backtracks necessary for finding the optimal solution to the problem is given. Number
of backtracks (i.e. number of generated failures, or bad schedules) is a good measure
to see how large was the searched part of the search space. The lower is this number is
the better method (the more straightforward looks for an optimal solution).

From the traditional methods only the MIN _MAX could be used for these
problems (MINIMIZE suffered from trashing). The results are compared with the two
new optimisation methods. The best results for each problem are represented in the
table using bold font. In all cases the same initial lower and upper bounds were used.

As we can see in most of the cases at least one of the two new methods was better
than the traditional one in both merits, i.e. with respect to the computational time as
well as the number of backtracks. More precisely LOGARITHMIC MIN _MAX
achieved the best results with respect to the number of backtracks, namely by the 8 x 8
problems it was 11,2 times and by 10 x 10 problems 10,2 times better than MIN_MAX
on average. LOGARITHMIC MINIMIZE had best results with respect to the
computational time. It was on average 5,7 times faster by the 8 x 8 problems and 7,2
times faster by the 10 x 10 problems than traditional MIN_MAX.

There are some instances of the job-shop problem, where the proof of the
optimality is very hard (proof of optima1ity is the search through the whole search
space with the constraint that the value of the evaluation function must be lower than
the one of the optimal solution - this is necessary to show, that it is in fact optimal). In
these cases new methods need more backtracks due to more searches under the
optimal value. We improved our strategy for this type of problems in' such a way, that
in case the current interval between the lower and upper bound is smaller than 3, the
strategy continues like MIN_MAX decreasing the upper bound. In such a way we
achieve better performance in all tested instances of the job-shop.

7

Paralic 1., Csont6 1., Schmotzer M. Optimal scheduling uSing constraint logic programming

Table 1. A comparison of traditional optimisation method MIN _MAX with two new
methods LOGARITHMIC MIN MAX a LOGARITHMIC MINIMIZE

': "~ MIt:LMA5C ..."LbG ,MIN MAX b(iG'~ l',hlNIMrZE
i~r~blet6i'f ']§V .131 .,:lim;e0ls183(,· . (·"";{s), ;, ati,." .' Im.e.·. :' .. ,.lme~.: .
8 8 0 30.75 69 12.74 96 10.25 746
8 8 1 40.63 384 5.55 95 5.89 319
8 8 2 98.50 1331 48.71 774 32.65 1238
8 8 3 70.34 2019 7.90 79 9.99 744
8 8 4 68.70 3654 5.95 56 5.47 676
8 8 5 114.01 6534 24.26 467 21.51 873
8 8 6 31.13 50 3.80 6 3.41 452
8 8 7 42.06 356 9.55 104 11.01 755
8 8 8 29.75 73 12.21 173 12.50 604
8 8 9 109.03 1813 34.84 667 30.94 1073
10 10 0 808.42 13517 129.45 1245 108.28 2130
10 10 1 547.48 10287 51.69 288 32.65 883- -
10- 10-2 1064.87 20233 499.71 8446 351.28 8037
10 10 3 1010.60 19271 324.59 3965 289.85 4851- -
10 104 2307.45 1117019 128.99 1907 156.26 4506
10 10 5 382.99 8450 73.73 830 56.30 3286- -
10 10 6 126.64 1425 19.92 148 18.68 1043- -
10 10 7 10647.00 116817 10239.50 151256 8404.28 150821- -
10 10 8 590.05 27063 99.97 1846 89.90 2577-
10 10 9 6256.24 111350 2565.99 38861 1228.24 29234

6. Conclusion

In this paper methods to solve job-shop scheduling problems using constraint logic
programming approach are described and analysed. The traditional methods
MIN_MAX and MINIMIZE have been improved in order to rninirnise necessary
iterations during the search phase. As a result the performance of the two new methods
is much better with respect to the computational time (especially the LOGARITHMIC
MINIMIZE) as well as with respect to the number of backtracks (especially the
LOGARITHMIC MIN_MAX).

References

1. Caseau, Y. and Laburthe, F. (1995), "Disjunctive Scheduling with Task Intervals",
LIENS Technical Report 95-25, Laboratoire d'Informatique de I'Ecole Normale
Superieure, 1995.

2. Jaffar, J. and Lassez, J. L. (1987), "Constraint Logic Programming", Proc. of-the
14thSymp. POPL'87, Munich, Jan. 1987, pp. 111-119.

8

Zbornik radova 2(23), 1997.

3. Paralic, 1. (1997), "Solving Scheduling Problems Using Constraint Logic
Programming" (in Slovak), Ph.D. thesis, Technical University of Kosice, April
1997.

4. Schmotzer, M. (1997), "Analysis and Design of New Methods to Solve Time
Scheduling Using Constraint Logic Programming", Master's thesis, Technical
University of Kosice, April 1997.

Received: 1997-08-29

Paralic J., Csont6 J., Schmotzer H. Optimalno rasporedivanje upotrebom
ogranicenog logickog programiranja

Sazetak

U ovom radu prezentirana je metodologija rjesavanja aplikacija za rasporedivanje (na
primjer popis poslova) upotrebom ogranicenog logickog programiranja. Ponajprije, ukratko
se opisuje dejinicija problema ogranicenog logickog programiranja. Drugo, prikazuje se
nova strategija pronalaienja optimalnih rjesenja. Nova strategija sastoji se od tri koraka:
(1); Heuristika koja vrlo brzo moie naci pocetno kvalitetno rjesenje (gornja granica); (2)
Heuristika za nalaienje donje gran ice radi optimalizacije; (3) Ejikasna strategija za
nalaienje optimalnog rjesenja unutar minimalnog broja koraka. Prikazani su rezultati koji su
postignuti koristenjem te metode na grupi nasumce stvorenih problema s popisa poslova.

Kljucne rijeci: ograniceno logicko programiranje, optimalizacija, rasporedivanje, popis
poslova.

9

