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Inverse Limit of Continuous Images of Arcs

Abstract. The main purpose of this paper is to study the inverse limits of
continuous image of arcs. We shall prove:

a) If X = {X,, Pas, A}is a monotone well - ordered inverse system of continuous
image of arcs such that cf(A)# w;, then X = limX is the continuous image of
an arc (Theorem 2.17).

b) Let X = {X,, pas, (A,<)} be an inverse system of continuous image of
arcs with monotone surjective bonding mappings. Then X = limX is the
continuous image of an arc if and only if for each cyclic element Z of X and
the points x, y, zEZ there exists a countable directed subset (B, <) of (A,
<) such that for each countable directed subset (C, <) of (A, <) with COB
the restriction hg¢ = ppc|lim{Wi(z,y, 2), Paa;, D} of the canonical projection
Pac is a homeomorphism

hgc : im{Wy(z,y, 2),paa;, D} — im{W.(z,y, z), pcc;, C}

(Theorem 2.22).
Keywords and phrases : Inverse system and limit, continuous image of an arc.
Mathematics subject classification (1991) : 54B25 , 54D30.

1 Preliminaries

The cardinality of a set X will be denoted by card(X). The cofinality of a
cardinal number m will be denoted by cf(m). Cov(X) is the set of all normal
coverings of a topological space X.For other details see [1]. A basis of (open)
normal coverings of a space X is a collection C of normal coverings such that
every normal covering /€Cov(X) admits a refinement V€ C. We denote by
cw(X) (covering weight) the minimal cardinal of a basis of normal coverings
of X [9, p. 181].

47



Lon¢éar I. Inverse limit of continuous images of arcs

LEMMA 1.1 /9, Ezample 2.2]. If X is a compact Hausdorff space, then
cw(X) = w(X).

In the sequel we shall use the following theorem [16, Theorem 1.1].

THEOREM 1.2 Let X be a regular space. For each cardinal number A <w(X)
there exists a subspace My CX such that card(M, )< X\ and w(M, )> A.

LEMMA 1.3 Let X be a regular space and let F = {Fy : o < wyy3}, where

i is a fized ordinal number, be an increasing transfinite sequence of subspaces
of X with w(F,) = R and let ¥ = U{Fa: @ < wuys}. Then w(Y) = Ro.
Moreover, if each F, ts closed, then there exists an o such that F, = Fg, for
each B> g, and Y = F,, is closed.

Proof. Suppose that w(Y)> R;. By virtue of Theorem 1.2, for A = R,, there
exists a subspace M, of Y such that card(M,)< R; and w(M,)> R;. It is clear
that

My = MO F)UUGANFai\ F) 1S @ <)l (1)

If each Z, = M, N(Fot1 \ Fe) is non empty, then we have card(M,) = R, .
This contradicts card(M,)< R,. We infer that there exists a f < w,4, such
that Z, = 0 for each v > (3. Hence, M, CFs. Thus, w(M,)< w(Fs) = Ro.
This contradicts w(M,)> R;. Now, by virtue of [4, Problem 2.7.9 (e), p. 155]
it follows that there exists an a such that F,, = Fg for each 8 > a. It is
clear that Y = F,,. Thus, Y is closed .l

THEOREM 1.4 Let X = {X,, pas, A}be a well-ordered inverse system such
that w(X, )< 7, a€A. If p,y are perfect (pqy are open or X is continuous ), then
w(limX)< 7.

Proof. See [16, Teorema 2.2].H

LEMMA 1.5 Let X = {X,, pas, A}be a well-ordered inverse system of compact
spaces such that w(X, )< T and card(cf(A))> 7. Then there exists an a€A such
that the projection p.:limX— X, is a homeomorphism for every c>a.

Proof. By virtue of Theorem 1.4 w(limX)< 7. This means that there exists
a family # = {U,} of normal coverings of X = imX such that &/ is a basis of
normal coverings of X and card(i)< 7. For each U, there exists an a* such
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Zbornik radova 2(23),1997.

that for each b>a* there exists a normal cover V of X, such that p; *(V) refines
Uy. The cardinality of the set {a*} is < 7. Since card(cf(A))> 7, there exists
an a€A such that a>a* for each a*. It follows that for each &/, and each c>a
there exists a normal cover V of X, such that p; (V) refines U,. Let us prove
that p, is a homeomorphism. It suffices to prove that p. is 1 - 1 since p, is
onto and X is compact. Let x,y be a pair of distinct points of X. There is a
pair of disjoint open subsets U,V of X such that x€U and yeV. Consider the
normal cover W = {U, V, X\{x,y}} Let U, be a member of & which refines
W. There exists a norma.l cover V of X, such that p;*(V) refines /. Suppose
that p.(x) = p.(y). There is a member W of V such that p,(x)eW. It follows
that x, yep_ *(W). We infer that (x, y)< U.. This is impossible since x€U,
y€V and U, refines W. Hence, p.(x)#p.(y) for each pair x, yeX. Thus, p, is
1-1. KM

Let X = {X,, Pas, A}be an inverse system. For each subset A, of (A, <)
we define sets A,, n = 0, 1, ..., by the inductive rule A,;; = A, U {m(x,y):
x,y€ A,}, where m(x,y) is a member of A such that x,y <m(x,y). Let A =
U{A,: nelN}. It is clear that card(A) = card(A,). Moreover, A is directed
by < [11, Lemma 9.2]. For each directed set (A,<) we define

A, ={A:0#AC A, card(A) <R, and A is directed by <}.

Then A, is o - directed by inclusion [11, Lemma 9.3]. If A €4A,, let X2 =
{Xs, posty A} and X, = EimX2. If A, T' €A, and A C T, let par: Xpr —Xa
denote the mapp induced by the projections pF': Xp —X;, § € A, of the inverse
system XT. Now, we have [11, Theorem 9.4].

THEOREM 1.6 If X = {X,, pas, A}is an inverse system, then X, = {Xa,
par, A,} is a o - directed inverse system and imX and limX, are canonically
homeomorphic.

THEOREM 1.7 Let X = {X., pas, A}be a o - directed inverse system of com-
pact metrizable spaces and surjective bonding mappings. Then X = limX is
metrizable if and only if there exzists an a€A such that p,:X— X, is a homeo-
morphism for each b>a.

Proof. If there exists an acA such that p; is a homeomorphism for each b>a,
then X is metrizable. Conversely, if X is metrizable, then cw(X) = R, (see
Lemma 1.1). Let B = {U,: n€IN} be a basis of normal coverings of X. For
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Loncar I. Inverse limit of continuous images of arcs

each U, there exists an a(n)€A such that for each b>a(n) there exists a normal
cover V of X, such that p; (V) refines U,,. Since A is o - directed there exists
an a€A such that a>a(n) for each n€IN. It follows that for each ¥, and each
b>a there exists a normal cover V of X, such that p; }(V) refines «,. Let us
prove that p, is a homeomorphism. It suffices to prove that p, is 1 - 1 since p,
is onto and X is compact. Let x,y be a pair of distinct points of X. There is a
pair of disjoint open subsets U,V of X such that x€U and ye€V. Consider the
normal cover & = {U, V, X\{x,y}}. Let U, be a member of B which refines
U. There exists a normal cover V of X, such that p; }(V) refines U,. Suppose
that py(x) = py(y). There is a member W of V such that p;(x)eW. It folows
that x, yep, (W). It follows that (x, y)< U,. This is impossible since x€U,
y€V and U, refines U. Hence, py(x)#ps(y) for each pair x, yeX. Thus, p; is
1-1.H

THEOREM 1.8 Let X = {X,, pas, A}be an tnverse system of compact metriz-
able spaces X, and surjective bonding mappings. Then X = limX is metrizable
if and only if there exists a countable subset B of A which is directed by < and
such that the natural projection p:X—Ulim{Xy, ps., B} is a homeomorphism.

Proof. If there exists such subset B of A, then X is metrizable. Conversely,
if X is metrizable then we may assume that X is homeomorphic with imX,
from Theorem 1.6. Applying Theorem 1.7 we complete the proof.l

The following theorem is Theorem 5.1 of [11].

THEOREM 1.9 Let X={X., pmn, IV} be an inverse sequence with monotone
surjective bonding mappings. If each X, is the continuous image of an arc,
then X = limX s the continuous image of an arc.

From Theorems 1.6 and 1.9 it follows the following theorem.

THEOREM 1.10 Let X = {X,, pas, A}be an tnverse system of continuous
images of arcs with monotone surjective bonding mappings. Then X, = {Xa,
par, A,} is an inverse system of continuous images of arcs.

2 Inverse systems of cyclic images of arcs

An arc (or ordered continuum) is a Hausdorff continuum with exactly two non
- separating points. Each separable arc is homeomorphic to the closed interval

1=[0,1].
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A continuum X is a dendron if each pair of distinct points of X can be
separated by a third point of X. A continuum X is a dendron if it is locally
connected and hereditarily unicoherent. A dendron is an arc if it is atriodic.

Let X be a non - degenerate locally connected continuum. A subset Y of X
is said to be a cyclic element of X if Y is connected and maximal with respect
to the property of containing no separating point of itself. A cyclic element of
a locally connected continuum is again a locally connected continuum. We let

Lx ={Y C X : Y is a non- degenerate cyclic element of X}.

LEMMA 2.1 A continuum X is a dendronuth ts locally connected and has
no non - degenerate cyclic elements.

LEMMA 2.2 If C ts a connected subset of X and YELyx, Then CNY is con-
nected (possibly void).

LEMMA 23 If f : X—X is a monotone surjection, then for each Y €Ly
there ezists YELx such that V' Cf(Y). In particular, Lx is non - empty if
Ly is non - empty.

LEMMA 2.4 Let Z be a cyclic element of a locally connected continuum X.
If J is a component of X\Z, then |Bd(J)| = 1.

Proof. See [11, p. 5.|.H

LEMMA 2.5 If Z and W are cyclic elements of a locally connected continuum
X, then either card(ZNW)<1 or Z = W.

Proof. See [6, p. 316 , Teorema 4.|.H

Let Z be a cyclic element of X. For each component J of X\Z, let Bd(J) =
z;. We define [11, p. 5] p : X —Z such that p(x) = x if x€Z and p(x) = 2,
if x€J. Then p is a monotone continuous retraction. It is called the canonical
retraction of X onto Z.

We shall say that X is cyclic if it is the only cyclic element of itself, equiv-
alently, if it has no separating point.

Let X = {X,, Pas, A} be an inverse system and YCX = limX. We shall
denote p,(Y) by Y,, acA.
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Lon¢éar I. Inverse limit of continuous images of arcs

LEMMA 2.6 Let X = {X,, pas, A}be an inverse system of locally connected
continua X, with monotone bonding mappings and let Z be a non - degenerate
cyclic element of X = limX. There exists an ay such that Ly(Z, )# 0, for each
b>ay.

Proof. Suppose that L, = 0 for each beB (i.e., all Z, are dendrons), where
B is cofinal in A. By virtue of [10, Theorem 3] Z is hereditarily unicoherent.
This means that Z is a dendron since it is locally connected Thus, Ly = 0.
This contradicts the assumption that ZeLy .-l

In the sequel we shall use the following theorem [11, Theorem 2.7.].

THEOREM 2.7 Let X = {X,, pas, A}be an inverse system such that p,; are
monotone surjection and Y is a cyclic element of the locally connected contin-
vum X = limX. For each a€A, let Z, be either a cyclic element of X, or a
one - point subset of X,. Let p, : X, —Z, denote the canonical retraction if
Z, 1s non - degenerate, and otherwise, let p, : X, —Z, be the constant map.
Suppose that some Z,, is non - degenerate, and that Z, Cpey(Z,)Cp.(Y) for
all b>a. Let g, = po0(Pas|Zs), a<b. Then each gy : Zy —Z, is a monotone
surjection, the collection Z = {Z,, gas, A} is an inverse system and there ezists
a continuous mapping H: X—Z7 = limZ such that H|Y : Y—Z is a homeomor-
phism.

THEOREM 2.8 A Hausdorff locally connected continuum S is the continuous
image of an arc if and only if each cyclic element of S is the continuous tmage
of an arc

Proof. See 3, Theorem 1].H

IfY is a closed subset of X, we let K(X\Y) denote the family of all com-
ponents of X\Y. Let X be a locally connected continuum. A subset Y of X is
said to be a T - set if it is closed and |Bd(J)| = 2, for each JEK(X\Y).

The following theorem is a part of Theorem 4.4. [11].

THEOREM 2.9 If X is a locally connected continuum, then the following
conditions are equivalent:

1. X is a continuous image of an arc,

2. X is a continuous image of an ordered compactum,
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3. for each Y€Lx and any p,q,r€ Y there exists a metrizable T - set Z in
Y such that p,q,reZ.

4. For each YELx and each closed metrizable subset M of Y there exists
a metrizable T - set A in Y such that MCA.

THEOREM 2.10 Let X = {X,, pas, A}be a o - directed inverse system of con-
tinuous image of arcs such that the cyclic elements of each X, are hereditarily
locally connected. If the bonding mappings are monotone surjections, then X
= limX s the conlinuous tmage of an arc.

Proof. By virtue of [2] the projections p, are monotone. It follows that X is
locally connected. Let Y be a cyclic element of X. By virtue of Theorem 2.7
there exists the inverse system Z = {Z,, g.s, A} such that Y and limZ are
homeomorphic. Moreover, each Z, is hereditarily locally connected and each
8.» is monotone surjection. By virtue of Corollary 3 [5] imZ is hereditarily
locally connected. From Theorem 3.4 [14] it follows that limZ is the continuous
image of an arc. Theorem 2.8 completes the proof. M

A mapping f : X—Y is said to be hereditarily monotone 1f for each sub-
continuum KCX the restriction f|K : K—{(K) is monotone (7, p. 16.].

If :X—Y and g:Y—7Z are hereditarily monotone mappings, then gf:X—Z
is hereditarily monotone [7, p. 29, (5.3)].

LEMMA 2.11 If Z is a cyclic element of a locally connected continuum X,
then the canonical retraction p:X—Z is hereditarily monotone.

Proof. Let K be any subcontinuum of X and let px = p|K. Then p;'(z) =
z or pg'(z) = CI(J)NK, where J is a component of X\Z with non - empty
JNK. It remains to prove that CI(J)NK is connected. Suppose that CI(J) NK
is not connected. Let z; = Bd(J). There exists a component L of CI(J)NK
such that z; ¢L. Moreover, z; €K since K is connected and J is closed and
open in X\{z;}. By virtue of the normality of Cl(J) it follows that there exists
a pair U,V of disjoint open (in CI(J)) sets such that LCU and z; €V.It follows
that U is open and closed in X since z; ¢Cl(U). This is impossible since K is
connected and z; ¢K.H

THEOREM 2.12 Let X = {X,, pas, A}be an inverse system of hereditarily lo-
cally connected continua and hereditarily monotone bonding mappings. Then X
= limX is hereditarily locally connected and the projections p, are hereditarily
monotone.
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Proof. Let Y be any subcontinuum of X. Then Y = {p.(Y), pas|Ys, A} is
an inverse system. The bonding mappings p.s|Y, are monotone. By virtue of
Capel’s theorem, the mappings p,|Y are monotone. Thus, the mappings p.,
a€A, are hereditarily monotone. Moreover, Y is locally connected. Thus, X is
hereditarily locally connected.l

Now, we have the following theorem.

THEOREM 2.13 Let X = {X,, pas, A}be an inverse system of continuous
images of arcs such that the cyclic elements of each X, are hereditarily locally
connected. If the bonding mappings are hereditarily monotone surjections, then
X = limX s the continuous tmage of an arc.

Proof. Let Y be a cyclic element of X. From Theorem 2.7 it follows that
there exists an inverse system Z = {Z,, g.s, A} such that Z,, a€A, is a cyclic
element of X, and Z = limZ is homeomorphic to Y. Moreover, g,; = p40(Pas|Zs)
is hereditarily monotone since p,3|Z; and p, are hereditarily monotone (Lemma
2.11). From Theorem 2.12 it follows that Z is hereditarily locally connected.
Thus, Y is hereditarily locally connected. By virtue of Theorem 3.4 [14] Y is
the continuous image of an arc. Theorem 2.8 completes the proof.ll

From Theorems 2.7 and 2.8 it follows that it suffices to consider inverse
systems X = {X,, pas, A}of cyclic continuous images of arcs with monotone
surjective bonding mappings and with cyclic X = limX. Such systems will be
called CMC - systems. Let X be the limit of an CMC - system, let x, y and
z be distinct points of X and let a€A such that x, = p.(x), Y« = Pu(¥)) Za
= pa(z) are distinct points of X,. By virtue of Theorems 3.2 and 3.6. of [11]
there exists a minimal metrizable T - set T, containing x, = pa(X), Y« = Pa(¥),
. = Pp.lz)
LEMMA 2.14 Let X = {X,, pas, A}be a CMC - system. The family T, =
{pas(T.): b>a} is directed by inclusion. Moreover, W, (z,y,z) = CI(U{T: Te
T.})isa T - setin X,.
Proof. For each pair pay(Ts), pPac(T.) of elements of T, there exists a dEA
such that pya(T4)2Ts since T, is minimal. This means that pad(Ta)2pas(Ts)-
Similarly, pad(Ta)2pac(T.). By virtue of Theorem 3.1 [11], W,(x,y,z) is a T -
set.ll

LEMMA 2.15 Let X = {X,, pas, A}Ybe a CMC - system. Then W(z,y,2z) =
{W.(z,9,2), pas| Ws(z,y,2), A} is an inverse system and W(z,y,2z) = imW (z,y,2)
is a mintmal T - set in X containing z,y and z.
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Proof. It is clear that p,,(W,(x,y,z)) = W.(x,y,2). By virtue of [11, Theorem
3.13] W(x,y,z) is a T - set. Let us prove that W(x, y, z) is minimal. Suppose,
on the contrary, that W(x, y, z) is not minimal. Then there exists a T - set
TCW(x, y, z). There exists an a€A such that p,(T)CW,(x, y, z). On the
other hand, for each b>a we have p,(T)2T,. Thus, p.sps(T) 2 pas(Te), i-e.,
Pa(T)2pas(Ts). This means that p.(T) DO Cl(U{p.s(Ts): b>a}) = W,(x, y,

z), a contradiction.l

THEOREM 2.16 Let X = {X,, pas, A}be a CMC - system. Then X = limX
is the continuous image of an arciff for any choice of distinct points z,y,2€ X
the sets W,(z,y,2), a€ A, and W(z,y,z) are metrizable.

Proof.If X is a continuous image of an arc, then there exists a metrizable T
- set T containing x,y and z [11, Theorem 4.4]. Clearly, W(x,y,z)CT since
W(x,y,z) is minimal. Hence, W(x,y,z) is metrizable. It follows that each
W.(x,y,z) is metrizable since p,(W(x,y,2)) = W.(x,y,2) [4, Theorem 4.4.17].
Conversely, if W(x,y,z) is metrizable, then X is a continuous image of an arc
[11, Theorem 4.4].H

THEOREM 2.17 Let X = {X,, pas, A}be a well - ordered inverse system such
that cf(A)# w,. If the mappings p,, are monotone surjections and if the spaces
X, are continuous images of arcs, then X = limX 1s the continuous image of
an arc.

Proof.If cf(A) = R, then X is the continuous image of an arc (see Theorem
1.9). Suppose that cf(A)> w,. Let Y be a cyclic element of X and let Z be as
in Theorem 2.7. This means that Y and Z = limZ are homeomorphic. Let x,
y and z be distinct points of Z. By virtue of Theorem 1.3 each W(x,, ¥q, Za)
is metrizable. Moreover, by virtue of Theorem 1.5 (for 7 =R,) W(x, y, z) is
metrizable. Theorems 2.8 and 2.9 complete the proof. E

REMARK 2.18 Theorem 2.17 is not true if c¢f(A) = R,;. This shows the fol-
lowing example of Nikiel [12]. Let L denote the long interval [4, p. 297]. For
each ordinal number «, 0< a < wy, let £,:[0,1]xL—[0,1]x[0,c];, be defined by

(s,t) if tSL (0%
(sy) if @ <yt

o) = {
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Each X, = [0,1]x[0,e] is homeomorphic to [0,1]x[0,1] and it is a continuous
image of an arc. Moreover, w(X,) = Ro. Let f,5 = ,][0,1]%[0,8]1, 8 < a. We
obtain an inverse system {X,, f,p5, @ < w;} whose limit is [0,1]xL which is not
a continuous image of an arc.ll

THEOREM 2.19 Let X = {X,, pas, A}be a o - directed CMC - system. Then
X = limX s the continuous image of an arc if and only if there ezists an acA
such that p.s| Wa(z, y, 2): Wi(z, y, z)— Wa(z, y, z) is a homeomorphism for
each b>a.

Proof. Apply Theorems 1.7 and 2.16.H

LEMMA 2.20 Let X be a locally connected continuum, Y a cyclic locally con-
nected continuum and f:X—Y a monotone surjection. Let Wy CX, Wy CY
be a pair of T - sets such that g = fiWx is a homeomorphism. If BCWy is
a T - set, then A = g'(B) is a T - set.

Proof. Let J be any component of X\A. Then there exists a component K of
X\Wyx such that KCJ. Let Bd(K) = {a, b}. By virtue of Theorem 3.12 [11]
there are finitely many components Jy, ..., J, of Y\Wy such that

LU C f(K) CCl(:...UJn)

and Bd(J;) = ... = Bd(J,)) = {(Bd(K)) = {f(a), f(b)}. It is clear that f(a)#f(b)
since g is a homeomorphism and a, b€EWx. The continuum L = Cl(J, U ...
UJ.) is contained in some component I of Y\B with Bd(I) = {c, d}, c#d.
Then f~*(I) is a continuum containing K. Thus, f~*(I) is contained in J. The
points ¢/ = g~*(c) and d' = g~*(d) are distinct points and are the members of
Bd(J). It is clear that card(Bd(J)) = 2 since g is a homeomorphism. l

THEOREM 2.21 Let X = {X,, pas, A}be a o - directed CMC - system. Then
X = limX s the continuous image of an arc if and only if there exists an acA
such that p.y|Ty: Ty — T, is a homeomorphism for each b>a.

Proof. Sufficiency. If there exists an a€A such that pgs|Ts : Te =T, is a
homeomorphism, then we have the inverse system T = {T., pc4|T4, a<c<d}
of metrizable T - set such that p.4|Ts are homeomorphisms. This means that
T = imT is metrizable. By virtue of Theorem [11, Theorem 3.13] Tis a T -
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set containing x, y, z. From Theorem 2.9 it follows that X is the continuous
image of an arc.

Necessity. By virtue of Theorem 2.19 X is the continuous image of an arc if
and only if there exists an c€A such that W,(x, y, z) is metrizable for each
d>c. From Theorem 1.7 it follows that W(x, y, z) is metrizable if and only
if there exists an a€A, a>c, such that p,|W(x, y, z) : W(x, y, 2)>W,(x, y,
z) is a homeomorphism. It is clear that p,,|Wy(x, y, z) is a homeomorphism.
By virtue of Theorem 2.20 the set T = (pas|Wi(x, y, 2))"*(Ts) is a T - set
containing x;, y, and z,. Since T is the minimal T - set containing xy, ys,
2y, we infer that Ty CT. Thus pey(T)2pas(Ts). This means that pey(T;)CT,.
In fact, pss(Ts) = T, since T, is the minimal T - set containing X,, Ya, Z-
Since py|W(x, y, z) is a homeomorphism, we infer that p,s|Ts : Ty =T, is a
homeomorphism. B

We close this section with the following theorem.

THEOREM 2.22 Let X = {X., pas, (4,<)} be an inverse system of contin-
uous image of arcs with monotone surjective bonding mappings. Then X =
limX s the continuous image of an arc if and only if for each cyclic element
Z of X and the points z, y, z€7Z there ezists a countable directed subset (B,
<) of (A, <) such that for each countable directed subset (C, <) of (A, <)
with CDB the restriction hgc = ppc|lim{Wi(z,y, 2),Paa;, D} of the canonical
projection pgc is a homeomorphism

hge: lim{Wd(‘c’ yaz)apdan} e lim{Wc(wvyaz),Pcch}'

Proof. By virtue of Theorem 1.6, X is homeomorphic to limX,, where X,
= {Xa, Par, A, }. We assume that X = limX,. Let Z be any cyclic element
of X and let Z be the inverse system from Theorem 2.7. Let x, y, z€Z. By
virtue of Theorem 2.21 there exists a CEA, such that for each DeA, with
DOC the canonical projection pep: Tp —T¢ is a homeomorphism. Let us
recall that X¢ and X are inverse limits of the inverse sequences {X,, pcc;, C}
and {X4, pas;, D} respectively. From Lemma 2.15 it follows that T¢ is the
limit of {W.(x, ¥, 2), Pec:|Wei(X, ¥, ), C}. Similarly, Tp is the limit of {W,(x,
L) Z)a pddllwdl(xv Ys z)’ D} Hence hpc = pBC|lim{Wd(x7 yaz),Pddn D},

hgc: lim{Wd(z.a Y, Z), Pddys D} =4 lim{Wc(z, Y, z)’pccn C}

is a homeomorphism M
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Lonéar I. Inverzni limes neprekidnih slika lukova

SAZETAK

U radu su izucavani inverzni limesi neprekidnih slika lukova. Dokazano je: a)
Ako je X = {X,, Pas, A}dobro uredeni inverzni sistem neprekidnih slika lukova
s monotonim surjektivnim veznim preslikavanjima i ako je cf(A)# R,, tada je
X = limX neprekidna slika luka (Teorem 2.17).

b) Neka je X = {X,, pas; (A,<)} inverzni sistem neprekidnih slika lukova s
monotonim surjektivnim veznim preslikavanjima. Tada je X =limX neprekidna
slika luka onda i samo onda ako za svaku trojku tocaka x, y, z bilo kojeg
ciklickog elementa Z limesa X postoji prebrojiv usmjeren podskup (B, <)
skupa (A, <) sa svojstvom da je za svaki prebrojiv usmjeren skup (C, <)skupa
(A, <), COB, restrikcija hp e = ppc|lim{Wau(z,y, ), pad;, D} homeomorfizam
(Teorem 2.22).

Kljuéne rije¢i: inverzni sistem i limes, neprekidna slika luka.
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