
1
Introduction

Skeletal fragility has received considerable attention
because of personal and financial challenges associated
with the increased risk of fracture. Consequently, a special
interest of research scientists has been directed to a better
description of bone behaviour, both under normal and
pathological conditions. Human cancellous bone, as well as
cortical, is a complex anisotropic material. Experimental
studies have presented the non-linear viscous behaviour of
bone material [1, 2]. In addition, due to mechanical loads the
bone displays internal adaptive remodelling, which is
sensitive to the local strain rates, strain distributions,
dynamic nature of the loads and to the number of loading
cycles. As presented in [3], remodelling is regulated by the
mineral metabolism and the appearance of microcracks.
Though significant research has been undertaken, these
remodelling mechanisms remain not fully understood.

In recent years, investigations into the damage
behaviour of both cortical and cancellous bone have
aroused a great interest. Damage accumulation is a critical
component of the fracture process in bone under monotonic,
creep and fatigue load conditions. Previous studies have
reported that damage accumulation leads to the degradation
of the mechanical properties of bone, such as stiffness,
strength, toughness, and viscous response [4]. In addition,
bone damage has been implicated as a cause of increased
fragility and is believed that it initiates bone remodelling.
Fatigue-induced microdamage is repaired by bone
remodelling, but if damage accumulates too quickly, or if
remodelling is deficient, fatigue failure may result. Hence,
in the long term, damage could lead to increased knowledge
about the stability of prosthetic implants, debilitating bone
diseases, such as osteoporosis, and it could help reveal the
mechanisms behind stress fractures, which are significant
orthopedic concerns today. One of the key issues that has
not been resolved is how and where this damage initiates in
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bone microstructure.
Numerous attempts have been made to simulate and

predict the viscous damage behaviour of bone in a computer
model, combining the continuum mechanics theories with
the finite element (FE) analysis, but the obtained solutions
still have some shortcomings [5, 6]. Constitutive models,
which have to represent the bone behaviour realistically,
form the core of a finite element formulation. The presented
research is motivated by the experimental data reported by
Melnis et al. [1] and Parsamian [7] for the nonlinear time-
dependent response of human cortical bone. Melnis et al. [1]
investigated the uniaxial tensile creep behaviour of human
cortical bone and demonstrated the development of
nonlinear strains during loading and their recovery
behaviour after unloading. In an experimental study by
Parsamian [7] it is found that human cortical bone behaves
as a linear viscoelastic material during tensile creep for
stress levels below some threshold value of stress. Beyond
this value, it behaves as a viscoelastic damage material [1,
2]. An algorithm which enables numerical modelling of
viscoelastic/damage behaviour of cortical bone is proposed
by Lovrenic-Jugovic et al. in [8, 9]. The present paper is a
continuation of that study where the viscoelastic
deformation associated with creep and creep-damage is
analyzed in detail for more accurate predictions. The
objective of this study is to develop a new constitutive
model for the cortical bone tissue that predicts the
experimental viscoelastic damage behaviour in creep-
recovery tests. The derived model is based on the ideas and
approaches fromAbdel-Tawab and Weitsman [10] and [11],
developed for the swirl-mat composites. level is
implemented into the finite element code The bone
behaviour is modelled by using the theory of viscoelasticity
and non-linear effects within the theory of continuum
damage mechanics based on the thermodynamics of
irreversible processes [12, 13]. The derived algorithm for
the integration of the proposed three-dimensional
constitutive model at the material pointABAQUS/Standard
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[14]. The accuracy of the computational procedure is tested
by comparing the computed results with the real
experimental [1, 7] and numerical [15] data. Thereby, the
creep-recovery deformation processes in cortical bone at
different loading levels are considered.

The paper is organized as follows. Section 2 describes
the viscoelastic/damage constitutive model developed
within the framework of irreversible thermodynamics with
internal state variables. The material parameters of the
constitutive model determined by fitting experimental
results from literature are presented in Section 3. In Section
4, the proposed computational algorithm for the integration
of the constitutive model is shown. The numerical results
are presented and discussed in Section 5. Finally, the
conclusions are presented in Section 6.

In previous studies, it has been found that cortical bone
behaviour under tensile creep loading is characterized by
three crucial regimes. The first regime is linear
viscoelasticity for stress levels below some threshold value
of stress. Beyond this value, the second and/or third
regimes, which correspond to the damage and
viscoplasticity modes, start. The second damage mode
represents the generation and opening of microcracks
leading to a stiffness (modulus) reduction and permanent
strains. The third viscoplastic mode is due to friction of the
closing (or sliding) of microcracks leading to permanent
strains but no extension of damage [5, 6].

A schematic representation of the stress history and
strain response of cortical bone during the creep and
recovery period is presented in Fig. 1. As can be seen, upon
the removal of the applied load, the viscoelastic strain is

recovered, while the viscoplastic strain is permanent. In

the constitutive model presented here, assuming small
strains, the total strain ( ) is decomposed into time-
dependent viscoelastic, non-linear damage and viscoplastic
components. For simplification purposes, the influence of
permanent viscoplastic deformations is neglected without a
significant loss in accuracy (e.g. see [7, 16]). Constitutive
equations, originally developed by Abdel-Tawab,
Weitsman, Smith and Schapery [10, 11, 17, 18] for
engineering materials, are employed here to model the
human cortical bone response.

A constitutive model based upon the fundamental
principles of irreversible thermodynamics and continuum
mechanics is proposed in [10, 11] to account for the
viscoelastic material response coupled with continuously
distributed damage. According to this constitutive model,
the viscoelastic strain-stress response assuming isothermal
conditions is defined by the relation

2
Constitutive model

2.1
Anisotropic three-dimensional behaviour
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viscoelastic properties of the material are not functions of
damage. It is assumed that the time-dependent stress and
damage influence the viscoelastic strain through the time-
dependent effective stress, [12, 13]. Generally, in the
case of three-dimensional deformations and damage, the
effective stress tensor is given by the following
transformation

where is the identity tensor and represents the

Kronecker delta, respectively. Throughout this paper, the
standard summation convention on repeated indices is used.

As presented in [10, 11], the viscoelastic compliance
tensor ( ) can be decomposed into instantaneous (elastic)

and transient (time-dependent) parts of the
undamaged material as
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In Eqs (5) and (6) represents the initial compliance
tensor. For the case of isotropic damage mechanics, the
damage variable is the single scalar variable and the

damage evolution equations are as follows
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2.2
Uniaxial creep model

The above three-dimensional continuum damage
mechanics constitutive model is utilized to predict the time-
dependent response of cortical bone tissue. The primary aim
of the research is to simulate the creep-damage behaviour of
that material. A relatively limited number of experimental
studies describe the cortical bone response under uniaxial
creep loading. Considering a one-dimensional case, the
total viscoelastic strain coupled with damage, defined by
Eq. (1), takes the following form
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Using Eq. (2) and by means of Eqs (3), (7) i (8), the effective
stress may be expressed in the standard form
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Figure 1 Schematic representation of the stress history and strain response during the creep-recovery period

If we, therefore, denote by the value of corresponding

to the failure of the material and the corresponding time to
failure by , the Eqs (15) and (16) yield
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where ( ) is the scalar damage variable associated with
continuously distributed microcracks (0 < < 1).
According to Pipkin [19], the following expression for the
transient part of the compliance tensor (Eq. (6)) is adopted
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Thus, the viscoelastic compliance defined by Eq. (4)
takes the following form

0         1J     J      J  t ��  , (13)

where , and are the material parameters which can be

determined from uniaxial creep tension tests. Furthermore,
the evolution law for the rate of the damage parameter is
taken from Kachanov [12] in the form
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where and are the material parameters, while the square
brackets are the McAulay brackets, which means that they
vanish if the expression in the brackets is less than zero.
Accordingly, the bone behaves as a linear viscoelastic
material for stress levels below some threshold value of
stress ), and it behaves as a viscoelastic damaging
material beyond the threshold Assuming that
initially = at = 0, and after performing the integration,

Eq. (14) takes the following form [10, 11]
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In the case of elasticity coupled with damage, the ratio of the
unloading compliance to the initial loading compliance
provides a measure of the level of damage. In particular, it is
well-known that (e.g. see the Kachanov relation in [12])
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where is the unloading "damaged" compliance evaluated

during unloading. Here, the "damaged" compliance is

normalized with the initial loading compliance , as given

by the ratio / . Following the established procedures

(Smith and Weitsman [17]), it is assumed that below the
threshold of stress ( < ) the normalized compliance does

not vary with stress and is insensitive to its level. However,
beyond the threshold ( > ) the normalized compliance is

enhanced linearly by stress, as follows
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where is the material parameter and is the unit step

function. After inserting Eqs (11), (13), (15), (18) and (19)
into Eq. (9), and after performing the integration, the
following equation for the total viscoelastic strain coupled
with damage is obtained
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hand side of Eq. (21) is taken into account.

Parsamian [7] used in his experiments the specimens
machined from the right tibia cortical bone from a 54-year
old man. Short creep tests were carried out by applying a
constant tensile load along the bone longitudinal axis for
five loading levels corresponding to a normal stress of
59,66; 61,55; 63,43; 66,97 and 74,73 MPa (specimens are
referred to as T12, T11, T7, T10 and T9). As reported in [7],
the material parameters and were obtained by the curve
fitting creep rupture data ( = 11,265, = 36,617). On the
other hand, the viscoelastic parameters

3.1
Creep material parameters

r C
r C

, and were

calculated by using the data from short term creep tests,
loaded below the threshold stress levels (prior to the
initiation of damage). In this case, the estimated threshold
value of stress ( ) was 75,29 MPa. Fondrk at al. [2]

presented a range of human bone constants from 68 to 79
MPa for the threshold stress that agree well with those
obtained by Parsamian [7].

The results for the material parameters are summarized
in Tab 1. The average values, given in Tab 1, are used for
the finite element predictions of the model. A graphical
representation of the time dependence of the cortical bone
stress-strain behaviour is given in Fig. 2.

In order to model the creep-recovery behaviour of
cortical bone, the material parameters are determined by
fitting the experimental results obtained by Melnis et al [1].
As described in this paper, the experimental samples were
taken from the middle segment of the tibia diaphysis from
five males, ranging in age from 30 to 35. The samples were
cut along the longitudinal axis of the bone in six cross-
sectional zones. Two samples were prepared along the
thickness of each zone (outer and inner layer). Thereafter,
creep-recovery testing was carried out at six different stress

�

σth
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3.2
Creep-recovery material parameters
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If we consider only the first two terms of the equation (21),
the relation for the viscoelastic strain coupled with damage
may be expressed in the form
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3
Material parameters

For the presented constitutive model, the material
parameters obtained experimentally are taken from
Parsamian [7] and Melnis et al. [  ]. In order to fit the curve
with respect to a series of the creep and creep-recovery data
points, Eqs (20) and (23) are simplified as follows
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where stands for the recovery time, and is the ratio of

"damaged" and initial compliance ( / )

K

J J
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Specimen � / MPa 0J -1/ MPa 1J -1 -/ MPa    s �( �

T7 63,,43 37,,734 12,,482 0,,0695

T9 74,73 46,262 4,621 0,0890

T10 66,97 27,432 15,6 0,0550

T11 61,55 41,349 9,998 0,0929

T12 59,66 36,74 10,907 0,0560

average values - 37,9034 10,7216 0,0724

Figure 2 Time-dependence of the stress-strain behaviour of cortical bone below a) and above b) the threshold value of stress (� = 75 29 MPa),th

Table 1 Material parameters obtained experimentally from creep tests [7]

� �
th

T
d th th

1 for ,

1 for .
K

k

� �

� � � �

���
� �

 	 ���
(25)

Here, in obtaining Eq. (24) only the first term of the right-
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levels between 30 and 105 MPa.
Based on the experimental results, the dependence of

the normalized compliance (ratio between the unloading
and initial compliances / ) with the creep stress of the

cortical bone is obtained.
The results shown in Fig. 3 are consistent with Eq. (25)

and the assumption that below threshold value of stress the
normalized compliance does not vary with stress ( / = 1),

while above the threshold value of stress a linear correlation
between the ratio / and stress occurs. Here, the filled

circles are the experimental data, while the solid line
represents a fit of Eq. (19) to these data. The best fits of the
data to Eq. (19) gave the following values for the threshold
stress and normalizing constant: = 70,5 MPa, =

0,002314 ( = 0,9989). The suitability of fitting is judged

by the coefficient of determination [20]. The threshold
value of stress, estimated in such a manner, is within the
limits presented in the paper [2].
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, , , ,

procedure is proposed where the viscoelastic paramaters

and are determined from the creep-recovery curve (Fig.
4b), and from the creep curve (Fig. 4a) under a small

loading where the plastic strain does not exist. The material
parameters determined by fitting the experimental results of
the creep/creep-recovery tests [1] presented in Fig. 4 are
given in Tab 2. Using these parameters and Eqs (24) and
(25), a graphical representation of the creep-recovery strain
as a function of time and stress for human cortical bone is
obtained as shown in Fig. 5.

In this section, the time discretisation and
computational integration procedures for the presented
viscoelastic/damage model are given. An algorithm for
integrating the similar one-dimensional constitutive model
has recently been proposed by Lovreni -Jugovi et al. in [8,
9]. In the present study, this computational algorithm is
modified for a better description of damage accumulation in
the cortical bone tissue subjected to a creep-recovery
loading. In order to implement the proposed viscoelastic-
damage model into the finite element algorithm, the
constitutive equations are transformed into an incremental
form by using finite differences The updated values of the
state variables, and , at the end of the
time step have to be found for a given value of
the incremental strain at time The constitutive
equations are transformed into an incremental form by
using the following integration operator

γ

.

.

4
Numerical formulation

ć ć

.

J1

J0

.

Figure 4 Creep/creep-recovery curves for viscoelastic paramaters determination

Figure 3 Dependence of the ratio between the unloading and initial
compliances / on the creep stress of cortical boneJ Jd 0

Furthermore, in order to determine the viscoelastic
parameters , and from the experimental data presented

in [1], the procedure proposed by Dasappa et al. [21] is used
in this study. These parameters are estimated using the
creep/creep-recovery tests data performed at various stress
levels. Firstly, the permanent (viscoplastic) strain ( ) (see

Fig. 1) is obtained as the total unrecovered strain after very
long recovery periods. The recovery period in the
experimental data by Melnis et al. is 5 times longer than
the creep period. Viscoelastic strain is then obtained by
subtracting the permanent strain (6 ) from the total strain

or the creep-recovery data ( (6 )) (Fig. 4). After that,

the viscoelastic parameters are obtained. In [17] a similar
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where is some function, is its value at the beginning of

the increment, is the change in the function over the

increment, and is the time increment.

For the stress levels below the threshold value of stress
(Parsamian [7]:

f
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4.1
Viscoelasticity
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=70 5 MPa ), Eq. (24) may be expressed by the following
incremental relation
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In order to preserve the numerical efficiency of the global
iteration strategy, the tangent stiffness matrix or the
Jacobian matrix is derived and applied thereby. This matrix
is obtained using the tangent modulus relating the
infinitesimal increase in the stress to the infinitesimal
increase in the strain. After the differentiation of Eq. (27),
the tangent stiffness is obtained as

Table 2 Material parameters determined by fitting the experimental results of creep/creep-recovery tests [1] presented in Fig. 4

Viscoelastic
parameters

Value Standard Error Units R2

1J 8,61449×10
�7

1,51269×10
�7

MPa
�1

·s
�γ

0,94219
� 0,27124 0,01606 -

0J 5,2217×10�5 4,17008×10�7 MPa�1 0,98651

Figure 5 Time-dependence of the stress-strain behaviour of cortical bone. The filled circles are the experimental data from [1]

The above nonlinear Eq. (31) is solved by the Newton-
Rhapson iterative method, and, thus

where
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where t tn
E � follows from Eq. (28).

4.2
Viscoelasticity coupled with damage

For stress levels above the threshold value of stress ( >
), after some suitable formula manipulations Eq. (24) may

be rewritten in the following nonlinear form
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where ( 1) abbreviates the current iteration step, and
is calculated analytically by
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Using Eq. (30), the explicit expression for the tangent
stiffness is obtained
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. (35)

In Eqs (34) and (35) follows from Eq. (31).
For more accurate prediction of viscoelastic strain

coupled with damage, instead of Eq. (24), Eq. (23) can be

. t tn
E �
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used. In this case, the following incremental relations can be
obtained from Eq. (23):

a) for creep ( ):0� �t t0
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b) for recovery � �0t    t� :
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In Eqs (36), (37), (39) and (40) the following
abbreviations are introduced

.

thB
C

� � � � 	
� , (42)

� �d th1 2 2D k � � �� ��   � 	� � . (43)

After determining the stress increment , the updated

value of the stress tensor, as well as all internal variables,
can be calculated. The derived integration algorithm and the
corresponding tangent stiffness have been implemented at
the material point level of the three-dimensional solid
continuum finite elements in the software ABAQUS/
Standard [14] by using the user-defined material subroutine
UMAT.

In order to validate the numerical algorithm proposed,
the creep and recovery simulation results are compared with
the experimental data. The FE model considered here is,
simply, a three-dimensional single finite element (linear
brick C3D8 element), used to obtain the response due to the
uniaxial creep-recovery loading. A tension load is first
applied to the FE model using an elastic calculation at time
= 0. After this instantaneous loading, the load is kept
constant for some period of time, and subsequent time-
dependent creep analyses are performed.

After the creep period, the applied load is removed and
held at zero during the recovery period (see Fig. 1).

The FE model with the calibrated material parameters,
shown in Tab. 1, is used to analyze the response of bone to
creep loading. Fig. 6 shows a comparison between the
experimental data and the predictions at different
combinations of stress levels. Furthermore, good agreement
between the experimental measurements and present
algorithm is observed in Fig. 6. The predictions deviate
from the experimental results only for the cases in which the
averaged values of the material parameters are taken from
Tab. 1. Additionally, it is found that if we approximate the
hypergeometric function by using only the first term or the
first two terms in the series (the right-hand side of Eq. (21)),
similar results are obtained.

Moreover, the derived numerical algorithm with the
material parameters calibrated by fitting the experimental
results obtained by Melnis et al [1] (see Tab. 2), is used to
analyze the response of bone to creep-recovery tests. A
comparison of strain versus time between the solutions
obtained in the present paper and the published
experimental [1] and numerical [15] solutions for creep and
recovery tests at three different stress levels is shown in Fig.
7. Again, good agreement is obtained between the
experiments and the numerical model. Only a slight
difference occurs in the recovery period in Fig. 7c), where
the applied stress during the creep period was 90 MPa. The
reason for this is that our model neglects the effect of
viscoplastic deformation which increases with increasing
the applied stress level.

.

5
Numerical results

5.1
Creep tests

5.2
Creep-recovery tests

t

��
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Figure 6 Comparison of strain versus time between the present study
and the published experimental measurements by Parsamian [7] for:

a) 63,43 MPa, b) 74,73 MPa, c) 66,97 MPa, d) 61,55 MPa and
e) 59,66 MPa.

Figure 7 Comparison of strain versus time between the present study
and the published experimental [1] and numerical [15] solutions at:

a) 60 MPa, b) 75 MPa, c) 90 MPa

6
Conclusion

A three-dimensional constitutive model for the human
cortical bone tissue to predict the experimental
viscoelastic/damage behaviour in creep-recovery tests is
presented. For the proposed constitutive model, the material
parameters are determined by fitting the experimental
results of the creep-recovery tests carried out by Parsamian
[7] and Melnis et al [1]. Small strains are assumed and, for
simplification purposes, the influence of permanent strains
is neglected. A computational algorithm for the integration
of the proposed constitutive model is derived and
implemented in anAbaqus UMAT subroutine. The accuracy
of the computational procedure is verified by comparing the
model predictions with the published experimental data and
numerical solutions. Thereby, the creep and creep-recovery
deformation processes in cortical bone at different loading
levels are considered. The computational algorithm shows
an excellent capability to describe the tensile behaviour of
cortical bone for the specific mechanical condition
analysed.

The present analysis considers only the uniaxial creep-
recovery test of human bone. Therefore, to fully validate the
presented constitutive model, it is necessary to analyze
additional tests. Moreover, future study will focus on
coupling the presented viscoelastic/damage model with a
viscoplastic framework [22, 23] and extending this model to
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more complex orthotropic material behaviour. Hence, more
extensive and accurate experimental data are required to
determine the material parameters and fully validate the
computational model, which is the scope of the current
study by the authors.

This study is supported by the Ministry of Science,
Education and Sports of the Republic of Croatia within the
framework of the Research Project No. 120- 1201910-1906.
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