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A note on approximate systems of compact spaces

In this paper we define a space o (X ) for approximate system of compact spaces.The
construction is due to H.Freudenthal for usual inverse sequence [4,pp. 153-156]. We
establish the following properties of this space: (1) The space o(X)is a paracompact
space,(2) Moreover,if X is an approximate sequence of compact (metric) spaces,then
o(X)is a compact (metric) space (Lemma 2.4.). We give the following applications of the
space o(X): (3) If X is an approximate system of continua,then X=IimX is a continuum
(Theorem 3.1),(4) If X is an approximate system of hereditarily unicoherent spaces,then
X=IlimX is hereditarily unicoherent (Theorem 3.6.),(5) If X is an approximate system of
the arboroids (generalized trees,trees,arcs) with monotone onto bonding mappings,then

=limX is an arboroid (generelized tree,tree,arc) (Theorems 3.18.,3.20.,3.21.,3.25.).
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1 Introduction

Let U be any covering of a space X.For any subset Y of X we define St(Y,U)=J{Ue

U:UNY # 0}
Similarly,we define St = {St(U,U):Ue U}. Inductively,for each positive integer
n,St"U = St(St™~1U),where St1U=StU. .

We say that a cover V is a star refinement of a cover U if the cover StV is a
refinement of U.

An open cover W of a space X is normal [3,pp. 379] if there exists a sequence
Wi, Wh, ... of open covers of a space X such that W; = W and W4, is a star refi-
nement of W; for i=1,2,... A T, space X is paracompact iff each open cover of X is
normal [3,Theorem 5.1.12.]. A T; space X is normal iff each locally finite open cover
of X is normal [3,pp. 379].The set of all normal covers of X is denoted by Cov(X).
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IfU,VeCov(X) and V refines U, ,we write V<U.Iff,g:Y—X are U-near mappings,i.e.
if for any y€Y there exists Ue U with {(y),g(y)€U,we write (f,g)< U.

The approximate inverse systems were introduced by S. Mardesi¢ and L.R. Rubin
[12] for compacta and by S. Mardesi¢ and Watanabe [13] for general topological spaces.

DEFINITION 1.1 An approzimate inverse system X={X,,Uas,Pas,A} consists
of the following data: A preordered set (A,<) which is directed and has no maximal
clement; for cach a€A,a topological space X, and a normal covering ¥, of X, (called
the mesh of X,) and for each pair a<b from A,a mapping p,;:X; —X,.Moreover the
following three conditions must be satisfied:

(A1) The mappings pusPoe and pyc are U - near,a<b<c,i.e. {PatPie,Puc)< Ua-

{A2) For each a€A and each normal cover Y €Cov(X,) there is an index b>a such
that {pacPed,Pad)< U, whenever a<b<c<d.

(A3) ‘For each a€A and each normal cover U €Cov(X,) there is an index b>a such
U, <pzlU) = {p;2(U):Ue U} for each c>b.

In the case of metric compact spaces we replaces the normal coverings by real

numbers [12].

If the spaces X, are T; paracompact,then in the above definition one can use all
open coverings on a spaces X,,a€A since in this case each open cover is normal.

Let X={X4,Ua,Pab,A} be an approximate system.A point x=(x4)€ [[{Xqs : @ € A}
- is called a thread of X provided it satisfies the following condition:
(L) (Va €A)(YU € Cov(Xq))(3b > a)(Ve > b)pac(xc) € st(xq,U).

The canonical limit of X is a subset of the product of the spaces X, [12,pp. 592].

If X, is a T3 5 space,then the sets st(xq,U),U € Cov(X,), form a basis of the topology
at the point x,.Therefore,for an approximate system of Tychonoff spaces condition (L)
is equivalent to the following condition:
(~L)" (Va € A) im{pac(xc):c>a} = x,.

THEOREM 1.2 For any approzimate inverse system X the canonical li-
mit limX is closed in [[X..Moreover,if all X, are compact and non-
emply,then limX is compact and non-empty.

Proof.See Lemma (1.16) and Theorem (4.1) of [13].

LEMMA 1.8 Let X. = {X,,Us,par,A}be an approzimate system of Ty-
chonoff spaces,let X be the canonical limit of X and let BCA be a cofinal
subset of A.Then the collection B of all sets of the form p;*(U,),where
beB and V, CX, is open,is a basis of the topology for X
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Proof.See [13,(1.18) Lemma.] l

THEOREM 1.4 Let X = {X,,U,,par,A}be an approzimate inverse system of com-
pact spaces with limit X.For each closed FCX we have

F = ({7 (el F)) : a € 4},

Proof.It is obvious that FCp (pa(F)) for each a€A.Thus,FC (N{p;*( pa( F )): a€
A}.If x¢F,then,by the property (B1)* [13,pp. 614.] we infer that there exists an a€A
and an open set U, CX, such that x€p;!( U, )CX - F.This means that ps(x)&€ps( F

) and x¢ p; *(pa(F)).H

THEOREM 1.5 Let X = {X,,Uas,Pap,A}be an inverse system of compact spaces with
limit X.For each pair of disjoint closed sets F,GCX there ezists an a€A such that for

each b>a py (F)\ps(G)= 0.

Proof.Let U,V be disjoint open sets about F,G.There exists a pair Ug,Vo of open
sets such that FCUy, CClUy CU and GCVy CClVy CV. By virtue of the property
(B2) there exists an acA and an open cover U, of X, such that p; U, refines U
= {U,V,U0,V,X-(ClUg UC1V()}. Let V, ={Vy:bEB} be the star refinement of U,.
Consider the sets By = {b€B : 8 #p;1(Vs) CUo} and B; = {beB : 0 #p;*(Vs) CVo}.
Clearly By and B; are disjoint and non-empty. Now we consider the sets Wo = [ J{V}
: b€Bo} and Wy = [J{Vs : bEB;}.Let us prove Wo (W, = 0.If we assume that
Wo (W1 # O,then Vy [Vs, # 0 for some by €Bo and b; €Bj.Since stV, refines
U ,,there exists a We U, such that Vi, |JVy, CW. Therefore, U (p; 2 (W)2pz (V) #
0 and Vo p; *(W)Dp;1(Vs,) # 0. This induces a contradiction,because p; U, refines
U and Ug(Vo = 0.Thus,Wo (YW, = 0. Moreover,we have that st(ps(Uo),Va) = Wo
and st(p.(U;),V,) = W, B
By total induction and by the above Theorem we obtain

THEOREM 1.6 Let X = {X,,Uq,pap,A}be an inverse system of compact spaces with
limit X.For each finite collection {Fy,...,Fy} of mutually disjoint closed subsets of X
there ezists an a€ A such that for each b>a {py(F1),...,po(Frn)} is a collection of mu-
tually disjoint sets.

THEOREM 1.7 Let X = {X,,Uq,pap,A}be an inverse system of compact spaces with
limit X.For each closed FCX and each open UDF there ezists an a€A such that for
each b>a there is an open set U, Dpy(F) with the property

P, M(po(F)) C py 1(Uy) C UL

137
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We close this section with

THEOREM 1.8 Let X = {X,,Ua,pav,A}be an approzimate inverse system.For each
a€A the family P = {pay(Xp):b>a} is a net in X, such that LimP = p(X),X=limX.

Proof.From the definition of the threads it follows that p,(X)CLiP.On the other
hand,from the property (B2) we infer that if x¢p,(X),then x¢LiP.Thus,
Pa(X)DLsP DLiP.Therefore,LimP = p,(X),X=limX B

2 The Freudenthal space ¥(X)

The following construction is similar to the construction due to H. Freudenthal
[4,pp. 153.] for usual inverse sequence.For any usual inverse system see [11].

Let X = {X,,Us,Pab,A}be an approximate system of compact spaces with limit X
and the projections p,:X=limX—X,.The Freudenthal space o(X) associated to X is

a set
X) = X JUXa:acay) (1)

where all X, and their limit X are considered as being disjoint sets [11] in which a
topology is defined as follows.If U, is an open set in X,,let

= | H{pa' (Ua) : b > a} | pz ' (Ua) (2)

Now,we define a topology T on o(X) by a base [3,pp. 27] B which consists of all open
sets U, in all X, and all Uz for all open sets U, CX,,a€A. Since the sets p;*(U,)
form a basis for X,it follows that B is a cover of o(X).By virtue of [3,pp. 27] we need
to prove that for each x€ o(X) and each pair B,C€ B with xeB[C there is a D€ B
such that x€e DCB(C.It suffices to prove this statement if B is some U and C is some
U;.If xis the point of X.,then x is contained in a set p;cl(Ua)ﬂpb_cl(Ub) which is open
in X. and thus belongs to B.If x is the point of X, then

z € pa ' (Ua)[ )2y (Us) (3)
L.e.,Xa=pq(x)€X, and x,=py(x)€X;.Choose V, €Cov(X,),V, €Cov(X;) such that
St(zq,Ve) CUs and St(zp, V) C Uy (4)

Take W, €Cov(X,),W) €Cov(X;) such that St?W, <V,,St?W; <V, and an index
c€A such that ¢>a,b,(A2) and (A3) hold for a,b,W,,W; and (L) holds for x,a,b,W,,Wy.
Put

V, = St(zc,Ue) (5)
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Because of (3),the proof will be completed if we show that
zev:CcU,(\U; (5.1)
We first prove
z € p; (Vo) C 02 "(Ua)[ )25 ' (Us) (6)
Consider a point y=(yq)€p, *(V.).By (5) there is an U; € U, such that
Tey Ye € Ul (7)

By the choice of ¢ (property (A3)) U, <p;1(Wa) and U, <p;.}(Ws).
This means that there is a W, € W, and a W, € W, such that U; Cp;}(W;) and
U, (_:pb_cl(Wz).Thus,(7) implies

pac(xc)vpac(yc) €EW: and pbc(zc),pbc(yc) EW, (8)

By the choice of ¢ (property (L)),there are a W3 € W4, W4 € W, such that
zaypac(xc) € W3 and zbypbc(zc) € Wy (9)

Since ypr_l(Ub)(_:X,there is a d>c sastisfying (L) for y,a,b,W,,Wj and for y,b,Ws.
Thus,there exist a W € W,,Ws € W} and an Uy € U, such that

Pad(Ya), Ya € Ws  and  pya(ya), vo € We (10)
and

Ped(Ya), Y € Us (11)

By the choice of ¢ (property (A3)),U. <p,. (Wa and U, <p,, (Wb Hence,there exist a
W7 € W, and Wg € W, such that Ug Cp;}(W7) and Uy (;pbc (Wg).By (11) we have

PacPed(Vd), Pac(¥e) € Wz and  pucpeda(Va), Poc(ye) € Ws (12)

By the choice of ¢ (property (A2)),we also have a Wg € W, and a W5 € Wy such
that

PacPed(Yd), Pad(ya) € Wo and  pucpea(ya), pra(va) € Wio (13)
Now,(9),(8),(12),(13),(10),St*W, < V, and St?W, < Vy yielda V' € V, anda V"’ € V,

such that xq,y, €W [JW3 JWs UW7[UWo CV’ and xp,y, EW2 UW4UWe UWs UW 10
gvlll
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This and (4) imply pa(y)=y« €St(xa,Va) CUq and pi(y)=ys €St(xs,Vs) CU,;.This
means that yEp;l(Ua)ﬂpb_l(U,,), i.e. , (6) is proved. In order to prove (5.1.) it suffices
to prove

Pc_dl(Vc) C P;dl(Ua)ﬂP;dl(Ub) Vd > c (14)
Let z4 Epc_dl(Vc).By (A2) we infer there are W13 € W, and W32 € W, such that
PacPed(2d), Pad(2zd) € W11 and  pycped(24), poa(za) € Wiz (15)
Since pca(zq4)EV. we have by (A3)
Pac(Zc); Pac(Pea(24)) € Wi and  pic(c), Poe(pea(24)) € Wa (16)

From (15),(16) and (L) for x,a,b,W4,W; (choise of d) it follows x4,paq(z4)€ StV, and
xa,pad(zd)e StVs.By ( ) pad(zd)EU and Pbd(zd)eUb We infer that z4 Ep;,l(Ua)n pb_dl
(Us) and (14) is proved.Hence,we have xeV} CU:(U;, i.e., (5.1.) is proved.This
means that B is a basis for some topology T on a()_()

A net in a topological space X [3,pp. 73.] is an arbitrary function from a non-
empty directed set D to the space X.Nets will be denoted by N' = {x4:d€D}.A point
x€X is called a limit of a net N = {x4:d€D} if for every neighborhood U of x there is
an index dg €D such that x4 €U for each d>do.We say that the net- A converges to
x.A point is called a cluster point of a net N' = {x4:d€D} if for every neighborhood
U of x and every dg €D there exists an index d>dg such that x4 €U.

LEMMA 2.1 Let X = {Xo,Ua,pas,A}be an approzimate system of non-
empty compact spaces with limit X.

1. If B s cofinal in A,then each family N ={z,:z, €X,,ac B} is a net in
o(X ) which has at least one cluster point zc XC o(X ).

2. Each point zcX is a limit of the net {pa(Ta ):a€B}.

Proof.For each-ac A we consider a net N y={pqs(xs):b>a,bEB}.From the compactness
of X, it follows that a set C, of all cluster points of A/, is non- empty Clearly,each C,
is closed and compact in X,.First,we prove

(a) For each acA C, is a non-empty subset of p.(X).

If we suppose that some ¢, &p.(X),then ¢, and p,(X) have disjoint neighborhood U
and V.By virtue of the property (B3) ™ [13,pp. 606,615] there is an index b>a such that
Pac(X:)CV for each ¢>b.This is impossible since there exists an index c¢>b,c€B,such
that pac(xc)EV (cq is a cluster point of the net A).

From (a) easy follows
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(b) For each acA the set p;'(C,) is non-empty.

(c) For each acA and each neighborhood U, of C, there is an indez b>a
such that p..(C.)C U, for each c>b.

By virtue of the normality of X, there is an open set V, such that C, CCIV, CU,.If
we suppose that for each b€A there is an index ¢>b such that p,(C.) intersects
Fa=X,\Ug,then we have a net M = {p,c(z.)} in the compact set F,.This means that
there is a point f, in F, which is a cluster point of the net M.Now,we prove that {, is
a cluster point of the net A/.Let W, be any neighborhood of f, and let & be a cover of
X, such that St/ is a refinement of a cover {U,4,X,\CIV,,W,}.There is an index d€A
such that pya(ca)€St?(fs,U) since {, is a cluster point of M.We may assume that there
is a x, € N such that pg,. (%e),ca € Vo € U, since cq is a cluster point of A 4.We take
such index e€A which satisfies (A2) and (A3).Thus,we have paapae(Xe),Padca € St2U
and padPde(Xe),Paexe € Std.We infer that f;,pee(x.)€EU1 € U.Finally,f;,pu.(xc)EW,.
This means that {, is a cluster point of A/.This is impossible since Cq CVG.The proof
of (b) is completed.
By the same method of proof,using the definition of the threads,we have

(d) For each acA and each neighborhood U, of C, there is an indez b>a
such that p,(p;1(C.))C U, for each c>b.

(e) The set C = N{p;(C.):ac A} is non-empty subset of X.

Let K be a set of all cluster points of nets {y,:y. €p;*(Cq):a€A}.Clearly,K is non-
empty since X is compact.Let us prove K=C.It suffices to prove KCC since the inclusion
CCK is obvious.Let k be any point of K.Suppose that p,(k) is not in some C,.There
are disjoint open sets U,V such that C, CU and p,(k)€V.By virtue of (d) there is an
index beA such that p,p;*(C,) is in U.This means that p; (V) is a neighborhud of k
which contains no points of p_ *(C,) for each ¢>b.This is impossible since k is a cluster
point some net {y,:y, €p;*(Cs):a€A}.We conclude that KCC and K=C.

In order to complete the proof it suffices to prove that each k€K is a cluster point
of the net A/.Let U be any neighborhood of k in o(X).This means that k€p; U, and

pa(k)€U,.Since pa(K)EC (see (a)),we infer that p,(k) is a cluster point of /4. Thus,for
each bEA there is an index c¢>b such that p,.(x.)€Uq,where x. € A .This means
that x, €p;}(Uq),i-e.,x. €U . The proof is completed since the second statement easy
follows from the definition of the topology T on o(X).H

LEMMA 2.2 Let X = {X,,U,,par,A}be an approzimate system of compact
spaces.If U is a neighborhood of X=limX in o(X ),then there exists an acA
such that X, CU for each b>a.
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Proof.Since X is compact and since the sets (2) form a basis for open sets of the points
of X,one can find {U} :i=1,...,n} such that

v=|J{U: :i=1,..,n} (17)

and XCVCU.In order to complete the proof,it suffices to find an a€A, a>a,,..., a,,
such that
X, eV (18)

since then we have
X, CVCUb>a (19)

Suppose that not exists an a€A which satisfies (18).This means that for each acA
there is a point x, €X, - V.We obtain a net {x,:a€A} in o(X) which has no a cluster
point in VDX.This contradicts Lemma 2.1.The proof is completed.

LEMMA 2.3 Let X = {X4,Us,par,A}be an approzimate system of com-
pact spaces.Then o X} 18 paracompact. Moreover,if X is an approzimate
sequence, then o(X) is compact.

Proof.Let V={V,} be any cover of ¢(X).Since X is compact,there is a finite sub-
collection,consisting of sets V,(1),...,V (n) Which cover X.Let V be the union of this
subcollection.By virtue of Theorem 2.2. there is an a€A such that all X,b>a,are in
V.Let us recal that the set X = (|U{Xy:b>a}|JX is of type (2) with U,=X, and it is
open in o(X).Now consider the following collection U of open sets of o(X):take first
the open sets X} (\V u(1),--, X [V u(n) for members of U.Furthermore,for each beA -
{c:c€A,c>a} consider the open covering {X;[\V,} of X; and take the members of fi-
nite subcovering as new members of . This is possible since X; is compact and open in
o(X).The family U of open sets of o(X) is star-finite covering of o(X) which refines the
covering V.Moreover,l{ is a locally finite refinement of V.The proof of paracompactnes
1s completed.If X is an approximate sequence,then we obtain a finite subcovering since
the set A - {c:c€EA,c>a} is finite.The proof is completed.B
Let us note that from the proof of Lemma 2.3. it follows

THEOREM 2.4 Let X={X,, ,én,Pmn,N}be an approzimate inverse sequence
of compact metric spaces X,.Then o(X) s a compact metric space.

Proof.The space limX is a compact space.Thus,limX has a countable base B; since
it is metrizable space [3,4.1.15. Theorem|.This means that the cardinality of B is
Ro.Thus,the space o(X) is metrizable [3,pp. 351].8

We close this Section with the following theorem which is similar to the theorem
for usual inverse system of compact spaces due to S. Mardesi¢ [11, Theorem 4.].
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THEOREM 2.5 Let X = {X,,U,,pa,A}be an approzimate system of com-
pact spaces and let f:X— R be a mapping of its limit into a simplicial
complex. Then there exists an ac A such that for each b>a one can define
a mapping f,:X, — R with the property that fypy, 1s homotopic to f.

Proof.We may assume that R is a finite simplicial complex since f(X) is compact
and is contained in a finite subcomplex of R.There is a mapping F:V—R,where V is
a neighbourhood of X in ¢(X),which is an extension of f since each finite simplicial
complex is an ANE for normal spaces.For each point x€X there is a simplex s(x) of R
such that f(x)€s(x).From the continuity of F it follows that there are a neighbourhood
V(x)CV of x in o(X)such that F(V(x)) is a subset of s(x).Let W be the union of all
V(x).Obviosly,W is the neighbourhood of X in ¢(X).By virtue of Lemma 2.2. there
is an a€A such that X, CW for each b>a.For each x€X we have py(x)€V(x) and
F(py(x))€s(x).We define f, as the restriction F|X;.The homotopy H(x,t)=tf(x) +(1-
t)fyps(x) is the desired homotopy.The proof is completed. l

3 Applications

In this Section we give some applications of the space o(X).We start with

THEOREM 3.1 Let X = {X,,U,,pas,A}be an aprozimate system of conti-
nua. The space X=limX 1s a continuum.

Proof.By virtue of 1.2. X is compact.Suppose that X is not connected.There is a pair
F,G of closed (in X) disjoint subsets of X.Since X is closed in o(X),the sets F and G
are closed in normal space o(X) (Lemma 2.3).There are two disjoint open (in (X))
sets U and V which contain F and G.By virtue of Lemma 2.2. there is an a€A such
that X, is contained in U{JV for each b>a.It is easy to prove that X, intersects U and
V.This is impossible since X is connected .l

In the sequel we use the notion of a net of sets in the sense of [14] or [8,pp. 343.].

A net of sets {A,:n€D} of topological space X is a function [14] defined on a
directed set D which assigns to each n€D a subset A, of X.

If {A,,:n€D} is a net of subsets of X,then:

1. A limit infertor LiA,, is the set of all points x€X such that for every neighbor-
hood U of x there exists ny €D such that U intersect A, for each n>ng.

2. A limit superior LsA, is the set of all points x€X such that for every neigh-
borhood U of x and each ng €N there is n>ng such that U intersect A,,.

143
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A net {A,:n€D} is said to be topologically convergent (to aset A)if LsA, =LiA,
(=A) and in this case the set A w1ll be denoted by LimA,,.

LEMMA 8.2 Let {C,: nED} be a net of subsets of a space X such that
- LiC, # 0.Let U be a nerghbourhood of LsC, such that X\U is com-
pact. Then there is an meD such that C, CU for each p>m.

Proof.Suppose,on the contrary,that for each meD there is a peD such that Z,=C,\U
is non-empty.Let z,, be any point of Z, and let P be a set of all such p€D.A net {z,:p€P}
has a cluster point z in a compact X\ U.This is imposible since z€LsC,, CU.The proof
is completed .l

LEMMA 8.3 Let {CﬂfneD} be a net of connected sets C, of a normal
space X such that LiC, # 0.If for each neighborhood U of LsC, the set -
X\ U s compact,then LsC, is connected. -

‘Proof.Suppose that LsC,, is disconnected.This means that there are disjoint closed
subsets F and G of LsC,, such that LsC, =F|JG.The sets are closed in X since LsC,
-is closed in X.From the normality of X it follows that there are two disjoint open
sets U and V such that FCU and GCV.This means that LsC, CU|JV.We infer that
either LiC, ((U# 0 or LiC, (JV# 0.Let LiC, [JU# 0.By virtue of Lemma 3.2. there is
a méeD such that C, CU|YV for each p>m.Clearly,there is some p>m such that C, .
intersects U (since LiC, (JU# 0) and C,, intersects V (since V(LsC, # 0).This means

that C, CU|JV and UNC, # 0,VNC, # 0.This contradicts the connectednes of C, .l

LEMMA 3.4 Let X = {X;,L{a,p-ab,A}be an apfo:c_imate.system of the com-
pact spaces.Let-{C,:acA,C, CX,} be a net of continua such that LiC, s
non-empty. Then LsC, is a non-empty subcontinuum of X.

Proof.lt is clear that LiC, CLsC, CX.Suppose that LsC, is disconnected. We infer that
there is a pair F,G of disjoint closed subsets of LsC, such that LsC,=F|JG.The sets F
and G are closed in X and in o(X).There are disjoint open sets of o(X)(since o(X)is
normal) such that FCU and GCV.We infer that either LiC, (U# 0 or LiC, (\V# 0.Let
LiC, (YU# 0.We claim that there is an a€A such that C, CU{JV for each b>a.In the
opposite case we obtain a net N' = {x;,:b€A,x, €Cy,b>a}.By virtue of Lemma 2.1. the
net A has a cluster point in X.As in the proof of Lemma 2.1. we see that x¢U|JV,which
is imposible since x€LsC,.Thus,there is an a€A such that C, CU|JV,b>a.lt is clear
that there is an index b>a-such that C, intersects U ( since LiC,(\U# 0) and V -
(since V contains the points of LsC,).But,this is impossible since Cy is connected and
Cp CU|JV.The proof is completed.H
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LEMMA 3.5 Let X = {X,,U,,p.,A}be an approzimate system of the non-
empty compact spaces with limit X.For each closed FCX we have a net
N(F) = {p.(F):ac A} and,for each acA,a net No(F) = {paps(F):b>a }
such that

1. pa(F) = LimN.(F),
2. F = LimN(F).

Proof.From the definition of the threads it follows that ps(F)CLIN 4(F). On the other
hand,from property (B2) [13,pp. 601,615] we infer that if x¢Zp,(F), then x@LsA 4(F).
Thus,pa(F)DLsN ¢ (F) DLiN4(F).Hence,LimA 4(F) = ps(F). The second statement
of Theorem it follows from 2. of Lemma 2.1.Namely,we have FCLiN(F).On the
other hand,for each point yeX\F there is an index bEA such that py(y) and py(F)
have disjoint neighborhoods Uy and V.1t follows that U} [p(F) for each ¢>b.This
means that yZLsA i.e.,LsN CF.Finally,we have F=LsA =LiA =LimA and the proof
is completed .l

We say that a space X is hereditarily unicoherent if for each pair C,D of closed
connected subsets of X,with C|JD connected,the intersection C[]D is connected.

THEOREM 3.6 Let X = {X,,U,,pas,A}be an approzimate system of here-
ditarily unicoherent compact spaces.Then X = limX 1is hereditarily uni-
coherent.

Proof.Let C,D be a pair of subcontinua of X such that C|JD is connected . We
must to prove that C{)D is connected.By virtue of the above Lemma we have C =
LimN/(C) and D = LimAN (D).Each Fo=ps(C)(pa(D) is connected since X, is here-
ditarily unicoherent.By virtue of 2. of Lemma 2.1. each point x of C(\D is a limit
of a net {p,(x):a€A}.Thus,0 #LiF, DC[\D.On the other hand for each y¢C[\D we
have y¢C or y¢D.Let y¢C.By virtue of the definition of a base in X there is a beA
such that py(y) and py(C) have the disjoint neighborhoods U, and V;.From 2. of
the above Lemma it follows that there is an index c¢>b such that p.(C)CV,.This
means that U} [p.(C)= 0.We infer that y¢LsF,.Thus,LsF, CC[{|D.From this and
the relation LiF, DCD it follows C[\D=LiF,.By virtue of Lemma 3.4. LsF, is
connected. Thus,C(\D is connected and the proof is completed.H
By the same method of proof as in the proof of Theorem 3.6. we have

THEOREM 3.7 Let X = {X,,Uq,pav,A}be an inverse system of continua.If all the
spaces X, are unicoherent and if all p,, are onto,then X = limX is unicoherent.

REMARK 3.8 Without ontoness of the bonding mappings the aproximate limit of
unicoherent continua need not be unicoherent since this is not true for usual inverse
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limit [15,pp. 228, REMARK.].If X = {X,,€q,Pab,A }is an usual inverse system of metric

locally connected unicoherent continua,then the usual limit is unicoherent (without

assuming the bonding maps are onto) [15,pp. 228.,REMARK.].This means that the
~following question is natural:

Is it true that the approximate limit of an approximate system of metric locally connec-

ted unicoherent continua and into bonding mappings is unicoherent?

Now we give the affirmative answer on the above question.Firstly,we give some
necessary definitions.
Let S be the circle |z] = 1 in the complex plane.The space of the real numbers we
denote by R. »
A continuous mapping f:X—S is said to be equivalent to 1 onaset Y C X, written
f ~ 1 on Y,provided there exists a continuous mapping ¢:Y—R such that [18,pp. 220]
f(x) = &™) xe Y.
" Two mappings fy,f,:X—$ will be said to be ezponentially equivalent or simply
equivalent on a set YCX provided their ratio f; /f2 is ~1 on Y [18,pp. 225].
A space X will be said to have the property ( b ) provided every mapping f:X—S
. is ~ 1 [18,pp. 226].
A mapping f:X—S homotopic to the mapping fo:X—S,fo(x)=1 for all x€X, is said
to be homotopic to 1,f~1. v
In the sequel we need the followmg facts: (a) In order that a mapping £:X—S be
~1 it is necessary and sufficient that f be homotopic to 1 [18,pp. 226]. (b) In order
that two mappings f;,f2:X—S be equivalent it is necessary and sufficient that they be
homotopic [18,pp. 226]. (c) Every connected space X having property (b) is unicoherent
[18,pp. 227]. (d) In order that a locally connected continuum have property (b) it is
necessary and sufficient that it be unicoherent. (e) If X is any space and f,g:X—S™
two maps such that for each x€X,f(x) and g(x) are not antipodal,f~g.In particular,a
nonsurjective :X—S" is always nullhomotopic [2,pp- 316].

THEOREM 3.9 Let X={Xn,en,Pmn,N}be an approzimate inverse sequence of locally
connected unicoherent metric continua. The X=limX 1is unicoherent.

Proof.Let us prove that X has the property (b).Let f:X—S be any mapping.By virtue
of Lemma 2.5. there is an a€A such that for each b>a there is a mapping g:Xj —S such
that gpy and f are homotopic.From the proof of Lemma 2.5. it follows that there is an
index bEA such that for each f(x)E€S we choose an open set Vy such that V, contains
no antipodal points.We obtain a cover V = {V,:x€X}. We infer that f~gp,.From (a)
and (d) it follows that g~1.Consequently,gp, ~1 [9,pp. 362, Teorema 4.].Hence,f~1.By
virtue of (a)'we infer that f~1,i.e.,X has the property (b).Finally,X is unicoherent (see
(<) B ~ |
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A continuum X is said to be hereditariy unicoherent at a point peX if
the intersection of any two subcontinua of X,each of which contains p,is connected [1].
It is proved that a continuum X is hereditarily unicoherent at a point p iff,given any
point x€X,there exists a unique subcontinuum px which is irreducible between p and

x [5].

THEOREM 3.10 Let X = {X,,Ua,pap,A}be an inverse system of continua. If 2=(z,:
a €A) is a thread such that all the spaces X, are hereditarily unicoherent at a point
Z4,then X = limX 1is hereditarily unicoherent at a point 2.

Proof.Modify the proof Theorem 3.6.H

A mapping £:X—Y is said to be monotone relative to a point z€X if for
each subcontinuum Q of Y such tha f(z)€Q the inverse image f~1(Q) is connected [1].

A quasi-order < on a set X is a reflexive and transitive binary relation.If this
relation is also antisymetric,it is called a partial order.It is order-dense if whenever
x<y (i.e. x<y and y£x),there exists a z€X such that x<z<y.An element z€X is called
a zero of X if z<x for each x€X.A quasi-order on a topological space X is said to be
closed if its graph is a closed subset of the product space XxX.

A generalized tree means a hereditarily unicoherent continuum which admits a
closed order-dense partial order with a zero.

If a continuum X is hereditarily unicoherent at a point z,then the quasi-order <,
on X defined by x<,y if and only if zxCzy,where zx is a unique subcontinuum which
is irreducible between z and x,is said to be a weak cutpoint order with respect z.

Let continua X and Y be hereditarily unicoherent at a point p and q respectively
and let <, and <; be weak cutpoint orders on X and Y with respec to p and q
correspondingly.A mapping f:X—7Y onto Y is said to be order-preserving (or <,-
preserving) if a<,b implies f(a)<,f(b) for every a,beX [1].

The following property of mappings monotone relative to a point will be needed in
the sequel.

THEOREM 3.11 (1,PROPOSITION 2.) .Let continua X and Y be hereditarily
unicoherent at points p and gq,respectively,and let f:X—Y be a mapping onto Y such
that f(p)=q. Then the following conditions are equivalent:

1. f1is monotone relative to p,

2. f(vz)=f(p)f(z) for each z€X,

3. fis <p-preserving,

and each of them 1s implied by
4. f/pz is monotone for each z€X.

147
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THEOREM 3.12 Let continua X and Y be hereditarily unicoherent at points p and
gq,respectively,and let f:X—Y be a mapping of X onto Y with f(p)=¢.If X is arcwise
connected,or if X is metric and Y is arcwise connected,then all four conditions of the
above Theorem are equivalent.

Proof.See [1].H

COROLLARY 3.13 If a continuum X is an arc with end point p,and if a mapping
fon X is monotone relative to p,then the image f(X) is an arc,and f is monotone.

Proof.See [1).H
Now we consider the approximate limits.We start with the following theorem.

THEOREM 3.14 Let X = {X,,Ua,pab,A}be an approzimate inverse system of con-
tinua with limit X.If each X, 1is irreducible between z, and y, such that z=(z,:a€A)
and y=(vy,:a€A) are thread,then X is irreducible between z and y.

Proof.Let us recall that the usual version of this Theorem was proved in [1,PROPOSI-
TION 5.].By virtue of Theorem 3.1. X is connected.Suppose that there is a continuum
YCX which contains x and y.This means that there exists a point z€X-Y.By 1.5. we
obtain an a€A such that p,(z)¢#ps(Y).Since ps(Y) contains xq4 and y,,we infer that
Pa(Y)CX,.This is imposible since X, is irreducible between x, and y,.H

LEMMA 3.15 Leta f:X—Y be a monotone surjection.If Y is hereditarily
unicoherent and I(a,b) is irreducible between a,b,then f(I(a,b)) is irredu-

cible betwee@ f(a) and f(b),i.e.‘,I(f(a),f(b}):f(](a,b)).

Proof.Now,f~*(I(f(a),f(b))) is a continuum since it contains a and b and f is mono-
tone.This means that {~*(I(f(a),f(b)))DI(a,b).Thus, {(I(a,b))CI(f(a),f(b)). On the other
hand,f(I(a,b))DI(f(a),f(b)) since I(f(a),f(b)) is irreducible between f(a) and f(b).
Thus,f(I(a,b))=I(f(a),f(b)) and the proof is completed.H

The following lemma is a generalization of Lemma 2.2. of [10].

LEMMA 3.16 Let {C,:neD} be a net of subcontinua of a continuum X.If
z,ycLiC, and the continuum LsC, is irreducible between z and y,then

the net {C,:neD} s convergent.

Proof.Suppose,on the contrary,that the net {C,,;:n€D} is not convergent,i.e., there is
a point c€LsC,\LiC,,.It follows that there is a neighborhood U of ¢ such that for each
n€D there is an index m€D,m>n,such that C,, (JU=0.The collection {C,,:mEM} is
a net in X\U and a subnet of {C,:n€D}.This means that L=Ls{C,,:mcM} is non-
empty subset of X\U and ceUCX\L.By Lemma 3.3. L is connected,i.e.,subcontinuum
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of X.From x,y€L and from the irreducibility of LsC,,,it follows that LDLsC,,.On the
other hand,LCLsC,,.Thus,L. = LsC,,.
This is impossible since ¢€LsC,, \LiC,=L\LiC,, and c¢L.The proof is completed.

A continuum X is said to be s$mooth at a point p€X (in the sense of Gordh
[5]) if X is hereditarily unicoherent at p and for each convergent net (a,:n€D) of points
of X the condition a=lima, implies that the net (pa,:n€D) of subcontinua of X is
convergent to the limit continuum pa.

The usual version of the following theorem was proved as Theorem 1. of [1].

THEOREM 3.17 Let X = {X,,U,,Pap,A}be an approzimate inverse system of con-
tinua with limit X.If there ezists a thread y=(ys:a€A) such that the mapping pep is
monotone relative to y, for each a,b€E A with a<b,and if X, is smooth and hereditarily
unicoherent at y,,a€ A,then X is smooth at the point y.

Proof. a)By Theorem 3.1. X is a continuum.Theorem 3.10. implies that X is heredi-
tarily unicoherent at y.

b) Let {x*:1 €M} be a net which converges to a point x€X.There are subcontinua I(y,x)
and I(y,x*),u €M,since X is hereditarily unicoherent.For each a€A we have also the
subcontinua I(yq,xq),I(ya,x%),u €M,irreducible between y,=p4(y) and x4=p,(x*).It is
obvious that each net {x%:u €M} converges to x,.Moreover,from the smoothness of X,
at y, and from the above Lemma it follows that a net {I(yq,x%):ux €M} of subcontinua
converges to I(ys,Xq)-

¢) Ls{I(ya,z"):ac A} = K* = I(y,o*),p € M.

By virtue of Lemma 3.4. each net {I(y,,x%):a€A} has a non-empty and connected
Ls{I(ya,x%):ac A}=K*.Clearly,K* DI(y,x*) since I(y,x*) is irreducible between y,x* and
{y,x#}CK*. By virtue of Lemma 3.5. we have I(y,x*) = Lim{p,(I(y,x*)):a€A}.Since
each pg (I(y,x#)) contains I(y,,x%),we infer that K# CI(y,x*).Finally,we have K#=I(y,x*).
d) For each acA and each u €M we have p,(K*) = I(ya.,z*).
Clearly,pq(XK*)DI(yq,x%).Suppose that there is an a€ A and a point z, €pa(K*) \I(ya,x%).
This means that there are disjoint open sets U, and V,, such that z, €V, and I(yq,x%)CU,.
From the smoothnes of X, at y, it follows that there is an open and connected set W,
such that I(y,,x#)CCIW, CU,.From the definition of the thread it follows that there
is a bEA such that psc(yc) and pec(x#) are in W, for each ¢>b.This means that
Pac(I(ye,x#))CCIW,, since pac(I(ye,x%)) is irreducible between pqc(xc) and pac(x#) (see
Lemma 3.15).1t follows that U is a neighbourhood of a point z€K,p,(z)=z4,such that
U NI(ye,x#)=0.This means that z¢Ls{I(y,,x*):a€A}=K#. This is impossible since
z€K#.By Theorem 1.4. it follows that K*={p; *(I(ya,x*)):a€A}. Similarly,we have
K="{p:'(I(yarXa)) :a€A},where Ls{I(yq,xq):a€A}=K.

e) Ls{K*:u eM} = Ls{I(y,=*):n eM} = I(y,z).
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It is obvious that Ls{I(y,x*):px €M}DI(y,x) since Ls{I(y,x*):n €M} contains x and y
and I(y,x) is irreducible between x and y.We prove that Ls{I(y,x*):x €M} CI(y,x).Let
z be any point in X-I(y,x).By virtue of the definition of a base in X,there is an acA
such that p,(z)=z. &pa(I(y,x))=(by Steps 3.1. and 3.2.)=I(y4,xq)-This means that
there is a néighbourhood U, of z, and a neighbourhood V, of p,(I(y,x)) such that
Us Ve = 0.By Step 3.2. pa(I(y,x))=I(YasXa). Since I(ya,xa)=Lim{I(yq,x%):u €M}, we
infer that there is a pg €M such that,for each u > po,U, and I(ya,xf“) are disjoint.From
3.2. it follows that p;!(U,) and I(y,x*) are disjoint.Since p; *(U,) is a neighbourhood
of z,we infer that ngLs{I(y,x“) p €M}.Thus,Ls{I(y,x*):p €M} = I(y,x) and 3.3. is
proved.

0 I(y,2)=Lim{I(y,o* ):u €M).

Apply Step 3.3. and Lemma 3.12. il S

By virtue of Lemma 3.10. and Step 3.4. it follows that X is smooth at y.
g)For each a€A there exists a closed weak cutpoint order <, with respect to the point
Xq.Define a relation < on X by y<z iff y, <,z, for all a€A.The relation < is transitive
and reflexive,i.e.,< is quasi-order.
h)By the same method of proof as in the proof of Theorem 1. of [1] it follows that <
is closed.
i)In order to complete the proof we ought to show the quasi-order < is the weak
cutpoint order with respect x,i.e. that y<z holds iff xyCxz.

i1)Let us prove that y<z=>xyCxz.Suppose xy¢Zxz.By hereditarily unicoherence

- of X at x we infer that y¢xz.From 1.5. it follows that there is an a€A such that

Ya=Pa(y¥)¥Pa(xz).This means that the continuum x,z, contains no the point y, since
Pa(%x2)Dx4%,.0n the other hand,from y<z it follows Ye <7g4,1.€.,XgYq CXqaZq.This contra-
diction completes the proof.

i2)Now we prove (xyCxz)=>(y<z).This easy follows from c)..

An arc (generalized) is defined as a continuum (not necessarily metrizable) with
exactly two non-separating points (called the end points of the arc).Clearly,X is an arc
iff X is an ordered continuum with two points 0 and 1 such that 0<x<1 for each x€X.A
continuum X is said to be an arboroid if X is hereditarily -unicoherent and arcwise

“connected (i.e. ‘any two points of X can be joined by a generalized arc).A metrizable

arboroid is called a-dendroid.

THEOREM 3.18 Let X = {X4,Uq,Pap,A}be an approzimate inverse system with li-
mit X such that: :
1. X, is an arboroid for each aéA,and

2. there ezists a thread z=(z,:a€ A) such that pep is monotone relative to zy for each
a,beA,a<b.
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Then X is an arboroid.

Proof.By Theorem 3.10. X is hereditarily unicoherent at x.In order to complete the
proof it suffices to prove that xy is an arc for each yeX.

Step 1.We define a linear order < in xy [3,pp. 17] such that for each z€xy x<z<y.

Step 2.Let x,=pq(X) and yo,=pa(ya) for each ac A.There is an arc x,y, whose end
points are x, and y, since X, is arcwise connected. We may assume that a linear order
in X4y, is such that y, <x,.

Step 3.By c) from the proof of Theorem 3.17. it follows that p,(xy)=xsya for each
a€cA.

Step 4.Let z,wExy.We claim that either z, <,w, or w, <.z, for each a€A.Suppose
that z, <,w, for some a€A and that there is a set B={b:b>a} cofinal in A and such
that wp <p2,.Choose the disjoint neighbourhoods U(x,),

U(wqa),U(2a),U(yq) for the points x,4,Wq,%4,yq4-By virtue of the condition (L) and the
cofinality of B there is an index b€B such that the points pas(xs),Pab(Ws),
Pab(23),Pas(ys) lie in the neighbourhoods U(x4),U(wa),U(%s),U(ya).If we suppose that
7y >Wg,then pay(xpzp) contains pap(ws) since pqas(xpys) is an arc.This means that there
is a point v, €x,z; such that pab(vb):pab(wb).Hence,p;bl(wa) contains z; since pgp/XpYs
is monotone.We infer that pay(2zs)=pas(ws €U(Ws) and pas(z5)EU(24).This is impos-
sible since U(z,) and U(w,) are disjoint.Now,for each c€A there is a beB such that
b>a,c.This means that z, <w. since z; <wy.

Step 5.We set z<w iff z, <w, for each a€A.

Step 6.Now we prove that xy is an arc,i.e.,that each point z€xy other than x,y is
a cut point of xy.Let B be a set cofinal in A such that z, €xpys.This means that x; is
a cut point of x3ys.We set Up=(ps/xy) " *([xs,25)) and V=
(Ps/xy)~*((25,¥a])-Clearly,U;, and V), -are disjoint open sets of xy which contain x and
y respectively.Consider the sets U=J{Us:b€B} and V={J{V;:beB}.It follows that U
and V are open sets which contain x and y respectively.In order to complete the proof
of this Step it suffices to prove that U and V are disjoint and U|JV=xy-{z}.For each
‘wexy,distinct from z,there is a b€B such that wy, #z;.Then,weU, or we V. This means
that U|JV=xy-{z}.Finally,suppose that there is a point w€U[|V.This means that w is
in some U, and in some V4,c,d€B.It follows w. >z, and wgq <z4.This contradicts Step
4.Thus,xy is an arc.

Step 7.It follows that X is an arboroid and the proof of Theorem is completed. B

Since the approximate limit of an approximate inverse sequence of metrizable
spaces is metrizable (as a subspace of the space II{X,,:n€N}) we have

COROLLARY 3.19 Let X={X,,én,Pmn,N}be an approzimate inverse sequence with
limit X such that: .

1. X,, is a dendroid for each n€N,and
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2. there ezists a thread z=(z,,:n€N) such that p,,. is monotone relative to z, for
each m,n€A,m<n.

Then X is a dendroid.

An arboroxd 1s smooth if and only if it is a generalized tree.Thus,Theorems 3.18. and
3.19 imply -

COROLLARY 3.20 Let X = {X;,Ua,pab,A}be an approzimate inverse system with
limit X such that:

1. X4 1s a generalized tree with a point z, as a zero for each a€A,and

2. the points z, form a thread z;—.(z,,ﬁdEA )'such that paj, 18 monotone relative to z
for each a,b€A,a<b.

Then X is a generalized tree with the point z as a zero.

A continuum is a tree if each pair of points is separated by third point [17]. A conti-
nuum X is a tree iff X is locally connected and hereditarily unicoherent [17].
Each tree is a generalized tree {17,Theorem 6.].Thus we have

COROLLARY 3.21 Let X = {X,,Uq,Pa,A}be an approzimate inverse system with
limit X such that each X, is a tree and each p,;, is monotone.Then X 1is a tree.

Proof.By Theorem-above X is a generalized tree.From 3.17. it follows that X is smooth
in each point.By virtue of [10] or [16] we infer that X is locally connected.Thus,X is a
tree.H

A point x of an arboroid X is said to be a ramification point if there are
three arcs in X emanating from x and disjoint out of x.An arboroid having at most one
ramification point is called a fan.Then the ramification point is called the top of the
fan.

THEOREM 3.22 Let X = {X,,,U,,,pab,A}be an appro:mmate inverse system with li-
mit X such that: :

1. X, is a fan with the top z, for each a€A,and

2. the points z, form a thread z=(z,:a€A) such that py, s monotone relative to z
for each a,beA,a<b.

Then X is a fan with the top z.
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Proof.By Theorem 3.19. we infer that X is an arboroid.It remains to prove that X has
at most one ramification point.Suppose that the point y=(y,) is an ramification point
of X distinct from x.This means that there is an ag €A such that y, #z,,a>aq.Let
K,L,M be three arcs in X (disjoint out y) with endpoints y and k,l,m respectively.By
virtue of 1.5. there is an index by >ag such that y;,ks,lp,m; are mutually distinct
points for each b>bg.There exist three arcs Ky,Ly,M; which are mutually disjoint out
ys since X3 is an arboroid.This is impossible since X is a fan and x; #y;.H
Combining this Corollary and the last Theorem we get

COROLLARY 3.28 Let X = {X,,Ua,Pap,A}be an approzimate inverse system with
limit X such that:

1. X, 15 a fan with the top z, at which it is smooth for each a€A,and

2. the points z, form a thread z=(z,:a€A) such that pe, s monotone relative to z
for each a,bc A,a<b.

Then X is a fan which s smooth at its top z.

A continuum X with precisely two nonseparating points is called a generalized
arc.A continuum X is said to be an arc if X is a metrizable generalized arc.A tree X
is a generalized arc if and only if X is atriodic.

THEOREM 3.24 Let X = {Xi,Uq,pap,A}be an approzimate system of ge-
neralized arcs. Then X=UlimX 1is atriodic.

Proof.Suppose that T is a subcontinuum of X which is a triod.This means that T is the
sum of three generalized arcs C;,Cy,and C,,such that the common part of each two of
them is the common part of all three of them and is a point.Let x€C,-(Cy |JC.),y€C,y-
(CzUUC.), zeC,-(C; |UCy) and t=C; (C,y [C.. By virtue of the definition of a basis in
X,there exist acA and open sets V;,V,,V, of X, which are pairwise mutually exclusie
and which contain x4,y4,%q,respectively,so that

V)G =0 =071 (Ve) [ Car

p (V) [ Ce =0 =107 (V)[)C:
P (V2) Gy = 0=p'(V2)[ ) Co

Now,one of x,,y,,0r z, lies between t, and one of x4,y,,0r z,.Supose that t; <x, <y,.-
Then p,(Cy) intersects t, and y, and hence x4,but pa(Cy) does not intersects V. This
is a contradiction.So,X contains no triod .l
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THEOREM 3.25 Let X = {Xq,Ua,par,A}be an approzimate system of ge-
neralized arcs with a limit X.If the bonding mappings are monotone and
onto, then X is a generalized arc.

Proof.By virtue of Theorem 3.21." X is-a tree.From 3.24. it follows that X is atn-
odic.Thus X is a generalized arc.ll

COROLLARY 3.26 Let X={Xu,en,Pmn,N}be an approzimate sequence of
the arcs and monotone onto mappings.Then X=limX is an arc.

Proof.Now,from 3.25. it follows that X is a generalized arc.Moreover,X is metrizable
generalized arc.Thus,X is an arc.l 2 - :
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Loncar I. O aproksimativnim sistemima kompaknih prostora

SAZETAK

U radu je definiran prostor o(X)za aproksimativni inverzni sistem X = {X,,U4,pPas,A}
kompaktnih prostora. _

U drugom odjeljku dokazuju se osnovna svojstva prostora o(X),kao sto su para-
kompaktnost i metrizabilnost za aproksimativni niz.

Treéi odjeljak sadrzi razne primjene prostora o(X).Primjenjujuéi poopéene nizove
skupova dokazujemo da je prostor X=limX povezan i (nasljedno) unikoherentan ako
su takvi prostori sistéma‘)_( = {Xa,Ua,Pat,A}(Teoremi 3.1. i 3.6.).Dokazano je nadalje
da je imX arboroid (poop:« cno stablo,stablo,luk) ako su prostori sistema takvi a vezna
preslikavanja monotona (Teoremi 3.18., 3.20.,3.21. i.3.25.).



