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CONTINUITY OF THE TYCHONOFF FUNCTOR T

ABSTRACT. Let C be a class of the inverse systems X = {X,, faB,A}.
We say that a functor F is C-continuous if F(1imX) is homeomorphic
with lim F(X).

In the present paper the continuity of Tychonoff functor T is
investigated.

Section Two contains some theorems concerning the
non-emptyness and w-compactness of the limit of inverse systems of
w—-compact spaces.

Section Three is the main section. Some theorems concering
C-continuity of the Tychonoff functor T are proved, where C is a
class of the inverse systems of w-compact, t-compact, H-closed or
R-clased spaces.
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0. INTRODUCTION : ,
0.1. The set of all continuous, real-valued (boupded) function on
a topological spaces X will be denoted by C(X) (C (X)).

Unliess otherwise stated, no separation axioms will be
assumed.

0.2. A set A < X 1is regularly closed (open) if A = Int A
(A = Int A).
0.3. A set A < giis said to be zero-set if there is an f € C (X)

such that A = f (0). The zero-set of f is denoted by Z(f) or by
Zx(f).
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A cozero-set is a complement of zero-set.
It is well-known [3] that
n

()z(f) =z (| £l )=z(f)=2z (]| f | A1)

(ii) Evry zero-set is G6

(iii) =z (Eg) =2z(f) v z(g)
(iv) z (£ +g)=2(1f1+1gl)=2z({f) nz(g)
(v) The countable intersection of zero-set is zero-set.

0.4. Two subsets A and B of X are said,to be completely separtated
in X if there exists a function f € C (X) such that f(x) = 0 for
all x € A, and f(x) = 1 for all x € B.

0.5. A space X is said to be completely regular [3] provided that
it is Hausdorff space such that each closed set F € X and each x ¢
F are completely separated.

0.6. A space X 1is said to be almost regular [9] if for each
regularly closed F ¢ X and each x € X\F there exist disjoint open
sets U and V such that x € U and F c V.

0.7. By cf (A) we denote the cofinality of the well-ordered set A
i.e. the smallest ordinal which is cofinal in A.

0.7. We say that a space X is guasicompact if every centred family
of closed subsets of X has a non-empty interesection.

0.8. A space X is functionally Hausdorff of for each distinct
points x and y of X there is a continuous function f : X --->
[0,1] such that f£(x) = 0 and f(y) = 1. Each functionally Hausdorff

space is Hausdorff.

0.9. It follows that in a functionally Hausdorff space X for each
distinct peints x and y there are cozero-sets UX and Uy such x €

Uy ~ {y pand y e Uy cX-4{xt
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0.10. If U is a cozero-set containing x € X, there exist a

cozero-set V » x such that x € V q_v < U. Namely, if f : X ———>
[0,1] is a function such that x € f (DJ,l]) = U, then we define a

function F : [0,1] --> [0,1] such that F(y) = 0 for y = f(x) / 2
and F (y) = ((2y - £f(x) : (2 - f(x)) for y > £ (x) / 2. Now, let

¢ = £t We have & > (0,1) € U.

0.11. If X is functionally Hausdorff, then {x} = n {G : U is the

cozero-set containing x € X}. The proof holds from 0.8., 0.9. and
0:10.

1. FUNCTOR T

Let X be a topological space. We define an equivalence
relation p on X such that x p y iff f(x) = f(y) for each f € C(X).
Let T (X) = X/i be a set of all equivalence classes equiped with
the smaltest topology in which are continuous all functions g

such that g. Ty € C(X), where Ty X, === X/r is the natural

projections. In [3:41] is actually proved that T (X) is completely

regular.
By [x] we denote the equivalence class containing x £ X.

1.1. LEMMA. If f : X ---> Y is a continuous mapping into a
completely regural space Y, then there exist a continuous mapping
g : T(x) ——> Y such that f = g . Ty

Proof. If x J y then must be f(x) = f(y) since f(x) = f(y)
implies that there is f’ e C(Y) such that f’'(x) = 0, f'(y) = 1.
This is in contradiction with x p y since ff’ € C (X). This means
that for x’ € T (X) one cane define g(x’) = f(x), x € x’.

1.2. COROLLARY. Ift £ : X -——> Y is a continuous mapping, then
ther exists a continuous mapping T (f) : T (X) ---> T (Y) such
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that T (f) Ty =Ty f.

1.3. LEMMA. If X is functionally Hausdorf, then <t X ——> T(X)

x -
is one-to-one.

P-ro-o r. Trivial.

An open set U € X is Tt-open is U 1is the union of the
cozero-sets.

We say that a space X is w-compact [4] (quasi-H-closed)

if for each centred family {U” : M€ M} of T-open (open) sets U“ <

.4. THEOREM. If X is w-compact, then T (x) is a compact space (

T2 quasi-compact).

X the set n {G“ : u € M} is non-empty.
1

Pr oo f. It suffices to prove that ©(X) is quasi-H-closed since
each regular H-closed is compact. Let {U“ R VR M} be a centred

family of open sets in T(X). This means U“ is T-open in X. It
follows that n {6“ N TR M} # 0, where G“ is a closure in X. Let x

€ {Gﬁ : u € M}. From the continuity of T, we have Ty (x) e n {G“ |

X

[T M} where now U is a closure in T (X). The proof is completed.

A space X is said to be t-compact [4] iff each cover {Uu : poe M}

of X consisting of the cozero-sets UM has a finite subcover.

1.5. THEOREM. If X is t-compact, then v (X) is compact.

Pr oo f. Trivial since each open set in T (X) is T-open in X.
A space X is said to be perfectly w-compact (T -compact, H-closed,

R-closed) if Ty (y) is copmact for each y € T (X)i.e. every

equivalence class Ey] is compact.
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2. INVERSE SYSTEMS OF W-COMPACT AND t - COMPACT SPACES
We start with the following theorem.
2.1. THEOREM. Let X = {Xa, faB’ A} be an inverse system of =T

-compact (w-compact) functionally Hausdorff spaces Xa. If Xa’ o €

A, are non-empty, then X = lim X is non-empty. Moreower, if f‘oC

B

are onto, then the projections f“ s X, ——> Xa’ « € A, are onto

mappings.

Proof. From1l.2. it follows that X = {T (X s) o GF 520, A} is
-T o o s

B

an inverse systems. In view of Lemma 1.3. there is a mapping 7 : X

---> X such that T = (7T Xerr2 & (X and T o € A, is
—1 X o

o
identity mapping. The mapping T induces a mapping lim T : 1lim X

X s
(04

#*

——=> lim XT which is 1-1. This means that lim X # 0 iff lim g?
0. Since Xa is the inverse system of compact spaces < (Xm), we
have lim Tt (X) # 0. The proof is completed.

Since each quasi-H-closed space is w-compact, we have
2.2. THEOREM. LET X = {X , £’ A} be an inverse system of

functionally Hausdorff non-empty quasi-H-closed spaces Xa‘ Then X

= lim X is non-empty.

We say that a regular (almost regular) space X is
" R-closed (AR-closed) if it 1is closed in each regular (almost
regular) space in which it can be embedded [9]. Each completely

regular R-closed (AR-closed) space X is compact since X c¢ B X [2].

If X is R-closed, Y regdlar, and f : X ——-> Y a continuous mapping
then Y is R-closed.

2.3. THEOREM. Let X = {Xa, £ A} be an inverse system of

af3’
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non-empty functionally Hausdorff R-closed spaces Xa' Then X = lim
X is non-empty.
Pr oo f. The space T (Xa) is completely regular R-closed i.e. a

Hausdorf compact space. See the proof of Theorem 2.1.

We say that a mapping £ : X ——> Y is T -open if f(U) is
T -open for each T -open set U c X.
2.4. THEOREM. Let X = {Xa, faB’ A} be an inverse system of
w—-compact functionally Hausdorff spaces Xa If the projections fa
lim X -———> Xa’ o € A, are T -open, then X = lim X is functionally

Hausdorff and w-compact.
Proof. Let U= {Uu : i € M} be a maximal centred family of T

-open sets in X. For each « € A let U = {f (U) : u e M} We
o o il

prove that Ua is the maximal centred family of T -open sets in Xa

(fa is T -open!). Suppose that Va is T -open in Xa such that Va N

f (U ) is non-empty for each U € U .This means that f—l (V) is

o M u o o o

T -open set wich meets each Uu. From the maximality of U it

follows that f_l (U) eUi.e. V € U. Hence, U is maximal. From
a a o« o o

the w-compactness of X it follows that Y = n {f (U) : U € U}
o o o M 1
is non-empty. From the maximality of Ua it follows that Ua
contains all neighborhoods of all Yo € Ya From 0.11. it follows
that Y = {y | where y € X . For each « € A let W be a family
of all T -open sets contalnlng y From the max1ma11ty of Ug,B =0
i
it follows that Ug contains f a ( u,) = {f (V) : Ue U}
- ke “' = = ( =~
This means that faB ‘yB) Yo B %o Hence y = (y : «

€ A} is a point of X. It is readily seen that y € n {G : Ue }
The proof is completed since it is clear that X is functionally
Hausdorff.
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2.5. THEOREM. Let X = {Xa, f A} be an inverse system of

oB’
perfect w-compact (T-compact, H-closed, R-closed) spaces Xa' A
space X = 1lim X is non-empty iff the spaces X,aa € A, are

non-empty.
3. CONTINUITY OF THE FUNCTOR <t

Let X =4{X , £ ., A} be an inverse system and let T be a
= (44 o3

Tychonoff functor described in Section One. From 1.2. it follows

that =(X) = {T(Xa), T(faB)’ A} is an inverse system. Let C be a
class of the inverse systems. We say that the functor T is €C~c
ontinuous if <(lim X) is homeomorphic to lim 7(X) for

each X in C . The functor T is said to be continuous if 7 is C -

continuous for each class C

3.1. LEMMA. If X is an inverse system, then there exists a

continuous mapping T T (lim X) --=> lim 7 (X).

1 3
Proof. Let X-= {Xa, faB’ A} be an inverse system and let T (X

= {T(X), T(f %, A}. From 1.2. it follows that there is =T T
« o la

(lim X) -—=> (X ) such that t. f =1, T, where T : lim X ——> 1
= o Xa o 1a =

(1im X). It is readily seen that =, = t(f ). =, , B = «. This
= la oB 13

means that the mappings Ty @ € A, induce a continuous mapping Tl

o
T(lim X) ---> lim ©(X). The proof is completed.
3.2. LEMMA. lim Tt = 11 T
Pr oo f. From the definition of Tl it follows 11 = f& Tl’ where
o



Lon¢ar I. Tychonoff Functor = Zbornik radova (1990), 14

fa : lim T (X) -———> T(Xa) is a projection. Moreower, TXa fu = TlaT
and T f =f" . lim t. It follows that =, T = £’ lim T and T, T
X o o 1 o 1
o o o
= fa : 11 . T i.e. lim T = rlr . QuE:D,

3.3. THEOREM. Let C be the class of all inverse systems X = {Xa,

faB’ A} such that Xa’ « € A, X = lim X is w-compact (T-compact)

functionally Hausdorf. If the projections fa X —==3 Xa’ o € A,

are onto, then the Tychonoff functor t is C -cointinuous.

Proof. From Lemma 1.3. it follows that each TX , o0 € A, is
o«

1-1. This means that lim 7 is 1-1. Since lim X is functionally
Hausdorf we infer by 1.3. that = : lim X ---> 7 (lim X) is 1-1. It
follows that 7, : = (lim X) --=Y lim T (X) is one-to-one. Since
lim T (X) and t (lim X) are compact (1.4.THEOREM) we infer that

rlis a homeomorphism. The proof is completed.

3.4. COROLLARY. Let C be the class of all inverse systems an in
Theorem 2.4. Then the Tychonoff functor T is C -continuous.

3.5. REMARK. In [4] is proved that if {X : « € A} is a family of

w-compact spaces Xa’ then |1 Xa is w-compact an T (nXa) =TT (Xa)'

3.6. THEOREM: Let H be a class of the invef‘se systems X = {Xa,
A} such that X a € A, X = lim X are functionally Hausdorff
H—closed (R—closed) If the projections fa § X —> XOC o € A, are

onto mappings, then the functor T is H -continuous.

Pr oo f. The spaces I(Xm}ﬁ o« € A, and the spaces T (lim X), lim

T (X) are compact (See the proof of 2.3. and 3.3.).
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In [14] it is proved that lim X is H-closed if X are

H-closed, fa open and that fa are onto if f are open onto.

B B B

Hence, from 3.6. we obtain.

3.7. THEOREM. Let H be a class of the inverse system of H-closed
functionally Hausdorff spaces Xa and open onto mappings fa Then

B

the functor 7 is H -continuous.
From [6] it follows that lim X is R-closed (AR-closed) f

Xa are R-closed (AR-closed) and if fa are open-closed. By similar

B

method of proof we have.

3.8. THEOREM. Let R be a class of the inverse systems of
R-closed (AR-closed) functionally Hausdorf spaces XOc and

open-closed onto mappingé faB' Then the functor T is R
-continuous.
We say that an inverse system X = {Xa, faB’ A} is

factorisable (or f-system) [10] it for each continuous mapping f :

Lim Re=> FLl] there exists a continuous mapping 8y ° Xa 3

-VB),l] such thaf f = g f , where f : 1lim X -—--> X 1is the natural
o« T a = o

projection.

© 3.9. LEMMA. If X is an f-system, then the mapping T T (1lim X)

1
--=> lim t© (X) is one-to-one.
Proof. Let [x] and [y] be two distinct points of T (lim X),

where x, y € 1lim_X. This means that there exists an f : 1lim X
---> [0,1] such that f (x) = 0 and f (y) = 1. Since X is f-system

there is an « € A and g : X ---> [0,1] such that f = g f . It

o o o o
follows that [fa (x)] # Efa(y)] since g fa (x) = 0 and gufa(y)=1.
This means that Tl(Ex]) # 11([y]. The proof is completed.
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3.10. THEOREM. Let W be a class of the inverse f-system X = {Xa,
faB’ A} such that all X, and X = lim X are w-compact (H-closed,
T-compact, R-closed, AR-closed). Then the Tychonoff functor T is
W —cotinuous.

Proof: From 1.4. Theorem it follows that T (lim X) and lim

T (X) are compact. By virtue of 3.5. Lemma it follows that T, is

the homemorphism Q.E.D.

3.11. LEMMA. [11]. Let X = {X , £ g

system such that w (X ) < 7 and cf(A) > T > R . Ef F
(43 o o3

A} be a well-ordered inverse

are
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perfect (open or X is continuous) then w (1imX) < .

We close this Section with the following

3.12. THEOREM. Let C be a class of the inverse systems_X as in
3.11. If 1lim X 1is w-compact (T-compact, H-closed, R-closed,
AR-closed) adn if the projections fa : X ——> o € A, are onto,

then the functor T is C -continuous.
Proof. In view of Theorem 3.10. it suffices to prove that X

is an- f-system., Let X = lim X and let .f : X -——> [p,l] be a
real-valued function. For each z € Exl] let NZ be a countable
family of open sets such that n {U : U € NZ} = {z}. We can asume
that N = {N_ : z e [0,1]} is countable. It is readily seen that
for each Ui € f (N) there exist an « € A and open Ua < Xa such
i i
that U = £ ' (U ) [7] (See also [12]). Since the cardinality
i a, a,
IN|= & and cf (A) > No there exist an o« € A such that « > o, ie
N. LetY be a set n {U : f (U)efl(N)}. It is clear that Y
z o z z
NY , =g iff z# z’ and that X =udY : ze€ [p,l]}.This means
z o z
that for each X, € Xa there is only one z € [p,l] such that xOC €
= i . ——— =
Y . Put ga(fa) z. We define g :X [0,1] such that f 8L o
In order to complete the proof we prove that 84 is continuous. Let
X, € Xa and let ga(x“) = z. For each neighborhoods V ¢ N there is
a neighborhood Ua of xasuch that f (U ) = V. This means that 8,

(Ua) = V. The proof is completed.
4. CONNECTEDNESS OF THE LIMIT SPACE
We start with following theorem

4.1. THEOREM: A topological space X is connected iff =(X) is
connected.
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Proof. If X is connected, then T (X) is connected since Ty

X ——=> T (X) is continuous surjection. Conversely, let 7(X) be
connected. If X is disconnected, then there exist two disjoint
open sets U, V € X such that X = U v V. :

Let g : X -——> [0,1] be a mapping such that g (x) = 0 if x € U and

g (x) =1 if x € V. Clearly, g is continuous. From the definition
of T (X) it follows that TX(U) n Ty (V) = 2 and T, (U) v T, (v) =

T (X), where T (U) is the image of U. Let £ : T (X) -——> Bj,l] be
a mapping such that f[TX (U)] = 0, f[rx (V)] = 1. Clearly, f T =g.

Since g € C (X), from the definition fo T (X) it follows tb?t is
continuous i.e. f € C (T X)). This means that T, (U= £ (0)

and T (V) = ¢ _1(1) ie T, (U) and T, (V) are disjoint open sets
in T (X). This contradiction with the connectedness of T (X). The
proof is completed. .

4.2. THEOREM. Let X = {Xa, faB’ A} be an inverse system such that
the functor T is X-continuous. The space X = lim X is connected
iff lim 7 X is connected.

Pur - o o f: The space T (lim X) is connected since it is
homemorphic with 1lim T X. From 4.2. it follows that 1lim X is

connected iff T (1im X)—is connected. Q.E.D.

Now, from Theorems 4.1. and 4.2. and from theorems of
Section Three we obtain the following theorems.

4.
X

@

THEOREM. Let X be an inverse system as in Theorem 2.4. Then
lim X is connected iff Xa « € A, are connecteq.

4.4. THEOREM. Let X = {X , T A} be an inverse system such that

= o B’
Xa’ « € A, X = lim X are functionally Hausdorff H-closed
(R-closed). If the projections fa : X === X“, o« € A, are onto
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mappings, then X is connected iff Xa’ o € A, are connected.

4.5. THEOREM. Let X = {Xa, f“B, A} be an inverse system of
H-closed functionally Hausdorf spaces Xa and open onto mappings
f .. The space X = 1lim X 1is connected iff Xa’ x € A, are

«B

connected.
4.6. THEOREM. Let X = {X, £’ A} be an inverse system of
R-closed (AR-closed) functionally Hausdorf spaces Xa and
-open—-closed onto mappings faB'

iff the spaces Xa’ o« € A, are connected.

The space X = lim X is connected

4.7. THEOREM. Let X = {Xa, faB’ A} be an inverse f-system such
that all Xoc and X = lim X are w-compact (t-compact, H-closed,

R-closed, AR-closed). X is connected iff Xa’ o« € A, are connected.
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LonCar I. Neprekidnost Tihnovl jevog funktora
v
SADRZAUJ

U radu je istrazivana neprekidnost Tihonovl jevog funktora T. Pri
tome kazemo da je funktor F C-neprekidan ako su prostori F(lim X)
I 1limF X homeomorfni, gdje je C klasa inverznih sistema X = =

{XQ’faB’ A}.

U odjeljku 1. dana je definicija i osnovna svojstva funktora T.
Drugi odjel jak sadrzi teoreme o nepraznosti i w-kompaktnosti
limesa inverznih sistema w-kompaktnih prostora. _
Teoremi iz drugog odjeljka sluze za dokazivanje teorema o
C-neprekidnosti funkiora T, gdje je C klasa inverznih sistema
w-kompaktnih (Tt-kompaktnih, H-zatvorenih ili R-zatvorenih)
prostora. :



