CONTINUITY OF THE TYCHONOFF FUNCTOR τ

Abstract. Let C be a class of the inverse systems $X = \left\{ X_\lambda, f_{\alpha \beta} \right\}$. We say that a functor F is C-continuous if $F(\lim X)$ is homeomorphic with $\lim F(X)$.

In the present paper the continuity of Tychonoff functor τ is investigated.

Section Two contains some theorems concerning the non-emptyness and w-compactness of the limit of inverse systems of w-compact spaces.

Section Three is the main section. Some theorems concerning C-continuity of the Tychonoff functor τ are proved, where C is a class of the inverse systems of w-compact, τ-compact, H-closed or R-closed spaces.

Mathematics subject classification (1980): Primary 54H25, Secondary 46H40

Key words and phrases: functor; inverse system, continuity, w-compact, τ-compact

0. INTRODUCTION

0.1. The set of all continuous, real-valued (bounded) function on a topological spaces X will be denoted by $C(X)$ ($C(X)$).

Unless otherwise stated, no separation axioms will be assumed.

0.2. A set $A \subseteq X$ is regularly closed (open) if $A = \text{Int} A$ ($A = \text{Int} \ A$).

0.3. A set $A \subseteq X$ is said to be zero-set if there is an $f \in C(X)$ such that $A = f^{-1}(0)$. The zero-set of f is denoted by $Z(f)$ or by $Z_X(f)$.
A cozero-set is a complement of zero-set.
It is well-known \[3\] that

(i) \(z(f) = z(\{ x \mid f(x) \}) = z(f^n) = z(\{ x \mid f(x) \wedge 1 \}) \)

(ii) Every zero-set is \(G_\delta \)

(iii) \(z(fg) = z(f) \cup z(g) \)

(iv) \(z(f^2 + g^2) = Z(\{ x \mid f(x) + g(x) \}) = z(f) \cap z(g) \)

(v) The countable intersection of zero-set is zero-set.

0.4. Two subsets \(A \) and \(B \) of \(X \) are said to be completely separated in \(X \) if there exists a function \(f \in C(X) \) such that \(f(x) = 0 \) for all \(x \in A \), and \(f(x) = 1 \) for all \(x \in B \).

0.5. A space \(X \) is said to be completely regular \[3\] provided that it is Hausdorff space such that each closed set \(F \subseteq X \) and each \(x \notin F \) are completely separated.

0.6. A space \(X \) is said to be almost regular \[9\] if for each regularly closed \(F \subseteq X \) and each \(x \in X \setminus F \) there exist disjoint open sets \(U \) and \(V \) such that \(x \in U \) and \(F \subseteq V \).

0.7. By \(cf(A) \) we denote the cofinality of the well-ordered set \(A \) i.e. the smallest ordinal which is cofinal in \(A \).

0.7. We say that a space \(X \) is quasicompact if every centred family of closed subsets of \(X \) has a non-empty intersection.

0.8. A space \(X \) is functionally Hausdorff of for each distinct points \(x \) and \(y \) of \(X \) there is a continuous function \(f : X \rightarrow [0,1] \) such that \(f(x) = 0 \) and \(f(y) = 1 \). Each functionally Hausdorff space is Hausdorff.

0.9. It follows that in a functionally Hausdorff space \(X \) for each distinct points \(x \) and \(y \) there are cozero-sets \(U_x \) and \(U_y \) such \(x \in U_x \) \(\setminus \) \(\{ y \} \) and \(y \in U_y \subseteq X \setminus \{ x \} \).
0.10. If U is a cozero-set containing $x \in X$, there exist a cozero-set $V \ni x$ such that $x \in V \subseteq \overline{V} \subseteq U$. Namely, if $f : X \to [0,1]$ is a function such that $x \in f^{-1}([0,1]) = U$, then we define a function $F : [0,1] \to [0,1]$ such that $F(y) = 0$ for $y \leq f(x) / 2$ and $F(y) = ((2y - f(x) : (2 - f(x))$ for $y > f(x) / 2$. Now, let $G = Ff$. We have $G^{-1} (0,1) \subseteq U$.

0.11. If X is functionally Hausdorff, then $\{x\} = \cap \{\overline{U} : U$ is the cozero-set containing $x \in X\}$. The proof holds from 0.8., 0.9. and 0.10.

1. FUNCTOR τ

Let X be a topological space. We define an equivalence relation ρ on X such that $x \rho y$ iff $f(x) = f(y)$ for each $f \in C(X)$. Let $\tau(X) = X/\tau$ be a set of all equivalence classes equipped with the smallest topology in which are continuous all functions g such that $g \circ \tau_x \in C(X)$, where $\tau_x : X \to X/\tau$ is the natural projections. In [3:41] is actually proved that $\tau(X)$ is completely regular.

By $[x]$ we denote the equivalence class containing $x \in X$.

1.1. LEMMA. If $f : X \to Y$ is a continuous mapping into a completely regular space Y, then there exist a continuous mapping $g : \tau(x) \to Y$ such that $f = g \circ \tau_x$.

Proof. If $x \not\rho y$ then must be $f(x) = f(y)$ since $f(x) \neq f(y)$ implies that there is $f' \in C(Y)$ such that $f'(x) = 0$, $f'(y) = 1$. This is in contradiction with $x \rho y$ since $f' \in C(X)$. This means that for $x' \in \tau(X)$ one can define $g(x') = f(x)$, $x \in x'$.

1.2. COROLLARY. If $f : X \to Y$ is a continuous mapping, then there exists a continuous mapping $\tau(f) : \tau(X) \to \tau(Y)$ such
that $\tau(f) \tau_X = \tau_Y f$.

1.3. LEMMA. If X is functionally Hausdorff, then $\tau_X : X \to \tau(X)$ is one-to-one.

Proof. Trivial.

An open set $U \subseteq X$ is τ-open if U is the union of the cozero-sets.

We say that a space X is w-compact [4] (quasi-H-closed) if for each centred family $\{U_\mu : \mu \in M\}$ of τ-open (open) sets $U_\mu \subseteq X$ the set $\bigcap \{U_\mu : \mu \in M\}$ is non-empty.

1.4. THEOREM. If X is w-compact, then $\tau(X)$ is a compact space ($= T_2$ quasi-compact).

Proof. It suffices to prove that $\tau(X)$ is quasi-H-closed since each regular H-closed is compact. Let $\{U_\mu : \mu \in M\}$ be a centred family of open sets in $\tau(X)$. This means U_μ is τ-open in X. It follows that $\bigcap \{\overline{U}_\mu : \mu \in M\} \neq 0$, where \overline{U}_μ is a closure in X. Let $x \in \{\overline{U}_\mu : \mu \in M\}$. From the continuity of τ_X, we have $\tau_X(x) \in \bigcap \{\overline{U}_\mu : \mu \in M\}$ where now \overline{U} is a closure in $\tau(X)$. The proof is completed.

A space X is said to be τ-compact [4] if each cover $\{U_\mu : \mu \in M\}$ of X consisting of the cozero-sets U_μ has a finite subcover.

1.5. THEOREM. If X is τ-compact, then $\tau(X)$ is compact.

Proof. Trivial since each open set in $\tau(X)$ is τ-open in X.

A space X is said to be perfectly w-compact (τ-compact, H-closed, R-closed) if $\tau_X^{-1}(y)$ is compact for each $y \in \tau(X)$, i.e., every equivalence class $[y]$ is compact.
2. INVERSE SYSTEMS OF W-COMPACT AND τ - COMPACT SPACES

We start with the following theorem.

2.1. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha \beta}, \alpha \in A\}$ be an inverse system of τ-compact (w-compact) functionally Hausdorff spaces X_{α}. If $X_{\alpha}, \alpha \in A$, are non-empty, then $X = \lim X$ is non-empty. Moreover, if $f_{\alpha \beta}$ are onto, then the projections $f_{\alpha} : X \longrightarrow X_{\alpha}, \alpha \in A$, are onto mappings.

Proof. From 1.2. it follows that $X = \{\tau(X_{\alpha}), \tau(f_{\alpha \beta}), \alpha \in A\}$ is an inverse system. In view of Lemma 1.3. there is a mapping $\tau : X \longrightarrow X_{\tau}$ such that $\tau = (\tau_{X_{\alpha}} : X \longrightarrow \tau(X_{\alpha}))$ and $\tau_{X_{\alpha}}, \alpha \in A$, is identity mapping. The mapping τ induces a mapping $\lim \tau : \lim X \longrightarrow \lim X_{\tau}$ which is 1-1. This means that $\lim X \neq 0$ iff $\lim X_{\tau} \neq 0$. Since X_{α} is the inverse system of compact spaces $\tau(X_{\alpha})$, we have $\lim \tau(X) \neq 0$. The proof is completed.

Since each quasi-H-closed space is w-compact, we have

2.2. THEOREM. LET $X = \{X_{\alpha}, f_{\alpha \beta}, \alpha \in A\}$ be an inverse system of functionally Hausdorff non-empty quasi-H-closed spaces X_{α}. Then $X = \lim X$ is non-empty.

We say that a regular (almost regular) space X is R-closed (AR-closed) if it is closed in each regular (almost regular) space in which it can be embedded [9]. Each completely regular R-closed (AR-closed) space X is compact since $X \subset \beta X$ [2].

If X is R-closed, Y regular, and $f : X \longrightarrow Y$ a continuous mapping then Y is R-closed.

2.3. THEOREM. Let $X = \{X_{\alpha}, f_{\alpha \beta}, \alpha \in A\}$ be an inverse system of
non-empty functionally Hausdorff R-closed spaces X_α. Then $X = \lim\limits_\alpha X$ is non-empty.

Proof. The space $\tau (X_\alpha) \tau$ is completely regular R-closed i.e. a Hausdorff compact space. See the proof of Theorem 2.1.

We say that a mapping $f : X \to Y$ is τ-open if $f(U)$ is τ-open for each τ-open set $U \subset X$.

2.4. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of w-compact functionally Hausdorff spaces X_α. If the projections $f_\alpha : \lim\limits_\alpha X \to X_\alpha$, $\alpha \in A$, are τ-open, then $X = \lim\limits_\alpha X$ is functionally Hausdorff and w-compact.

Proof. Let $U = \{U_\mu : \mu \in M\}$ be a maximal centred family of τ-open sets in X. For each $\alpha \in A$, let $U_\alpha = \{f_\alpha(U_\mu) : \mu \in M\}$. We prove that U_α is the maximal centred family of τ-open sets in X_α (f is τ-open!). Suppose that V_α is τ-open in X_α such that $V_\alpha \cap f_\alpha(U_\mu)$ is non-empty for each $U_\mu \in U$. This means that $f_{\alpha\beta}^{-1}(V_\alpha)$ is τ-open set which meets each U_μ. From the maximality of U it follows that $f_{\alpha\beta}^{-1}(U_\alpha) \in U_\beta \mu$. Hence, U_α is maximal. From the w-compactness of X_α it follows that $Y_\alpha = \cap \{f_\alpha(U_\mu) : U_\mu \in U\}$ is non-empty. From the maximality of U_α it follows that U_α contains all neighborhoods of all $y_\alpha \in Y_\alpha$. From 0.11, it follows that $Y_\alpha = \{y_\alpha\}$, where $y_\alpha \in X_\alpha$. For each $\alpha \in A$, let W_α be a family of all τ-open sets containing y_α. From the maximality of U_β, $\beta \geq \alpha$ it follows that U_β contains $f_{\alpha\beta}^{-1}(U_\alpha) = \{f_{\alpha\beta}^{-1}(U_\mu) : U_\mu \in U_\alpha\}$.

This means that $f^{-1}_{\alpha\beta}(y_\beta) = y_\alpha$, $\beta \geq \alpha$. Hence $y = (y_\alpha : \alpha \in A)$ is a point of X. It is readily seen that $y \in \cap \{U : U \in \}$. The proof is completed since it is clear that X is functionally Hausdorff.
2.5. THEOREM. Let \(X = \{X_\alpha, f_{\alpha\beta}, A\} \) be an inverse system of perfect \(w\)-compact (\(\tau\)-compact, \(H\)-closed, \(R\)-closed) spaces \(X_\alpha \). A space \(X = \lim X \) is non-empty iff the spaces \(X_\alpha, \alpha \in A \), are non-empty.

3. CONTINUITY OF THE FUNCTOR \(\tau \)

Let \(X = \{X_\alpha, f_{\alpha\beta}, A\} \) be an inverse system and let \(\tau \) be a Tychonoff functor described in Section One. From 1.2. it follows that \(\tau(X) = \{\tau(X_\alpha), \tau(f_{\alpha\beta}), A\} \) is an inverse system. Let \(C \) be a class of the inverse systems. We say that the functor \(\tau \) is \(C \)-continuous if \(\tau(\lim X) \) is homeomorphic to \(\lim \tau(X) \) for each \(X \) in \(C \). The functor \(\tau \) is said to be continuous if \(\tau \) is \(C \)-continuous for each class \(C \).

3.1. LEMMA. If \(X \) is an inverse system, then there exists a continuous mapping \(\tau_1 : \tau(\lim X) \rightarrow \lim \tau(X) \).

Proof. Let \(\tau = \{\tau(X_\alpha), f_{\alpha\beta}, A\} \) be an inverse system and let \((X_\alpha) = \lim X \). From 1.2. it follows that there is \(\tau_1 : \tau(\lim X) \rightarrow (X_\alpha) \) such that \(\tau_1 \alpha x = \tau_1 \alpha \tau_{\alpha\beta} \). It is readily seen that \(\tau_1 \alpha = \tau_1 \beta_{\alpha\beta} \). This means that the mappings \(\tau_{\alpha\beta} \), \(\alpha \in A \), induce a continuous mapping \(\tau_1_\alpha : \tau(\lim X) \rightarrow \lim \tau(X) \). The proof is completed.

3.2. LEMMA. \(\lim \tau = \tau_1 \tau \)

Proof. From the definition of \(\tau_1 \) it follows \(\tau_1 \alpha = f_\alpha \tau_1 \), where
f' : \lim_{\alpha} \tau(X) \rightarrow \tau(X_{\alpha}) \text{ is a projection. Moreover, } \tau_X f_{\alpha} = \tau_1 \tau_{\alpha} \text{ and } \tau_X f_{\alpha} = f'_{\alpha} \lim \tau. \text{ It follows that } \tau_1 \tau = f'_{\alpha} \lim \tau \text{ and } \tau_1 \tau = f'_{\alpha} \tau_1 \tau \text{ i.e. } \lim \tau = \tau_1 \tau. \text{ Q.E.D.}

3.3. THEOREM. Let C be the class of all inverse systems \(X = \{X_{\alpha}, f_{\alpha\beta} : \alpha, \beta \in A \} \) such that \(X_{\alpha}, \alpha \in A, X = \lim X \) is w-compact (\(\tau \)-compact) functionally Hausdorff. If the projections \(f_{\alpha} : X \rightarrow X_{\alpha}, \alpha \in A, \) are onto, then the Tychonoff functor \(\tau \) is C-continuous.

Proof. From Lemma 1.3. it follows that each \(\tau_X \), \(\alpha \in A \), is 1-1. This means that \(\lim \tau \) is 1-1. Since \(\lim X \) is functionally Hausdorff we infer by 1.3. that \(\tau : \lim X \rightarrow \tau(\lim X) \) is 1-1. It follows that \(\tau_1 : \tau(\lim X) \rightarrow \lim \tau(X) \) is one-to-one. Since \(\lim \tau(X) \) and \(\tau(\lim X) \) are compact (1.4. THEOREM) we infer that \(\tau_1 \) is a homeomorphism. The proof is completed.

3.4. COROLLARY. Let C be the class of all inverse systems an in Theorem 2.4. Then the Tychonoff functor \(\tau \) is C-continuous.

3.5. REMARK. In [4] is proved that if \(\{X_{\alpha} : \alpha \in A\} \) is a family of w-compact spaces \(X_{\alpha} \), then \(\prod X_{\alpha} \) is w-compact an \(\tau(\prod X_{\alpha}) = \prod \tau(X_{\alpha}). \)

3.6. THEOREM: Let H be a class of the inverse systems \(X = \{X_{\alpha}, f_{\alpha\beta} : \alpha, \beta \in A \} \) such that \(X_{\alpha}, \alpha \in A, X = \lim X \) are functionally Hausdorff H-closed (R-closed). If the projections \(f_{\alpha} : X \rightarrow X_{\alpha}, \alpha \in A, \) are onto mappings, then the functor \(\tau \) is H-continuous.

Proof. The spaces \(\tau(X_{\alpha}), \alpha \in A, \) and the spaces \(\tau(\lim X), \lim \tau(X) \) are compact (See the proof of 2.3. and 3.3.).
In [14] it is proved that \(\lim \ X \) is H-closed if \(X_\alpha \) are H-closed, \(f_{\alpha\beta} \) open and that \(f_{\alpha\beta} \) are onto if \(f_{\alpha\beta} \) are open onto. Hence, from 3.6. we obtain.

3.7. THEOREM. Let \(H \) be a class of the inverse system of H-closed functionally Hausdorff spaces \(X_\alpha \) and open onto mappings \(f_{\alpha\beta} \). Then the functor \(\tau \) is H-continuous.

From [6] it follows that \(\lim \ X \) is R-closed (AR-closed) if \(X_\alpha \) are R-closed (AR-closed) and if \(f_{\alpha\beta} \) are open-closed. By similar method of proof we have.

3.8. THEOREM. Let \(R \) be a class of the inverse systems of R-closed (AR-closed) functionally Hausdorff spaces \(X_\alpha \) and open-closed onto mappings \(f_{\alpha\beta} \). Then the functor \(\tau \) is R-continuous.

We say that an inverse system \(\mathcal{X} = \{ X_\alpha, f_{\alpha\beta}, A \} \) is factorisable (or f-system) [10] if for each continuous mapping \(f : \lim \ X \rightarrow [0,1] \) there exists a continuous mapping \(g_\alpha : X_\alpha \rightarrow [0,1] \) such that \(f = g_\alpha f_\alpha \), where \(f_\alpha : \lim \ X \rightarrow X_\alpha \) is the natural projection.

3.9. LEMMA. If \(\mathcal{X} \) is an f-system, then the mapping \(\tau_1 : \tau (\lim \ X) \rightarrow \lim \tau (X) \) is one-to-one.

Proof. Let \([x]\) and \([y]\) be two distinct points of \(\tau (\lim \ X) \), where \(x, y \in \lim \ X \). This means that there exists an \(f : \lim \ X \rightarrow [0,1] \) such that \(f (x) = 0 \) and \(f (y) = 1 \). Since \(\mathcal{X} \) is f-system there is an \(\alpha \in A \) and \(g_\alpha : X_\alpha \rightarrow [0,1] \) such that \(f = g_\alpha f_\alpha \). It follows that \([f_\alpha (x)] \neq [f_\alpha (y)] \) since \(g_\alpha f_\alpha (x) = 0 \) and \(g_\alpha f_\alpha (y) = 1 \). This means that \(\tau_1([x]) \neq \tau_1([y]) \). The proof is completed.
3.10. THEOREM. Let \(W \) be a class of the inverse \(f \)-system \(X = \{X_\alpha, f_{\alpha\beta}, A\} \) such that all \(X_\alpha \) and \(X = \lim X \) are \(w \)-compact (H-closed, \(\tau \)-compact, R-closed, AR-closed). Then the Tychonoff functor \(\tau \) is \(W \)-continuous.

Proof: From 1.4. Theorem it follows that \(\tau (\lim X) \) and \(\lim \tau (X) \) are compact. By virtue of 3.5. Lemma it follows that \(\tau_1 \) is the homeomorphism Q.E.D.

3.11. LEMMA. [11]. Let \(X = \{X_\alpha, f_{\alpha\beta}, A\} \) be a well-ordered inverse system such that \(w (X_\alpha) < \tau \) and \(\text{cf}(A) > \tau > \aleph_0 \). If \(f_{\alpha\beta} \) are...
perfect (open or X is continuous) then $w(\lim X) < \tau$.

We close this Section with the following

3.12. THEOREM. Let C be a class of the inverse systems X as in 3.11. If $\lim X$ is w-compact (τ-compact, H-closed, R-closed, AR-closed) and if the projections $f_{\alpha}: X \rightarrow \alpha \in A$, are onto, then the functor τ is C-continuous.

Proof. In view of Theorem 3.10, it suffices to prove that X is an f-system. Let $X = \lim X$ and let $f: X \rightarrow [0,1]$ be a real-valued function. For each $z \in [0,1]$ let N_z be a countable family of open sets such that $\cap \{U: U \in N_z\} = \{z\}$. We can assume that $N = \{N_z: z \in [0,1]\}$ is countable. It is readily seen that for each $U \in f^{-1}(N)$ there exist an $\alpha \in A$ and open $U_{\alpha_1} \subseteq X$, such that $U_{\alpha_1} = f^{-1}(U)$. (See also [12]). Since the cardinality $|N| \leq \aleph_0$ and $cf(A) > \aleph_0$, there exist an $\alpha \in A$ such that $\alpha > \alpha_1$, $i \in N$. Let $Y = \{Y_z: z \in [0,1]\}$. This means that for each $x_{\alpha} \in X_{\alpha}$ there is only one $z \in [0,1]$ such that $x_{\alpha} \in Y_z$. Put $g_{\alpha}(x_{\alpha}) = z$. We define $g_{\alpha}: X_{\alpha} \rightarrow [0,1]$ such that $f = g_{\alpha}f_{\alpha}$. In order to complete the proof we prove that g_{α} is continuous. Let $x_{\alpha} \in X_{\alpha}$ and let $g_{\alpha}(x_{\alpha}) = z$. For each neighborhoods $V \in N_z$ there is a neighborhood U_{α} of x_{α} such that $f_{\alpha}^{-1}(U_{\alpha}) = V$. This means that $g_{\alpha}(U_{\alpha}) = V$. The proof is completed.

4. CONNECTEDNESS OF THE LIMIT SPACE

We start with following theorem

4.1. THEOREM: A topological space X is connected iff $\tau(X)$ is connected.
Proof. If \(X \) is connected, then \(\tau(X) \) is connected since \(\tau_X : X \rightarrow \tau(X) \) is continuous surjection. Conversely, let \(\tau(X) \) be connected. If \(X \) is disconnected, then there exist two disjoint open sets \(U, V \subseteq X \) such that \(X = U \cup V \).

Let \(g : X \rightarrow [0,1] \) be a mapping such that \(g(x) = 0 \) if \(x \in U \) and \(g(x) = 1 \) if \(x \in V \). Clearly, \(g \) is continuous. From the definition of \(\tau(X) \) it follows that \(\tau_X(U) \cap \tau_X(V) = \emptyset \) and \(\tau_X(U) \cup \tau_X(V) = \tau(X) \), where \(\tau_X(U) \) is the image of \(U \). Let \(f : \tau(X) \rightarrow [0,1] \) be a mapping such that \(f[\tau_X(U)] = 0 \), \(f[\tau_X(V)] = 1 \). Clearly, \(f \tau = g \).

Since \(g \in C(X) \), from the definition for \(\tau(X) \) it follows that is continuous i.e. \(f \in C(\tau(X)) \). This means that \(\tau_X(U) = f^{-1}(0) \) and \(\tau_X(V) = f^{-1}(1) \) i.e. \(\tau_X(U) \) and \(\tau_X(V) \) are disjoint open sets in \(\tau(X) \). This contradiction with the connectedness of \(\tau(X) \). The proof is completed.

4.2. THEOREM. Let \(\{X_{\alpha}, f_{\alpha\beta} : A\} \) be an inverse system such that the functor \(\tau \) is \(X \)-continuous. The space \(X = \lim X \) is connected iff \(\lim \tau X \) is connected.

Proof. The space \(\tau(\lim X) \) is connected since it is homomorphic with \(\lim \tau X \). From 4.2. it follows that \(\lim X \) is connected iff \(\tau(\lim X) \) is connected. Q.E.D.

Now, from Theorems 4.1. and 4.2. and from theorems of Section Three we obtain the following theorems.

4.3. THEOREM. Let \(X \) be an inverse system as in Theorem 2.4. Then \(X = \lim X \) is connected iff \(X_{\alpha} \), \(\alpha \in A \), are connected.

4.4. THEOREM. Let \(X = \{X_{\alpha}, f_{\alpha\beta} : A\} \) be an inverse system such that \(X_{\alpha}, \alpha \in A, X = \lim X \) are functionally Hausdorff H-closed (R-closed). If the projections \(f_{\alpha} : X \rightarrow X_{\alpha}, \alpha \in A \), are onto
mappings, then X is connected iff X_α, $\alpha \in A$, are connected.

4.5. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of H-closed functionally Hausdorff spaces X_α and open onto mappings $f_{\alpha\beta}$. The space $X = \lim X$ is connected iff X_α, $\alpha \in A$, are connected.

4.6. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of R-closed (AR-closed) functionally Hausdorff spaces X_α and open-closed onto mappings $f_{\alpha\beta}$. The space $X = \lim X$ is connected iff the spaces X_α, $\alpha \in A$, are connected.

4.7. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse f-system such that all X_α and $X = \lim X$ are w-compact (τ-compact, H-closed, R-closed, AR-closed). X is connected iff X_α, $\alpha \in A$, are connected.

REFERENCES:

(8) Sigal M.K. and Asha Mathur, A note on almost completely

(9), On minimal almost regular spaces, Glasnik matematički 6 (26) (1971), 179-185.

(10) [Epin E.V.:, Funktory i nesetnye stepeni kompaktov, UMN 36 (1981), 3-62.

(12), Some results on inverse spectra II., Commentationes math. univ. carol. 22 (1981), 819-841.

(13), Cepi i kardinaly, DAN SSSR 239 (1978), 546-549.

Primljeno: 1990-05-29

Lončar I. Neprekidnost Tihnovljevog funkторa

SADRŽAJ

U radu je istrazivana neprekidnost Tihnovljevog funkторa τ. Pri tome kazemo da je funktor F C-neprekidan ako su prostori F(lim X) i limF X homeomorfni, gdje je C klasa inverznih sistema X = = \{X_\alpha, f_\alpha\beta, A\}.

U odjeljku 1. dana je definicija i osnovna svojstva funkторa τ. Drugi odjeljak sadrži teoreme o nepraznosti i w-kompaktnosti limesa inverznih sistema w-kompaktnih prostora. Teoremi iz drugog odjeljka služe za dokazivanje teorema o C-neprekidnosti funkторa τ, gdje je C klasa inverznih sistema w-kompaktnih (τ-kompaktnih, H-zatvorenih ili R-zatvorenih) prostora.