H-CLOSED EXTENSIONS AND ABSOLUTE OF INVERSE LIMIT SPACE

The main purpose of this paper is the application of the Katetov extension \(kX \) to an inverse system and its limit. By the method of the extension theory the theorems concerning continuity of the Katetov functor, H-closedness and nearly-compactness of an inverse limit space are given.

H-closed extension, inverse system

1. KATETOV EXTENSION OF A LIMIT SPACE

If \(X \) is a topological space, then the closure and the interior of a subset \(A \subseteq X \) is denoted by \(C_A^X \) and \(\text{Int}_A^X \) or by \(C_A \) and \(\text{Int}_A \).

A Hausdorff space \(X \) is \(H \)-closed if for every open cover \(U \) of \(X \) there exists a finite subfamily \(\{ U_1, \ldots, U_k \} \) of \(U \) such that

\[
X = C_{\bigcup_{1 \leq j \leq k} U_j} \cap \left(\bigcup_{1 \leq j \leq k} C_{U_j} \right) \quad (17)\]

A continuous mapping \(f: X \to Y \) is said to be proper \([17]\)

if for each \(y \in Y \) and each \(V \ni y \) open in \(Y \) there exists a \(V' \ni y \) which is open in \(Y \) and such that \(\text{Int}_Y \left(C_V \right) \subseteq C_{f^{-1}(V')} \).

An inclusion \(A \subseteq Y \) is proper if for each \(y \in Y \) and each \(V \ni y \) open in \(Y \) there exists a \(V' \ni y \) open in \(Y \) and such that \(\text{Int}_A \left(A \cap C_Y \right) \subseteq C_{A \cap V'} \).

1.1. LEMMA. \([17]\). Let \(f: X \to Y \) be a continuous mapping. Then:

1. \(f \) is proper, if \(Y \) is regular;
2. \(f \) is proper if \(X \) is \(H \)-closed and if \(Y \) is a Hausdorff space;
3. a closed subspace \(A \) of \(H \)-closed \(X \) is \(H \)-closed iff the inclusion \(A \subseteq X \) is proper;
4. each open and dense embedding is proper.

Let \(F \) be a family of all open free ultrafilters on a Hausdorff space \(X \). The Katetov extension \(kX \) of \(X \) \([17]\) is the set \(X \cup F \) with topology consisting of all open subsets of \(X \) and all sets of the form \(\{ x \} \cup U \), where \(x \in F \) and \(U \in x \).

1.2. LEMMA. \((16)\), \((6)\). Let \(X \) be a Hausdorff space. Then:

1. \(kX \) is \(H \)-closed;
2. \(X \) is open and dense (i.e. proper) embedded in \(kX \);
3. \(kX \) is discrete in the topology induced by the topology on \(kX \);
4. a mapping \(f: X \to Y \) into \(H \)-closed space \(Y \) has a unique continuous extension \(k f: kX \to Y \) if and only if \(f \) is proper;
(v) If U and V are disjoint open subsets of X then $C_{kX} U \cap C_{kX} V \subseteq X$.

We say that an extension Y of X is majorizable if there exists an extension Z of X and a map $F: Z \rightarrow Y$ which is an extension of the identity $i: X \rightarrow X$.

An extension will be called r.o.-free if for each regularly open subset U of X the boundary $B_{dX} U$ in X is the same as the boundary $B_{dY} V$ of V in Y, where V is an arbitrary open subset of Y such that $U = V \cap X$.

1.3. LEMMA. ([17:1.3.1].) If an H-closed extension $X \subseteq Y$ is such that:

a) X is open in Y,

b) The remainder $Y - X$ is discrete in the topology induced from Y,

c) $X \subseteq Y$ is r.o. - free

then $X \subseteq Y$ is non-majorizable.

1.4. LEMMA. An extension $X \subseteq Y$ which satisfies a) and b) of Lemma 1.3. is r.o.-free iff the following condition (K) is satisfied:

(K) If U, V is a pair of disjoint open subsets of X then $C_{kU'} U \cap C_{kV'} V \subseteq X$, where U', V' are arbitrary open subsets of Y such that $U = U' \cap X$ and $V = V' \cap X$.

A p-cover of X is an open cover of X possessing a finite subfamily which is dense in X ([26]). A map $f: X \rightarrow Y$ is a p-mapping iff f can be continuously extended to $k: kX \rightarrow kY$ ([26]).

A continuous mapping $f: X \rightarrow Y$ is a p-mapping iff f can be continuously extended to $k: kX \rightarrow kY$ ([26]).

1.5. LEMMA. ([11], [22]). Let X_{α} be non-empty spaces for each $\alpha \in A$.

Then $k(PX_{\alpha}) = P kX_{\alpha}$ iff at least one of the following two conditions is satisfied.

a) X_{α} is H-closed for each $\alpha \in A$.

b) There exists X_{α} which is not H-closed. X_{α} is finite for all $\alpha \neq \alpha'$.

Moreover, all but finitely many X_{α}'s have only one point.

In contrast of the above Lemma we show that the functor k is continuous in some non-trivial cases i.e. that $k (\lim_{\alpha} X_{\alpha}) = \lim_{\alpha} kX_{\alpha}$.

Now we start with the key lemma of this Section.

1.6. LEMMA. Let $X = \{X_{\alpha}, f_{\alpha}, A\}$ be an inverse system of a Hausdorff spaces $X_{\alpha}, \alpha \in A$. Then:

i) if the mappings f_{α} are p-map then there exists inverse system $kX_{\alpha} = \{kX_{\alpha}, k f_{\alpha}, A\}$;

ii) if $\lim X$ is non-empty and if the projections $f_{\alpha}: \lim_{\alpha} X \rightarrow X_{\alpha}$, $\alpha \in A$, are p-map, then there exists a continuous mapping $K: k (\lim_{\alpha} X_{\alpha}) \rightarrow \lim_{\alpha} kX_{\alpha}$ which is an extension if the identity $i: \lim_{\alpha} X \rightarrow \lim_{\alpha} kX_{\alpha}$;

iii) if the projections f_{α} are p-map and onto, then K is onto and $\lim_{\alpha} kX_{\alpha}$ is an H-closed extension of $\lim_{\alpha} X_{\alpha}$ such that $\lim_{\alpha} X$ is open in $\lim_{\alpha} kX_{\alpha}$.

Proof. (1) Apply Lemma 1.2. (iv).
(11) Now we have the p-map mappings $f_{\alpha} : \lim X \rightarrow kX_{\alpha}$, $\alpha \in A$. By virtue of Lemma 1.2. (iv) there exist a continuous mappings $k_{\alpha} : k(\lim X) \rightarrow kX_{\alpha}$, $\alpha \in A$. A family $\{k_{\alpha} : \alpha \in A\}$ induces a continuous mapping $K : k(\lim X) \rightarrow \lim kX$ [2:138]. The proof is completed.

Let us prove that K is onto. For each $x \in \lim kX$ we consider a points $x = f_{\alpha}^{-1}(x)$, $\alpha \in A$, where $f_{\alpha} : \lim X \rightarrow kX_{\alpha}$, $\alpha \in A$, are the projections. For each x_{α} we have $\{x_{\alpha}\} = \{C1U : U$ is the open neighborhood of $x_{\alpha}\}$. A family $\{(k_{\alpha})^{-1}(U) : \alpha \in A\}$ is a centred family of open subsets in H-closed space $k(\lim X)$. This means that there exists a point $y \in \cap \{C1U : \alpha \in A\}$. Clearly $k_{\alpha}(y) = x_{\alpha}$ for each $\alpha \in A$. Thus, $K(y) = x$. This means that K is onto and that $\lim kX$ is H-closed as a continuous image of H-closed space $k(\lim X)$. In order to complete the proof it suffices to prove that $\lim kX$ is dense in X. This is an immediate consequence of the definition of a base of the inverse limit space and the assumption that f_{α} are onto.

1.7.Lemma. Let $X = \{X_{\alpha}, f_{ab}, A\}$ be an inverse system with projections f_{α} which are onto p-map. For each $x \in k(\lim X) - \lim X$ there exists a $\alpha \in A$ such that $k_{\alpha}(x) \in kX_{\alpha} - X_{\alpha}$.

Proof. An immediate consequence of the fact that x is free ultrafilter and the definition of a base on inverse limit space.

From Lemmas 1.3. and 11.7. we obtain the following.

1.8.Lemma. Let X be an inverse system with projections f_{α} which are p-map onto. Then $\lim kX = k(\lim X)$ if and only if the following conditions are satisfied:
a) $\lim kX - \lim X$ is discrete in the topology induced by the topology on $\lim kX$,

b) each open subset $U \subseteq \lim X$ is r.o.-free in $\lim kX$.

A mapping $f:X \rightarrow Y$ is said to be p-perfect if f is a p-map and $f(kX - X) = kY - Y$ [26].

1.9.lemma. Let X be an inverse system with p-perfect onto mappings $f_{\alpha\beta}$ such that f_{α} are p-perfect and onto. Then $f_{\alpha}(\lim kX - \lim X) \subseteq kX_{\alpha} - X_{\alpha}$, $\alpha \in A$.

1.10.lemma. Let X be an inverse system as in Lemma 1.9. A subspace $\lim kX - \lim X$ is discrete iff the following condition is satisfied: (D) For each point $x_{\alpha} \in kX_{\alpha} - X_{\alpha}$ there exists a $\beta \in A$, $\beta \geq \alpha$, such that for each $\gamma \in A$, $\alpha \leq \beta \leq \gamma$, the fiber $(k_{\beta_{\gamma}})^{-1}(x_{\beta})$ contains a single point for each $x_{\beta} \in (k_{\alpha\beta})^{-1}(x_{\alpha})$.

Proof. The "only if" part. Now the subspace $\lim kX - \lim X = Y$ of the space $\lim kX$ is the limit of inverse subsystem $Y = \{kX_{\alpha} - X_{\alpha}, k_{\alpha\beta} / (kX_{\beta} - X_{\beta}), A\}$. Each point $y \in Y$ is an open subset of Y. This means that $\{y\}$ contains the fiber $(k_{\alpha})^{-1}(U_{\alpha})$ for some
open subset U of $k\alpha - X$. Thus (D) is satisfied.

The proof of the "if" part is similar.

1.11.THEOREM. Let $X = \{ X_\alpha, f_\alpha : \alpha \in A \}$ be an inverse system such that f_α are p-perfect mappings. If the projections $f_\alpha : \lim X \to X_\alpha$, $\alpha \in A$, are onto p-map, then $\lim kX$ and $k(\lim X)$ are homeomorphic iff X satisfies the condition (D) and $\lim kX$ satisfies the condition (K).

Proof. The "if" part. By virtue of Lemmas 1.8. and 1.10. it follows that $\lim kX$ satisfies the conditions of Lemma 1.3. Thus, the mapping K is a homeomorphism. The "only if" part follows from the fact that kX satisfies the conditions of Lemma 1.3.

1.12.DEFINITION. A mapping $f:X \to Y$ is said to be θ-continuous if for each $x \in X$ and each open $V \ni f(x)$ there is an open $U \ni x$ such that $f(CU) \subseteq CV$.

If Y is regular, then each θ-continuous mapping $f:X \to Y$ is continuous.

1.13.DEFINITION. A mapping $f:X \to Y$ is said to be θ-homeomorphic if f is $1-1$ onto such that f and f^{-1} are both θ-continuous. We say that two extensions Y and Z of a space X are θ-equivalent if there exists a θ-homeomorphism $H:Z \to Y$ which is the extension of identity $1:X \to X$.

1.14.LEmma. Let X be an inverse system with p-perfect bonding mappings and proper onto projections. The space $\lim kX$ is θ-equivalent to the space $k(\lim X)$ iff the condition (K) is satisfied.

Proof. The "if" part. Apply the Fomin modification $(\lim kX)$, [9:46] which is homeomorphic to $k(\lim X)$. Moreover, $(\lim kX)$ is θ-homeomorphic to $\lim kX$ [2:46m Lemma 7.] since K is 1-1.

The "only if" part is obvious since K is θ-homeomorphism.

For an inverse system of a regular spaces we have the following corollary of Theorem 1.11.

1.15.COROLLARY.Let X be an inverse system of a regular spaces and perfect onto bonding mappings. The spaces $k(\lim X)$ and $\lim kX$ are equivalent iff the conditions (D) and (K) are satisfied.

Now we define some special kinds of the proper mappings.

A mapping $f:X \to Y$ is said to be skeletal (HJ) if for each open (regularly open) $U \subseteq X$ we have $\text{Int} f^{-1}(CU) \subseteq \text{Cl} f^{-1}(U)$ [17].

1.16.LEmma.[17]. Each HJ-mapping is a proper mapping.

A mapping $f:X \to Y$ is semi-open if $\text{Int} f(U)$ is non-empty for each non-empty open subset $U \subseteq X$.

Each semi-open mapping is HJ and proper. Each open mapping is semi-open.

We say that a mapping $f:X \to Y$ is irreducible if the set $f^*(U) = \{ y : f^{-1}(y) \subseteq U \}$ is non-empty for any non-empty open subset $U \subseteq X$.

Every closed irreducible mapping is a semi-open mapping.

A mapping $f:X \to Y$ has the inverse property if $f^{-1}(CIV) = \text{Cl} f^{-1}(V)$ for any open set $V \subseteq Y$.

Every open mapping has the inverse property and every mapping with the inverse property is HJ-mapping.

In the paper [15] it was proved the following theorem.

1.17.THEOREM.Let $X = \{ X_\alpha, f_\alpha : \alpha \in A \}$ be an inverse system with
HJ-mapping $f_{a \beta}$. If the projections $f_{\alpha} : \lim X \rightarrow X_\alpha, \alpha \in A$, are onto, then the projections f_{α} are HJ-mapping.

A mapping $f : X \rightarrow Y$ is absolutely closed if there do not exists a proper extension T of X and an extension $f : T \rightarrow Y$ of f.

1.18. LEMMA. [26]. Let $f : X \rightarrow Y$ be a continuous mapping. The following are equivalent:
(1) f is absolutely closed.
(2) (a) If $A \subseteq X$ is regularly closed, then $f(A)$ is closed.
 (b) If $x \in kX - X$ and $y \in Y$, then there exists $U \in x$ such that $f^{-1}(y) \cap CIU = \emptyset$.

1.19. LEMMA. [26:211]. A p-mapping $f : X \rightarrow Y$ is p-perfect iff f is absolutely closed.

Now we have the following corollary of Theorem 1.11.

1.20. COROLLARY. Let $X = \{X_\alpha, f_{a \beta} : A\}$ be an inverse system with absolutely closed HJ-mapping $f_{a \beta}$ and onto projections $f_{\alpha} : \lim X \rightarrow X_\alpha, \alpha \in A$. The space $k(\lim X)$ is equivalent to the space $\lim kX$ iff the conditions (K) and (D) are satisfied.

A special role play a closed irreducible mapping since we have the following

1.21. LEMMA. If $f : X \rightarrow Y$ is p-perfect closed irreducible mapping, then the restriction $kf/(kX - X)$ is one-to-one i.e. $kf/(kX - X)$ is a homeomorphism the space $kX - X$ onto $kY - Y$.

Proof. If $x = (U_\alpha : \alpha \in A)$ is a free ultrafilter, then $(f^\#(U) : U \in x)$ is a free ultrafilter. It is easy to prove that for $y = (V_\mu : \mu \in M)$ $y \neq x$ it follows that $(f^\#(U_\alpha) : \alpha \in A) \neq (f^\#(V_\mu) : \mu \in M)$. This means that $kf/(kX - X)$ is one-to-one. The proof is completed.

1.22. THEOREM. Let $X = \{X_\alpha, f_{a \beta} : A\}$ be an inverse system with perfect irreducible onto mapping $f_{a \beta}$. Then $\lim kX = k(\lim X)$.

Proof. The p-projections $f_{\alpha} : \lim X \rightarrow X_\alpha, \alpha \in A$, are perfect (=closed with compact fiber $f_{\alpha}^{-1}(x_\alpha)$). It is easy to prove that $f_{\alpha}, \alpha \in A$, are irreducible. We infer that $\lim kX - \lim X$ is homeomorphic to each $kX_\alpha - X_\alpha, \alpha A$. Thus the condition (D) is satisfied. Let us prove that the condition (K) is satisfied. Let U, V be a pair of disjoint open subsets of $\lim X$. A sets $f^\#(U)$ and $f^\#(V)$ are disjoint open subsets of $X_\alpha, \alpha \in A$, since $f_{\alpha}, \alpha \in A$, are perfect and irreducible. Since X_α satisfies the condition (K) we have the following relation in $kX : Clf^{\#}(U) \cap Clf^{\#}(V) \subseteq X_\alpha$. By virtue of the irreducibility of f_{α} it follows that in $\lim kX$ we have the relation $ClU \cap ClV \subseteq \lim X$. The condition (K) is satisfied. By 1.11. the proof is completed.

We close this Section with theorems concerning the inverse systems of H-closed spaces. The "only if" part of the following
1.23. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}: \alpha, \beta \in A\}$ be an inverse system of H-closed spaces X_α. A space $\lim X$ is H-closed iff the projections f_α are proper.

Proof. The "only if" part. If $\lim X$ is H-closed, then by Lemma 1.1. (ii) the projections f_α are proper.

The "if" part. Now $kX = \{kX_\alpha, kf_{\alpha\beta}, A\} = \{X_\alpha, f_{\alpha\beta}, A\} = X$ since the mapping defined in the proof of Lemma 1.6. We have $\lim X \subseteq K \subseteq \lim kX$. Since $\lim kX = \lim X$ we infer that $\lim X = K$. As a continuous image of H-closed space $k(\lim X)$ the space $K = \lim kX$ is H-closed. The proof is completed.

1.24. REMARK: The "if" part of Theorem 1.23. has been proved in the paper [3].

1.25. LEMMA. Let $X = \{X_\alpha, f_{\alpha\beta}: \alpha \in A\}$ be an inverse system of a completely Hausdorff spaces X_α. A limit $\lim X$ is completely Hausdorff.

Proof. Trivial.

1.26. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}: \alpha \in A\}$ be an inverse system. A space $\lim X$ is nearly-compact iff the spaces $X_\alpha, \alpha \in A$, are nearly-compact and if the projections $f_\alpha, \alpha \in A$, are proper.

Proof. Apply Theorem 1.23. and Lemma 1.25.

2. FOMIN EXTENSION ∂X

Let X be a Hausdorff space. We now define a topology on the set $X \cup F$ as follows. For each U open in X let 0_U be the union of U and all ultrafilters of F which contain U. It is easy to prove that

$$0_\cup \cap 0_\cap = 0_\cup \cap 0_\cap$$

This means that a family $\{0_\cup U: U \text{ is open in } X\}$ is a base for topology on $X \cup F$. We denote the set $X \cup F$ equipped with this topology by ∂X. The space ∂X is called the Fomin extension of a space X [9].

2.1. LEMMA. [9]. The space ∂X is H-closed extension of a Hausdorff space X. If Y is any H-closed extension of X, then there exists a ε-continuous extension of $f:X \to Y$ of the identity $i:X \to X \subseteq Y$.

Let $f:X \to Y$ be a continuous mapping. For each ultrafilter $x = (U_\alpha: U_\alpha \text{ is open in } X) \in \partial X - X$ we consider a
filter-base $\delta f(x) = \{V: V \text{ is open in } Y \text{ such that there exists a } U_{\alpha} \in x \text{ with } f(U_{\alpha}) \subseteq V\}$. It is easy to prove that if f is a p-map, then $\delta f(x)$ is an open ultrafilter in Y. By virtue of H-closedness of ∂Y the intersection $Z = \cap (CIV: V \in \delta f(\{1\}))$ is non-empty. As in the case of the Katetov extension kX it is easy to prove the following Lemma.

2.2. **Lemma.** (a) If $f:X \rightarrow Y$ is a p-mapping, then $\delta f(x)$ contains a single point of Y,
(b) The mapping $\delta f: \partial X \rightarrow \partial Y$ is e-continuous,
(c) If f is p-perfect then δf is continuous,
(d) If Y is regular and if f is p-mapping then δf is continuous.

By the proof similar to proof of Lemma 1.6. we obtain

2.3. **Lemma.** Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of a Hausdorff spaces X_{α} and a p-mapping $f_{\alpha\beta}$. Then:
(1) There exists inverse system $\partial X = \{\partial X_{\alpha}, \partial f_{\alpha\beta}, A\}$ with e-continuous mappings $\partial f_{\alpha\beta}$
(11) If the mappings $f_{\alpha\beta}$ are p-perfect or if $X_{\alpha}, \alpha \in A$, are regular, then the mappings $\partial f_{\alpha\beta}$ are continuous. Moreover, there exists a continuous mapping $S: \partial(\lim X) \rightarrow \lim \partial X$. Moreover, there exists a continuous mapping $S: \partial(\lim X) \rightarrow \lim \partial X$.
(111) If in (11) $f_{\alpha\beta}$ are onto then S is onto.

2.4. **Problem.** Under what conditions the mapping S is a homeomorphism?

If the bonding mapping are perfect and irreducible then we have

2.5. **Theorem.** Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of a Hausdorff spaces X_{α} and perfect closed irreducible onto mapping $f_{\alpha\beta}$. Then the mapping $S: \partial(\lim X) \rightarrow \lim \partial X$ is a homeomorphism.

Proof. By virtue of Lemma 1.21. the mapping S is onto and 1-1. It remains to prove that S is an open mapping. A subspace $\partial(\lim X) - \lim X$ is homeomorphic to each $\partial X_{\alpha} - X_{\alpha}, \alpha \in A$, since the projections $f_{\alpha\beta}$ are perfect onto and irreducible. This means that the subspace $\partial(\lim X) - \lim X$ is homeomorphic to the subspace $\lim \partial X$. The proof is completed.

3. **Absolutely of an Inverse Limit Space**

The space ∂X. Let ∂X denotes a family of all open (fixed or free) ultrafilters on a Hausdorff space X. We introduce a topology into ∂X in the following way. Let O_U be the set of all ultra-filters that contain U, where U is open in $X [9]$; O_U is to be a base on ∂X. That this definition is correct it follows from the relation

$$O_U \circ = O_U \cup O_V$$

(2)

It is easy to prove that
This means that O_U is open and closed subset of eX.

3.1. LEMMA. If X is a Hausdorff space then eX is zero-dimensional and compact.

Proof. See [9].

A space X is called extremally disconnected if for each disjoint open sets $U, V \subseteq X$ we have $ClU \cap ClV = \emptyset$.

If X is extremally disconnected and Y is dense in X, then Y is extremally disconnected [9].

3.2. LEMMA. [9:41]. If X ia a Hausdorff space, then eX is extremally disconnected zero-dimensional compact space. The equation $X = eX$ holds iff X is a compact extremally disconnected Hausdorff space.

The absolute wX of a space X. A subspace wX of eX containing all fixed open ultrafilters on X is called the absolute (in the sense od Iliadis) of the space X or the extremally disconnected resolution of the space X.

3.3. LEMMA. The absolute wH is dense in eX and, consequently, wX is extremally disconnected.

Proof. See [9:41].

3.4. LEMMA. [9:44]. The absolute wX is e-homeomorphic to X iff X is extremally disconnected. If X is regular extremally disconnected, then wX is homeomorphic to X.

For each $x \in wX$ we define a point $p(x)$ such that $p_x(x) = \{ClU : U \in X\}$.

3.5. LEMMA. [9:55]. The natural projection $p_x : wX \longrightarrow X$ is e-continuous, irreducible and perfect. It is continuous iff X is regular.

3.6. THEOREM. [9:56]. Let $f : X \longrightarrow Y$ be a e-continuous irreducible perfect mapping of a Hausdorff space X onto a Hausdorff space Y. Then there exists a homeomorphism $w : wX \longrightarrow wY$ onto wY such that $fp_x = p_y f$.

The absolute wX and the extensions of a space X.

3.7. LEMMA. [9:60]. Let gX be an arbitrary extension of a Hausdorff space X. Then there exists a homeomorphism $h : e(gX) \longrightarrow eX$ such that $h(p_x^{-1}(x)) = p_x^{-1}(x)$ for each $x \in X$.

3.8. COROLLARY. [9]. $e(\beta X) = e(kX) = eX$.

3.9. COROLLARY. [9]. If bX is an arbitrary extension of X, then $w(bX) = \beta(wX)$. In particular, $\beta(wX) = \beta(wX)$.

The absolute in the sense of Mioduszewski. Now we enlarge the Iliadis topology defined at the begin of this Section by adding sets of the form $p_x^{-1}(U)$, U being an open subset of X. It is easy to verify that the sets of the form $O_U \cap p_x^{-1}(V)$ may be taken as a members of a topology on the set wX. We denote this space by aX.

3.10. LEMMA. The space aX is extremally disconnected and the mapping $p_x : aX \longrightarrow X$ is continuous, irreducible and perfect.

The space aX is minimal in the following sense:
3.11. Lemma. ([17:33]) For any extremally disconnected space E and any HJ-mapping $h: E \longrightarrow X$ there exists a unique mapping $a_h: E \longrightarrow aX$ such that $h = p_x(a_h)$.

The following theorem plays a special role in our investigation of the absolute of a limit space.

3.12. Theorem. Let $f: X \longrightarrow Y$ be a continuous mapping. A mapping f has a unique absolute a_f such that $p_v a_f = f p_x$ iff the mapping f is HJ.

3.13. Remark. A) The "if" part of Theorem 3.12. has been proved in the paper [17:24] and the "only if" part in the paper: Shapiro L.B., Ob absoljutah topologiceskih prostranstv i nepryevnyh otobrazenijah, DAN SSSR 226:3(1976), 523-526.

B) Let us note that the absolute of a continuous mapping always exists but need not be unique.

C) From the proof of the "if" part of Theorem 3.12. it follows that the "if" part holds for the absolute a_X in the sense of Iliadis.

D) Another construction of the absolute for regular spaces can be found from [1:363-370].

3.14. Lemma. ([18:124] or [1:363-370]). Let $f: X \longrightarrow Y$ be a continuous mapping. Then there exists the absolute $a_f: aX \longrightarrow aY$.

Moreover:

a) If f is bicom pact, then a_f is bicom pact;

b) If f is irreducible and perfect (into, onto) Y, then a_f is a homomorphism (into, onto) aY.

3.15. Lemma. ([18]). If $f: X \longrightarrow Y$ is an open onto mapping, then $a_f: aX \longrightarrow aY$ is onto.

The absolute of the inverse limit space

Now we apply this expository material to the inverse systems and their limits.

3.16. Theorem. Let $X = \{X_a, f_a_a, A\}$ be an inverse system of a Hausdorff spaces X_a. If the mappings f_a_a are HJ-mapping then there exists an inverse system $wX = \{wX_a, w f_a_a, A\}$ and a mapping $W: w X \rightarrow wX$.

Proof. Apply Remark 3.13. C) and the fact that the projections f_a_a are HJ-mappings. Then modify the proof of Theorem 1.6.

3.17. Remark. A) Similarly from Theorem 3.12. it follows that there exists an inverse system $aX = \{aX_a, a f_a_a, A\}$ for an inverse system as in Theorem 3.16.

B) There exists inverse system $eX = \{eX_a, e f_a_a, A\}$ if X is the inverse system of Hausdorff spaces and HJ bonding mappings.

C) If X is an inverse sequence then by total induction on can construct the inverse systems $wX (aX, eX)$ without the assumption that the absolute $w f (a f, e f)$ are unique.

3.18. Theorem. Let $X = \{X_a, f_a_a, A\}$ be an inverse system of a Hausdorff spaces X_a with irreducible perfect mappings f_a_a such
that the projections f_α are onto. Then the mapping $w: w(\lim X) \mapsto \lim wX$ is a homeomorphism.

Proof. From Theorem 3.6, it follows that $w^{f_{\alpha \beta}}$ are homeomorphisms. Similarly, we infer that w^{f_α} are homeomorphisms. This means that the spaces $w(\lim X)$ and $\lim wX$ are homeomorphic to $\lim X_\alpha$, $\alpha \in A$. The proof is completed.

3.19. THEOREM. Let $X = \{X_\alpha, f_{\alpha \beta}, A\}$ be an inverse system of Hausdorff spaces X_α and HJ bonding mappings $f_{\alpha \beta}$ such that the projections f_α are onto. Then the spaces $e(\lim X)$ and $\lim eX$ are homeomorphic if the following condition (S) is satisfied:

(S) For each two disjoint open subsets U and V of $\lim X$ there is a $\alpha \in A$ such that $f_\alpha(U)$ and $f_\alpha(V)$ have a disjoint neighborhood.

Proof. The "if" part. Let x and y be two distinct points in the space $e(\lim X)$. This means that there exists a pair U, V of disjoint open subsets of $\lim X$ such that $U \in x$, $V \in y$. From the condition (S) it follows that $e^{f_\alpha(x)} = \{W : W$ open in X_α and there exists $U' \in x$ such that $f_\alpha(U') \subseteq W\}$ is not equal to $e^{f_\alpha(y)} = \{W : W$ is open in X and there exists $V' \in y$ such that $f_\alpha(V') \subseteq W\}$. This means that the mapping $e: e(\lim X) \mapsto \lim eX$ is $1-1$. Since e is onto and $e(\lim X)$ is compact, we infer that e is a homeomorphism. The proof of the "if" part is completed. The proof of the "only if" part is similar.

3.20. LEMMA. The condition (S) is satisfied: (a) If the projections f_α are closed irreducible or (b) if for each open subset $U \subseteq \lim X$ there exists a $\alpha \in A$ and an open subset U_α of X such that $f_\alpha^{-1}(U_\alpha) = U$.

Proof. Obvious.

3.21. THEOREM. Let $X = \{X_\alpha, f_{\alpha \beta}, A\}$ be an inverse system of a Hausdorff spaces X_α such that $f_{\alpha \beta}$ are closed irreducible and the projections f_α are closed onto (or the condition (b) of 3.20. is satisfied), then $e(\lim X) = \lim eX$.

Proof. Apply Lemma 3.20. and Theorem 3.19.

3.22. COROLLARY. Let $X = \{X_n, f_{nm}, N\}$ be an inverse sequence of a Hausdorff spaces X_n with closed irreducible onto mappings f_{nm}. Then the spaces $e(\lim X)$ and $\lim eX$ are homeomorphic.

Proof. It is well known that the projections f_{nm} are closed and irreducible onto mappings. Now apply Theorem 3.21.

If the mappings $f_{\alpha \beta}$ and the projections f_α in Theorem 3.21. are p-perfect then a restrictions of $e^{f_{\alpha \beta}} / wX_\beta, \beta \in A$, are identical with $w^{f_{\alpha \beta}}$. Similarly, a restriction of $e^{f_\alpha} / w(\lim X)$ is identical with W^{f_α}. Thus we have
3.23. **THEOREM.** Let $X = (X_\alpha, f_{\alpha\beta}, A)$ be an inverse system as in 3.21. If the mappings $f_{\alpha\beta}$ and the projections f_α are p-perfect, then the spaces $w(\lim X)$ and $\lim wX$ are homeomorphic.

If the bonding mappings $f_{\alpha\beta}$ are perfect irreducible then from 3.23. holds Theorem 3.18.

For the absolute aX in the sense of Mioduszewski we now prove 3.24. **THEOREM.** Let $X = (X_\alpha, f_{\alpha\beta}, A)$ be an inverse system of a Hausdorff spaces X_α. If the spaces $w(\lim X)$ and $\lim wX$ are homeomorphic, then the spaces $a(\lim X)$ and $\lim aX$ are homeomorphic.

Proof. Let G be any open neighborhoods of $x \in a(\lim X)$. By the definition of a base in $a(\lim X)$ there exist a neighborhood of x of the form $O \cap p_{\lim^{-1}}(V)$ contained in G, where V is open in $\lim X$ and O_\cup is open in $w(\lim X)$. From the relations $w(\lim X) = \lim wX$ and $x \in O_\cup$ it follows there exists an open $U_\alpha \subset X_\alpha$ such that a set $(w_{\alpha}^{-1}(O))$ is a neighborhood of x contained in O_\cup. Similarly there exists an open $V_\alpha \subset X$ such that $f_{\alpha}^{-1}(V) \subset V$ is a neighborhood of x. This means that a set $p_{\lim^{-1}} f_{\alpha}^{-1}(V) \cap (w_{\alpha}^{-1}(O))$ is a neighborhood of x which is contained in $O_\cup \cap p_{\lim^{-1}}(V)$. From the relation $p_{\lim^{-1}} f_{\alpha}^{-1}(V_\alpha) = (w_{\alpha}^{-1})^{-1} p_{\alpha}^{-1}(V_\alpha)$ we infer that there exists a neighborhood $p_{\alpha}^{-1}(V) \cap O_\alpha = G_\alpha \subset aX_\alpha$ such that $(w_{\alpha}^{-1}(G) = (af_{\alpha}^{-1})$ is contained in G. This means that G is open in $\lim aX$. Thus the mapping $A:a(\lim X) \longrightarrow \lim aX$ is 1-1 continuous and open mapping onto $\lim aX$ i.e. A is a homeomorphism. The proof is completed.

We closed this Section with some theorems concerning the non-emptiness of the inverse limit space.

3.25. **LEMMA.** A Hausdorff space is H-closed iff $eX = wX$.

Proof. If X is H-closed, then each open ultrafilter on X is fixed. Thus $eX = wX$. Conversely, if $eX = wX$, then X is H-closed since the mapping $p_x : wX \rightarrow eX \longrightarrow X$ is e-continuous and eX is compact. The proof is completed.

3.26. **THEOREM.** Let $X = (X_\alpha, f_{\alpha\beta}, A)$ be an inverse system of H-closed spaces X_α and HJ-mapping $f_{\alpha\beta}$. The space $\lim X$ is non-empty iff the spaces X_α, $\alpha \in A$, are non-empty. Moreover, if the mappings $f_{\alpha\beta}$ are onto, then the projections f_α are onto.

Proof. By Theorem 3.16. we obtain the inverse system $wX = (wX_\alpha, w_{\alpha\beta}, A)$ which is the inverse system of compact spaces $wX_\alpha = eX_\alpha$.

It is well known that $\lim wX$ is non-empty. This means that $\lim X$ is non-empty since there is a mapping $p : wX \longrightarrow X$, $p = (p_{x\alpha} : \alpha \in A)$.

3.27. **COROLLARY.** Let $X = (X_\alpha, f_{\alpha\beta}, A)$ be an inverse system of a Hausdorff spaces X_α and p-maps $f_{\alpha\beta}$ such that $kf_{\alpha\beta} : kX_\beta \longrightarrow kX_\alpha$ are
3.28. COROLLARY. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of a Hausdorff spaces X_α such that for each $x_\alpha \in X_\alpha$ and each $\beta \geq \alpha$ $f_{\alpha\beta}^{-1}(x_\alpha) = Y_\beta$ is non-empty H-closed subspace of X_β. If the restrictions $f_{\beta\gamma} / Y_\gamma$ are H-closed, then $\lim X$ is non-empty.

If the mappings $f_{\alpha\beta}$ are open, then the restrictions $f_{\beta\gamma} / Y_\gamma$ are open [2:95]. Thus we have

3.29. COROLLARY. If X is an inverse system of a Hausdorff spaces X_α and open onto mappings $f_{\alpha\beta}$ such that each $f_{\alpha\beta}^{-1}(x_\alpha)$ is H-closed, then $\lim X$ is non-empty.

4. ALMOST REALCOMPACTIFICATION rX

A class of almost realcompact spaces was introduced by Frolik (see [26]).

We say that an open ultrafilter $U = \{U : \mu \in M, U \subseteq X\}$ is countably almost centred if each countable subfamily $\{U_1, \ldots, U_n, \ldots\}$ of U has the property that $\cap \{Cl U : i \in N\}$ is non-empty.

4.1. DEFINITION. A Hausdorff space X is almost realcompact if each countably almost centred open ultrafilter on X is fixed.

Frolik has been proved the following theorems.

4.2. THEOREM. The Cartesian product of almost realcompact spaces is almost realcompact.

4.3. THEOREM. Each closed subset of a regular almost realcompact space X is almost realcompact.

It is well-known that an inverse limit of a Hausdorff spaces is closed in the Cartesian product [2]. Thus we have the following theorem.

4.4. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of a regular almost realcompact spaces X_α, then $\lim X$ is a regular almost realcompact space.

4.5. THEOREM. [26]. For each completely regular space X there exists an almost realcompact space rX with the following properties:

a) $X \subseteq rX \subseteq \beta X$, where βX is the Stone-Cech's compactification of X;

b) If $f : X \rightarrow Y$ is a mapping into any almost realcompact completely regular space, then there exist $rf : rX \rightarrow Y$ such that $f = rf/X$.

Let us note that rf is the restriction of βf onto rX.

4.6. THEOREM. Let $X = \{X_\alpha, f_{\alpha\beta}, A\}$ be an inverse system of a completely regular spaces X_α such that the projections f_α are onto. If $\beta(\lim X) = \lim \beta X$ then $r(\lim X) = \lim rX$.

Proof. From the properties of the Stone-Cech's compactification and from Theorem 4.5. b) it follows that there exist inverse systems $\beta X = \{X_\alpha, \beta f_{\alpha\beta}, A\}$ and $rX = \{rX_\alpha, rf_{\alpha\beta}, A\}$. The inverse system rX is the subsystem of the system βX. By virtue of the
surjectivity of the mappings $f_{\alpha \beta}$ we infer that $\lim X$ is densely embedded in $\lim X$ and $\lim X$. On can also construct a mappings $R: \lim X \to \lim X$ and $B: \beta(\lim X) \to \lim X$. Moreover, R is the restriction of B onto $\lim X$. It is clear that if B is the homeomorphism, then R is the homeomorphism. The proof is completed.

4.7. Remark. The notion of the almost realcompactification is a generalization of the Hewitt realcompactification νX of a completely regular space X [2:277]. The space νX is the subspace of βX such that each real-valued function $f: X \to R$ has an extension on X. It is evident that Theorem 4.7. holds also for the spaces $\nu(\lim X)$ and $\lim \nu X$.

4.8. Theorem. Let X be an inverse system as in 4.6. The spaces $\lim X$ and $\lim x X$ are homeomorphic if the following condition (C5) is satisfied:

(C5) For every pair F_1, F_2 of completely separated subsets of $\lim X$ there exists a $\alpha \in A$ such that $f_{\alpha 1}^{-1}(F_1)$ and $f_{\alpha 2}^{-1}(F_2)$ are completely separated subsets of X_{α}.

Proof. Apply theorem 4.6. and Lemma 1.1. of the paper [7].

If the spaces $\lim X$ and X_{α}, $\alpha \in A$, are normal then each pair of a closed subsets of these spaces are completely separated. Thus the condition (C5) can be replaced by the following condition:

(S) For each pair F_1, F_2 of disjoint closed subsets of $\lim X$ there exists a $\alpha \in A$ such that $C_{\alpha 1}f^{-1}(F_1) \cap C_{\alpha 2}f^{-1}(F_2) = \emptyset$.

There condition (C5) is satisfied if the inverse system X is a factorizable or f-system [17]. This means that for each real-valued function $f: \lim X \to R$ there exists a $\alpha \in A$ and a real-valued function $g_{\alpha}: X_{\alpha} \to R$ such that $f = g_{\alpha}f_{\alpha}$.

4.9. Theorem. If X is an f-system with onto projections $f_{\alpha}: \lim X \to X_{\alpha}$, $\alpha \in A$, then $\lim x X = \lim X$.

Proof. Each f-system satisfies the condition (C5). Apply Theorem 4.8.

4.10. Theorem. Let X be an δ-directed inverse system with onto projections f_{α} such that a space $\lim X$ is a Lindelof space. Then $\lim x X = \lim X$.

Proof. From [17: Theorem 1.10] it follows that $\beta(\lim X) = \lim \beta X$. Apply Theorem 4.8.

4.11. Theorem. Let $X = \{X_n, f_{nm}, N\}$ be an inverse sequence of a normal spaces X_n and onto bonding mappings f_{nm}. If a space $\lim X$ is countably compact, then $\lim x X = \lim X$.

Proof. By virtue of Theorem 1.3. of the paper [17] it follows that $\beta(\lim X) = \lim \beta X$. Apply Theorem 4.8. replacing the condition (C5) by the condition (S).

If the spaces X_n are countably compact and if the mappings f_{nm} are closed, then $\lim X$ is countably compact [13]. Thus we have
4.12. THEOREM. Let $X = \{X_n, f_n^m, N\}$ be an inverse sequence of a normal countably compact spaces X_n and a closed onto mappings f_n^m. Then $r(\lim X) = \lim rX$.

By the same method of proof one can prove for a sequentially compact (strongly countably compact, D-compact) spaces the following:

4.13. THEOREM. Let X be an inverse sequence of a normal sequentially compact (strongly countably compact, D-compact) spaces. Then $r(\lim X) = \lim rX$.

4.14. THEOREM. Let $X = \{X_\alpha, f_\alpha^\beta, A\}$ be an inverse system with perfect fully closed onto mappings f_α^β. If the spaces $X_\alpha, \alpha \in A$, are normal countably compact, then $r(\lim X) = \lim rX$.

Proof. Let us recall that a mapping $f: X \rightarrow Y$ [17] is fully closed if for each point $y \in Y$ and each finite open cover $\{U_i, i = 1, \ldots, s\}$ of $f^{-1}(y)$ by open sets $U_i, 1 = 1, \ldots, s$, the set $\{y\} \setminus \bigcup f(U_i)$ is an open set in Y. Now from Theorem 4.8. of [17] it follows that $\beta(\lim X) = \lim \beta X$. Theorem 4.8. completes the proof.

We say that a Hausdorff space X is m-compact, $m \in \mathbb{N}$, if each open cover U of X has a subcover W of the cardinality $|W| < m$.

Each countably compact space X is an s_m-compact space.

4.15. THEOREM. Let $X = \{X_\alpha, f_\alpha^\beta, A\}$ be an well-ordered inverse system of s_m-compact normal spaces X_α such that f_α^β are closed onto mappings and $\text{cf}(A) < s_m^s$. Then $r(\lim X) = \lim rX$.

Proof. Let us recall that $\text{cf}(A)$ is the smallest ordinal number which is cofinal in A. Now the condition (S) is satisfied [13]. Theorem 4.8. completes the proof.

4.16. REMARK. By the same method of proof one can see that Theorems 4.6. - 4.15. holds for the realcompactification $\nu(\lim X)$.

We close this Section by the consideration of the almost realcompactification $r(\lim X)$ of an inverse system of a Hausdorff spaces.

If X is a Hausdorff space then an almost realcompactification rX has been defined by Liu and Strecker [12] as follows. Let rX be a subspace of the Katetov extension kX containing a points of X and all countably almost centred open ultrafilters on X. The topology on rX is the subspace topology.

Liu and Strecker was proved the following lemma.

4.17. LEMMA. [12]. a) The space rX is the almost realcompact Hausdorff space in which X is densely embedded.

b) If Y is any almost realcompactification of X then there exists an extension $f: rX \rightarrow Y$ of the identity $i: X \rightarrow Y$.

4.18. THEOREM. Let $X = \{X_\alpha, f_\alpha^\beta, A\}$ be an inverse system of a Hausdorff spaces X_α and p-perfect onto f_α^β such that the mapping r_α^β are onto. If $k(\lim X) = \lim kX$ then $r(\lim X) = \lim rX$.

112
Proof. There exists the inverse system κX since $f_{\alpha\beta}$ are perfect. The inverse system rX is the subsystem of κX. Clearly, if the spaces $\kappa(\lim X)$ and $\lim \kappa X$ are homeomorphic, then the spaces $r(\lim X)$ and $\lim rX$ are homeomorphic. The proof is completed.

4.19. REMARK. Now on cannot be proved that the inverse limit of any almost realcompact spaces is almost realcompact since a closed subset of any nonregular almost realcompact space need not be almost realcompact.

4.20. THEOREM. Let X be an inverse system as in theorem 4.18. If the spaces X_α, $\alpha \in A$, are almost realcompact, then $\lim X$ is almost realcompact.

REFERENCES:

Lončar I. H-closed extensions Zbornik radova (1989), 13

Primljeno: 1989-03-13

Lončar I. H-zatvorena proširenja i apsolut inverznog limesa

SA D RŽ A J

U radu su istraživana H-zatvorena proširenja inverznog limesa. Pri tome je posebna pažnja posvećenja nužnim i dovoljnim uvjetima koje mora ispunjavati inverzni sistem da bi Katetovljeo proširenje k(limX) bilo ekvivalentno limesu inverznog sistema kX (Theorem 1.11.). Pomoću ovog teorema dobiveni su neki teoremi za H-zatvorenost i blisku kompaktnost inverznog limesa (Theoremi 1.23. - 1.26.). Za Fominovo proširenje 8(limX) dobiven je Teorem 2.5. Teorem 3.19. daje nužne i dovoljne uvjete da bi apsolut inverznog limesa bio ekvivalentan inverznom limesu apsoluta. Pomoću pridruženog inverznog sistema αX moguće je dobiti neke teoreme za nepraznost inverznog limesa (Teoremi 3.25. - 3.29.)