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SOME APPLICATIONS OF THE abc-CONJECTURE TO THE
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Abstract. Assume that the abc-conjecture is true. Let f be a
polynomial over Q of degree n ≥ 2 and let m ≥ 2 be an integer such that
the curve ym = f(x) has genus ≥ 2. A. Granville in [3] proved that there is
a set of exceptional pairs (m,n) such that if (m,n) is not exceptional, then
the equation dym = f(x) has only trivial rational solutions, for almost all
m-free integers d. We prove that the result can be partially extended on
the set of exceptional pairs. For example, we prove that if f is completely
reducible over Q and n 6= 2, then the equation qym = f(x) has only trivial
rational solutions, for all but finitely many prime numbers q.

1. Introduction

Let f be a polynomial over Q of degree n ≥ 2 and let m ≥ 2 be an integer
such that the curve ym = f(x) has genus ≥ 2. Let d be an m-free integer.
Assume that the equation dym = f(x) has a nontrivial rational solution (i.e.,
the solution that does not come from a rational root of f). Put x = r

s
where

r, s are coprime integers. A. Granville proved that, if the abc-conjecture is
true, then there exists δ > 0 (dependent only on (m,n)) such that

(1.1) |r|, |s| ≪f |d|δ+o(1).

Using (1.1), he proved that if δ < 1
2 then the equation dym = f(x)

has no nontrivial rational solutions for almost all d (see Corollary 2.5).
Unfortunately, there is an infinite set of exceptional pairs (m,n) for which
δ ≥ 1

2 holds. The purpose of this paper is to prove that a similar result is
valid for the equations of the type qym = f(x) with prime q, even for the
exceptional pairs (m,n) (Theorem 4.3 and Theorem 4.5).
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62 I. GUSIĆ

In Section 2 we describe Granville’s results on equation dym = f(x) with
m-free d (modulo the abc-conjecture). In Section 3 we apply (1.1) to a question
on diophantine equations with separate variables (Theorem 3.5). In Section
4 we extend Granville’s results to the equation qym = f(x) with prime q

(Theorem 4.3 and Theorem 4.5).

2. The equation dym = f(x)

In this section we describe Granville’s results from [3] concerning the
equations dym = f(x).

The abc-conjecture (Oesterlé, Masser, Szpiro). If a, b, c are coprime
positive integers satisfying a+ b = c then

c ≪ (
∏

p|abc

p)1+o(1)

In this paper we need the following important consequence of the abc-
conjecture.

Lemma 2.1. Assume that the abc-conjecture is true. Suppose that G ∈
Z[X,Y ] is homogenous, without repeated roots. Then for any coprime integers
r, s ∏

p|G(r,s)

p ≫G max{|r|, |s|}deg(G)−2−o(1).

Proof. See, for example, [3, Proposition 2.1].

Using the estimation from Lemma 2.1, A. Granville proved the following
result.

Lemma 2.2. Assume that the abc-conjecture is true. Let f ∈ Z[X ] be a
polynomial of degree n ≥ 2 without repeated roots, and let m ≥ 2 be an integer
such that the curve ym = f(x) has genus g ≥ 2. Let d be an integer not
divisible by the mth power of any prime. Assume that a rational pair (x, y)
with x = r

s
where r, s are coprime satisfies

dym = f(x).

Then

(2.1) |r|, |s| ≪f |d|
1

n−1−
gcd(m,i)+1

m−1

+o(1)

where n = k ·m+ i with 1 ≤ i ≤ m.

Proof. In the case m = 2, by [3, Theorem 1.1(ii)], we have

|r|, |s| ≪ |d| 1
2g−2+o(1).

Therefore we have to prove that it coincides with (2.1) for m = 2. Note
that ≪ here depends only on f (see [3, Section 2, Proof of Theorem 1.1, for
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rational points, after Corollary 2.2]). Since the curve y2 = f(x) is hyperelliptic
we have g = ⌊n−1

2 ⌋ (especially, we have n ≥ 5). We have to prove that

2g− 2 = n− 1− gcd(m,i)+1
m−1 . Assume first that n is odd. Then 2g− 2 = n− 3.

On the other side, we have i = 1, hence n−1− gcd(m,i)+1
m−1 = n−1− 1+1

1 = n−3.
Assume now that n is even. Then 2g− 2 = n− 4. On the other side, we have

i = 2, hence n− 1− gcd(m,i)+1
m−1 = n− 1− 2+1

1 = n− 4.

In the case m ≥ 3 the relation (2.1) coincides with (11.1) from [3, Section
11].

Remark 2.3. (i) We have seen in the proof of Lemma 2.2, that the
condition g ≥ 2 on the genus of the curve ym = f(x) for m = 2, is equivalent
with n ≥ 5. If m ≥ 3, then the corresponding curve is superelliptic which
genus g satisfies 2g−2 = mn−m−n−gcd(m,n) (see, for example, [7, Exercise
A.4.6] or [9, p. 401, formula (4)]). Especially,

(a) if m = 3 then g ≥ 2 if and only if n ≥ 4,
(b) if m = 4 then g ≥ 2 if and only if n ≥ 3,
(c) if m ≥ 5 then g ≥ 2 for each n ≥ 2.

(ii) By Lemma 2.2, under the abc-conjecture, the size of a rational solution of

the equation dym = f(x) depends on the value γ(m,n) := n− 1− gcd(m,i)+1
m−1 .

It can be easily checked the following:

(a) γ(2, 5) = γ(2, 6) = 2 and γ(2, n) ≥ 3 for n ≥ 7,
(b) γ(3, 4) = 2 and γ(3, n) ≥ 3 for n ≥ 5,
(c) γ(4, 3) = γ(4, 4) = 4

3 and γ(4, n) > 2 for n ≥ 5,

(d) γ(5, 3) = 3
2 , γ(6, 3) =

6
5 and 6

5 ≤ γ(m, 3) < 2 for each m ≥ 4,

(e) γ(5, 2) = 1
2 , γ(6, 2) = 2

5 and 4
7 ≤ γ(m, 2) < 1 for each m ≥ 7.

Definition 2.4. We say that a pair (m,n) from Remark 2.3 is exceptional
if the condition γ(m,n) ≤ 2 holds.

Let us fix a positive integer D, and consider an equation dym = f(x) with
|d| ≤ D (as in [3]). Then, if (r, s) is as in Lemma 2.2, we have

|r|, |s| ≪f D

1

n−1−
gcd(m,i)+1

m−1

+o(1)

.

Since each such (r, s) with f( r
s
) 6= 0 participates in a unique equation dym =

f(x) with m-free d, we see that there are ≪f D

2

n−1−
gcd(m,i)+1

m−1

+o(1)

equations
dym = f(x) with |d| ≤ D, that have nontrivial rational solutions. Here, we
say that a solution is trivial if it comes from a rational root of f . For the sake
of brevity, we will say that dym = f(x) has only trivial rational solutions for
almost all m-free d, if

lim
D→+∞

♯{d : |d| ≤ D, d is m− free and dym = f(x) has a nontriv. sol.}
♯{d : |d| ≤ D and d is m− free} = 0



64 I. GUSIĆ

holds. The above discussion leads to the following corollary of Lemma 2.2.

Corollary 2.5 ([3, Cor. 1.2 and sect. 11]). Let the notation be as in
Lemma 2.2. Assume that the curve ym = f(x) is of genus ≥ 2, and that
neither of the following conditions is satisfied

(i) n = 5 or n = 6, and m = 2,
(ii) n = 4 and m = 3 or m = 4,
(iii) n = 3 and m ≥ 4,
(iv) n = 2 and m ≥ 5.

Then for almost all m-free integers d, the equation

dym = f(x)

has only trivial rational solutions.

Proof. For the convenience of readers we present a proof. Recall first
that, by Remark 2.3 (i), ifm = 2 then n ≥ 5, ifm = 3 then n ≥ 4, and ifm = 4
then n ≥ 3. Let us put δ := 1

n−1− gcd(m,i)+1
m−1

. By Remark 2.3 (ii), if (m,n) does

not satisfy any of conditions (i)-(iv) (i.e., if (m,n) is not exceptional), then
δ < 1

2 . Therefore there exists a real number δ′ with 0 < 2δ′ < 1 such that,

for sufficiently large D, there are ≤ D2δ′ m-free integers d with |d| ≤ D, such
that the equation dym = f(x) has a nontrivial rational solution (note that ≪
in (2.1) depends only on f , which is fixed here). It is a classical fact that the
set of m-free integers has density 1

ζ(m) (in the set of integers), where ζ denotes

the Riemann zeta function (see, for example, [17]). Therefore, for almost all
m-free integers d, the equation dym = f(x) has only trivial rational solutions.

3. A question on diophantine equations with separated variables

As an illustration, we apply estimation (2.1) to a question on the
diophantine equations with separable variables. Yuri Bilu observed (published
in [4, Proposition 3]) that if f is a polynomial over Q of degree n ≥ 2, and
m is a composite positive integer, then there exists a polynomial g over Q of
degree m, such that the equation g(y) = f(x) has no rational solutions.

Question 3.1. Let f be a polynomial over Q of degree n ≥ 2 and let m
be a prime number. Does there exist a polynomial g over Q of degree m, such
that the equation g(y) = f(x) has no rational solutions?

The answer is positive if n = 2, (m,n) = (2, 3), or if m|n (see Proposition
3.4 below). We demonstrate that if the abc-conjecture is true, then the answer
is positive in the remaining cases, too (Theorem 3.5).
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Definition 3.1. We say that a subset P of the set of prime numbers has
density ρ if

lim
X→∞

♯{p ∈ P : p ≤ X}
π(X)

= ρ,

where π(X) denotes the number of primes that are ≤ X.

Lemma 3.2. Let f be an irreducible polynomial over Z of degree n ≥ 2.
Then the set of primes p, such that f has no roots modulo p, has the density
≥ 1

n
.

Proof. See for example [15, Theorem 1 and Theorem 2].

Remark 3.3. In Question 3.1 we may assume that the polynomial f is
Q-irreducible, defined over Z and monic. Namely the polynomial Φ ∈ Q[x, t],
defined by Φ(x, t) := f(x) − t, is irreducible. By the Hilbert irreducibility
theorem (see, for example, [14, Theorem 46]), there exists a rational number
α such that Φ(x, α) is Q-irreducible. Since f (from Question 3.1) can be
replaced by f −α, for each rational α, we may assume that f is Q-irreducible.
Since f can be replaced by λf , for each nonzero λ ∈ Q, we may assume that
f is defined over Z (and Q-irreducible). Similarly, if f(x) = anx

n + ... + a0,
then

f(x) =
(anx)

n + an−1(anx)
n−1 + ...+ a1a

n−2
n (anx) + a0a

n−1
n

an−1
n

.

Therefore we may assume that f is monic.

Proposition 3.4. Let f be a polynomial over Q of degree n ≥ 2 and let
m be a prime number. Assume that one of the following conditions holds:

(i) n = 2,
(ii) (m,n) = (2, 3),
(iii) m|n.

Then there exists a polynomial g over Q of degree m, such that the equation
g(y) = f(x) has no rational solutions.

Proof. (i) The casesm = 2 andm = 3 follow from the fact that there are
affine conics and elliptic curves over Q without rational points. For m = 5 we
may use the fact that 4y5−1 = dx2 has no rational solutions for infinitely many
square-free d, see([11, Theorem 4]), or the fact that the equation y5 +A = x2

has no rational solutions forA = −3,−13,−37,−38,−52, ... (see [19, Corollary
3.2]). Assume that m ≥ 7. Let h be a cubic polynomial such that the equation
z2 = h(y) has no rational solutions, and let r be a Q-irreducible polynomial
of degree m−3

2 . Then the equation

r(y)2h(y) = x2

has no rational solutions.
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(ii) By Remark 3.3, we may assume that f(x) = x3 + ax2 + bx + c is
irreducible. Consider the elliptic curve

E : y2 = x3 + ax2 + bx+ c.

Then there are infinitely many square-free integers d such that the quadratic
twist Ed : dy2 = x3+ax2+bx+c has rank zero (see, for example, [12, Corollary
3] and note that elliptic curves over Q are modular). Now, the positive answer
to the question follows from the fact that there are only finitely many square-
free d such that Ed has a rational torsion point of order > 2 (see [16, exercise
8.17(d)] or [10, Lemma 5.5] for a proof over number fields).

(iii) By Remark 3.3, we may assume that f ∈ Z[X ] is irreducible and
monic. By Lemma 3.2, there is a prime number p such that f has no roots
modulo p. Then the equation pym = f(x) has no rational solutions. Namely,
if (a, b) is a solution, then a 6= 0 and b 6= 0. Let vp denote the discrete
valuation at p. If vp(a) ≥ 0, then vp(f(a)) ≥ 0, and so vp(f(a)) = 0. It
implies mvp(b) = −1, a contradiction. On the other side, if vp(a) < 0, then
vp(f(a)) = nvp(a), which implies mvp(b)+1 = nvp(a). It is in a contradiction
with m|n.

Note that Question 3.1 can be stated over any algebraic number field.
Using recent results of B. Mazur and K. Rubin ([10]) on the 2-Selmer groups
of elliptic curves, it can be proved that the answer is positive in the case
n = 3, m = 2, see [5]. Note also that the statement from Proposition 3.4
holds unconditionally, in contrast to the rest of the article where the results
usually depend on the abc-conjecture. From this point on, we follow [3].

Theorem 3.5. Assume that the abc-conjecture is true. Then the answer
to Question 3.1 is positive.

Proof. The answer is positive unconditionally for n = 2 or (m,n) =
(2, 3), or m|n (see Proposition 3.4). By Remark 3.3, in the remaining cases
we may assume that f ∈ Z[X ] is irreducible and monic (especially, f is without
repeated roots). We will see that the abc-conjecture implies that there is an
integer d 6= 0 such that the equation

dym = f(x)

has no rational solutions. It follows directly from Corollary 2.5, assuming that
(m,n) does not satisfy any of the following conditions

(i) n = 5 and m = 2,
(ii) n = 4 and m = 3,
(iii) n = 3 and m ≥ 5.

Assume that one of conditions (i), (ii), (iii) holds. We will show that there is
a prime q such that the equation

qym = f(x)
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has no rational solutions (in fact we will prove that there is a positive
proportion of such primes q). Since f is irreducible there is no trivial solutions.
For each rational number x = r

s
, with relatively prime integers r, s, we have

f(
r

s
) =

sm−iF (r, s)

s(k+1)m

where n = k · m + i with 1 ≤ i ≤ m and F (r, s) := snf( r
s
). Note that each

pair (r, s) determines at most one prime q with

(3.1) qtm = sm−iF (r, s), t ∈ Z.

Each integer solution of (3.1) leads to a rational solution of the equation
qym = f(x) with x = r

s
. On the other side, if qym = f( r

s
) holds for some

rational y, then q(ysk+1)m = sm−iF (r, s). Since m ≥ 2 we see that ysk+1

is an integer. Therefore, for each (r, s) there is at most one prime number
q such that the equation qym = f(x) has a rational solution with x = r

s
. If

(r, s) leads to a solution of an equation of type (3.1), then we will say that
(r, s) determines the prime number q.

By Remark 2.3, we have γ(2, 5) = γ(3, 4) = 2 and γ(m, 3) ≥ 6
5 for each

m ≥ 5. In any case, by (2.1), if (r, s) determines some q, then |r|, |s| ≪f

q
5
6+o(1) (note that since m is a prime number and since m ≥ 5 for n = 3, we

can find a better estimation, but this one will be sufficient for our purpose).
By the definition, it means that for each ǫ > 0 there exists a constant Kǫ > 0,
dependent only on f and ǫ, such that |r|, |s| ≤ Kǫq

5
6+ǫ. Let S be the set of

prime numbers p such that f has no roots modulo p. By Lemma 3.2 we know
that S has density ≥ 1

n
, especially S is infinite. Therefore, there exists q ∈ S

such that Kǫq
5
6+ǫ < q for ǫ = 0.01. We claim that the equation qym = f(x)

has no nontrivial rational solutions. Contrary, there exist integers r, s, t with
s, t 6= 0 and r, s coprime such that (3.1) holds. Since |s| < q, we see that
q does not divide s. Since q ∈ S, we see that q does not divide F (r, s).
It is a contradiction. Note that, in fact, we have proved that the equation
qym = f(x) has no nontrivial rational solutions, for all but finitely many
q ∈ S.

4. The equation qym = f(x)

In this section we assume that f is a polynomial over Z of degree n ≥ 2
without repeated roots, and that m ≥ 2 is such that the genus g of the
curve ym = f(x) is ≥ 2. A. Granville conjectured that a stronger version of
Corollary 2.5. holds even for exceptional pairs (m,n). To be more precise,

he conjectured that there is a constant κ′
f , such that there are ∼ κ′

fD
1

g+1

squarefree integers d with |d| ≤ D, for which dy2 = f(x) has a nontrivial
rational solution (see [3, Conjecture 1.3(ii)]). He also conjectured that there

are ∼ κ′
f,mD

2
n squarefree integers d with |d| ≤ D, for which dym = f(x) with
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m ≥ 3, has a nontrivial rational solution (see [3, Section 11, p. 22]). The
estimate (2.1) is too weak to prove that conjecture. Nevertheless, it enables
us to prove that there are a lot of prime numbers q, such that the equation
qym = f(x) has no nontrivial rational solutions, even in the exceptional cases
(see Theorem 4.3 and Theorem 4.5 for a more precise formulation). Unlike the
case of Theorem 3.5, where we could assume that f is Q-irreducible, now we
have to consider the reducible polynomials, too. Also, the set of exceptional
cases is wider now, since we have to include the equations with n = 2, as well
as the cases when m is not prime.

For a natural number u, let d(u) denote the number of divisors of u, and
let ω(u) denote the number of distinct prime factors of u. Also, let pn♯ denote
the n-th primorial number (the product of the first n prime numbers).

Lemma 4.1. Let F be an irreducible binary form of degree λ ≥ 3, with
rational integer coefficients. Then the number of primitive solutions of the
equation |F (r, s)| = u does not exceed c1λ

1+ω(u), where c1 is an absolute
constant (here we say that a solution (r, s) is primitive if r, s are coprime
integers).

Proof. See [1, Theorem, p. 69-70]

The following lemma will be used in a part of the proof of Theorem 4.5.

Lemma 4.2. Let M denotes arbitrary positive integer.

(i) Let ν(u) denote the number of integer solutions of equation r2+As2 =
u, with A, u ∈ N. Then, for a ∈ Z and sufficiently large X,

∑

1≤u≤X

ν(auM ) ≪ X1+o(1) lnX.

(ii) Let νX(u) denote the number of integer solutions of equation r2−As2 =
u, with |r|, |s| ≤ X, where A ∈ N is not a square. Then, for a ∈ Z and
sufficiently large X,Y ,

∑

1≤u≤Y

νX(auM ) ≪ Y 1+o(1) lnX lnY.

(iii) Let F be an irreducible cubic form over Z, and let ν(u) denote the
number of primitive integer solutions of the equation F (r, s) = u

(i.e., the solutions with coprime integers r, s). Then, for a ∈ Z and
sufficiently large X

∑

1≤u≤X

ν(auM ) ≪ X(lnX)2.

Proof. (i) Let us set α := r + s
√
−A, so that the relation r2 +As2 = u

becomes αα = u. If (α) =
∏PordPα is the prime factorization of the ideal (α)

in the ring of integers of the quadratic field Q(
√
−A), then ordPα = ordPα.
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By the character of extension of rational primes in quadratic number fields,
we conclude that there are at most d(u) possibilities for (α). Since the ring
of integers has at most six invertible elements, we see that ν(u) ≪ d(u). Note
that d(uv) ≤ d(u)d(v), and d(uM ) ≤ Mω(u)d(u) for each u, v,M . Hence,

ν(auM ) ≪ d(auM ) ≤ d(a)d(uM ) ≤ d(a)Mω(u)d(u).

Using the fact that if k is primorial then ω(k) ∼ lnk
ln ln k

(see, for example,
[6, p.471]), we get

ω(u) = ω(pω(u)♯) ∼
ln pω(u)♯

ln ln pω(u)♯
≤ lnX

ln lnX

(note that pω(u)♯ ≤ u ≤ X and that X is sufficiently large). We see that if

X is sufficiently large, then ω(u) ≤ 2 lnX
ln lnX

. Therefore Mω(u) ≤ M
2 lnX
ln lnX =

(elnX)
2 lnM
ln lnX = X

2 lnM
ln lnX ≪ Xo(1). Summing and using
∑

1≤u≤X

d(u) = X lnX + (2γ − 1)X +O(Xθ),

where γ is Euler’s constant, and θ ≤ 0.5 (see [6, p.347-349 and 359] or [8] for
a better estimation of θ), we get
∑

1≤u≤X

ν(auM ) ≪
∑

1≤u≤X

d(a)Mω(u)d(u) ≪ M
2 ln X
ln lnX

∑

1≤u≤X

d(u) ≪ X1+o(1) lnX.

(ii) We have νX(u) ≪ lnXd(u) for sufficiently large X (see [13, Lemma
3] for a more precise estimation). Therefore we may proceed as in (i):∑

1≤u≤Y νX(auM ) ≪ lnXd(a)
∑

1≤u≤Y Mω(u)d(u) ≪ lnX · Y 1+o(1) lnY.

(iii) By Lemma 4.1, we know that there is an absolute constant C such
that

ν(u) ≤ C · 3ω(u)

(see also [18, Theorem 1]). Since ω(auM ) ≤ ω(a) + ω(u), and

lim
X→∞

1

X(lnX)2

∑

1≤u≤X

3ω(u) = 0.1433...,

(see, for example, [2, p.111]), we get
∑

1≤u≤X

ν(auM ) ≤
∑

1≤u≤X

C · 3ω(a)+ω(u) ≪
∑

1≤u≤X

3ω(u) ≪ X(lnX)2.

We will use the estimation (2.1) to prove that the equation qym = f(x),
with prime q, generally has no nontrivial rational solutions. Note that the set
of prime numbers has zero density in the set of m-free numbers. Therefore,
Corollary 2.5 provides no direct information about the equations qym = f(x).
However, if the pair (m,n) is not exceptional (see Definition 2.4 and Remark
2.3), then the argument from the proof of Corollary 2.5 can be applied to
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prove that there is a set of prime numbers q of density 1, such that the
equations qym = f(x) has no nontrivial rational solutions. In Theorem 4.3
we will get a stronger result for completely reducible polynomials f . Namely,
we will prove that in that case the equation qym = f(x) has no nontrivial
rational solutions, for all but finitely many prime numbers q (assuming that
n 6= 2). The proofs of Theorem 4.3 and Theorem 4.5 depend on the value
of δ := 1

n−1− gcd(m,i)+1
m−1

. The most comfortable situation is when δ < 1
2 (i.e.,

when (m,n) is not exceptional). Less pleasant is when 1
2 ≤ δ < 1, and the

unpleasant when δ > 1 (i.e., when n = 2).

Theorem 4.3. Assume that the abc-conjecture is true. Let f ∈ Z[X ] be a
polynomial of degree n ≥ 2 without repeated roots, and let m ≥ 2 be an integer
such that the curve ym = f(x) has genus ≥ 2. Assume that f is completely
reducible over Q.

(a) If n ≥ 3, then for all but finitely many primes q the equation qym =
f(x) has only trivial rational solutions.

(b) If n = 2 and m 6= 6, then there is a set of prime numbers q of density
1 such that the equation qym = f(x) has only trivial rational solutions.

Proof. (a) Let us put f(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0. We can
write

f(x) =
(anx)

n + an−1(anx)
n−1 + ...+ a1a

n−2
n (anx) + a0a

n−1
n

an−1
n

=
g(x′)

an−1
n

,

where x′ := anx. Set an−1
n = bum where b is m-free integer. Note that g is

defined over Z and monic. We see that it is enough to prove that, for all but
finitely many prime numbers q, the equation

(4.1) qbym = g(x)

has only trivial rational solutions. Further, since b depends only on f (i.e.,
since |b| ≪f 1), we may assume that gcd(q, b) = 1 (in other words, we exclude
from the consideration a finitely many primes q that divide b). For each
rational number x = r

s
with relatively prime integers r, s, we have

g(
r

s
) =

sm−iG(r, s)

s(k+1)m

where n = k · m + i with 1 ≤ i ≤ m and G(r, s) := sng( r
s
) (here we may

exclude r = 0 since it leads to at most one q). Each pair (r, s) determines at
most one prime q with

(4.2) qbtm = sm−iG(r, s), t ∈ Z.

Each integer solution of (4.2) leads to the rational solution of the equation
qbym = g(x) with x = r

s
. On the other side, if qbym = g( r

s
) holds for some

rational y, then qb(ysk+1)m = sm−iG(r, s). Since m ≥ 2, we see that ysk+1
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is an integer. Therefore, for each (r, s) there is at most one prime number q
such that the equation qbym = g(x) has a rational solution with x = r

s
.

Note that all roots of g are integers. Let G = L1 ·L2 ·...·Ln be the product
of G on linear factors over Z. Let us put δ := 1

γ(m,n) =
1

n−1− gcd(m,i)+1
m−1

.

Since n 6= 2, we have γ(m,n) > 1 (see Remark 2.3), hence δ < 1. By
(2.1), if qbym = g(x) has a nontrivial rational solution, with x = r

s
where r, s

are coprime, then

|r|, |s| ≪g |qb|δ+o(1).

It means that, for each ǫ > 0, there exists Kǫ > 0, such that |r|, |s| ≤
Kǫ|qb|δ+ǫ. Put Lj(r, s) = r − αjs, j = 1, 2, ..., n (note that αj ∈ Z for
all j). Set A = maxj(1 + |αj |) and choose ǫ > 0 such that δ + ǫ < 1. Assume
that AKǫ|qb|δ+ǫ < q (it is satisfied for all but finitely many primes q). For
such q the equation qbym = g(x) has no nontrivial rational solutions. Assume
contrary, i.e., assume that there is a nontrivial solution with x = r

s
. Then

q|sm−i or q|Lj(r, s) for some j. It is impossible since q > |s| and q > |Lj(r, s)|
for all j. Namely, |Lj(r, s)| = |r − αjs| ≤ |r|+ αj ||s| ≤ (1 + |αj |)Kǫ|qb|δ+ǫ ≤
AKǫ|qb|δ+ǫ < q.

(b) We will discuss the case m = 6, too. Similarly as in (a), we may
consider the corresponding equations qbym = g(x) and qbtm = sm−iG(r, s).
We have to prove that there is a set of prime numbers q of density 1 such
that the equation qbym = g(x) has no nontrivial rational solutions, provided
m 6= 6. Here i = 2, hence each (r, s) determines at most one prime number q
such that

(4.3) qbtm = sm−2G(r, s), t ∈ Z

where m ≥ 5 and G is a reducible quadratic form without double factors.
Since γ(m,n) ≤ 1 we can not apply directly the argument from (a).
Assume that (4.3) holds. By (2.1), and Remark 2.3, (ii)

if m = 5 then |r|, |s| ≪f |qb|2+o(1),

if m = 6 then |r|, |s| ≪f |qb|2.5+o(1),

if m ≥ 7 then |r|, |s| ≪f |qb|1.75+o(1).

Therefore, for all but finitely many q we have |s| < q3, especially vq(s) < 3.
After a linear transformation we may assume that G(r, s) = r(r − αs), α ∈
Z \ {0}. Let D be a sufficiently large real number. We have to estimate the
number of primes q with |qb| ≤ D such that (4.3) holds, for some (r, s) with
r, s coprime. Note that, by (2.1) and Remark 2.3, (ii) we have

if m = 5 then |r|, |s| ≪f D2+o(1),

if m = 6 then |r|, |s| ≪f D2.5+o(1),

if m ≥ 7 then |r|, |s| ≪f D1.75+o(1).

We see from (4.3) that there are three possibilities for r, s: q|s, q|r or q|r−αs.
The idea is to estimate the number of each of these possibilities, and to show
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that the sum is negligible compared to the number of primes q with |qb| ≤ D.
Assume first that q|s. Since the integers s and G(r, s) are coprime (we assume
that r 6= 0), and since we may assume that q does not divide b, by (4.3) we
get 1 + mvq(t) = (m − 2)vq(s). It is impossible if m is even, and it implies
vq(s) ≥ 3 if m 6= 5. Therefore, the case with q|s is impossible if q is sufficiently
large and m 6= 5. It remains to consider the case m = 5. By (4.3) and the
fact that s and G(r, s) are coprime we get

G(r, s) = au5

where a|b. Since gcd(r, r − αs) ≤ |α| (for each coprime integers r, s), we get
r = a1u

5
1 and r − αs = a2u

5
2, with u1, u2 ∈ N and |a1|, |a2| ≪f 1. In other

words, there are finitely many such systems of equations and the number of
systems is dependent only on f (for all coprime integers r, s). We see that
u5
1, u

5
2 ≪f D2+o(1), hence u1, u2 ≪f D0.4+o(1). Therefore (if D is sufficiently

large) there are≪ D0.41 possibilities both for r and r−αs. Since r−(r−αs) =
αs, we see that there are ≪f D0.82 possibilities for s. We claim that, if D is
sufficiently large, then each s determines at most one q with q ≥ D0.6 (and
q|s). Contrary we have

q1bt
5
1 = s3G(r1, s) and q2bt

5
2 = s3G(r2, s),

with q1 6= q2, q1|s, q2|s and q1, q2 ≥ D0.6 (we may assume that |b| < q1 and
|b| < q2). From q1|s we get 3vq1(s) = 1 + 5vq1(t1), hence vq1(s) ≥ 2, and
similarly for q2. Therefore, |s| ≥ q21 · q22 ≥ D2.4 (a contradiction with the
fact that |s| ≪f D2+o(1) and that D is sufficiently large). Now we conclude
that there are ≪f D0.82 possibilities for q with q ≥ D0.6. Since there are
< D0.6 prime numbers q such that q < D0.6, we conclude that, for sufficiently
large D, there are ≪f (D0.6+D0.82) prime numbers q such that the equation
qbtm = sm−2G(r, s) has a solution with q|s.
Assume now that q|r. From (4.3) with G(r, s) = r(r − αs) and the fact that
r, s and r − αs, s are coprime, we get, for a sufficiently large q,

sm−2 = a1u
m
1 , r − αs = a2u

m
2 ,

where u1, u2 ∈ N and |a1|, |a2| ≪f 1. As above we see that

if m = 5 then um
2 ≪f D2+o(1), hence u2 ≪f D0.4+o(1),

if m = 6 then um
2 ≪f D2.5+o(1), hence u2 ≪f D0.417+o(1),

if m ≥ 7 then um
2 ≪f D1.75+o(1), hence u2 ≪f D0.25+o(1).

Therefore, in any case, there are ≪ D0.42 possibilities for r − αs.
Let us estimate the number of possibilities for s. If m is odd then from
sm−2 = a1u

m
1 we get s = b1v

m
1 with |b1| ≪f 1 and vm1 ≪f D2+o(1) (hence

1 ≤ v1 ≪f D0.4+o(1)). If m is even then we get s = b1v
m
2
1 with |b1| ≪f 1. This

is the point when we have to exclude the case m = 6 (similarly happens in
the case when q|r − αs). In Remark 4.4(i), we will explain it in more details.
It is easy to see that if m 6= 6, then 1 ≤ v1 ≪f D0.4375+o(1). Therefore,
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there are ≪f D0.44 possibilities for s (if m 6= 6). Combining with ≪ D0.42

possibilities for r − αs, we get that there are ≪f D0.86 possibilities for r.
Note that r from (4.3) has at most one prime divisor p with p ≥ D0.6 (if D
is sufficiently large). Contrary, from qbtm = sm−2r(r − αs) and |b| ≪f 1,
there is a common prime divisor p of r and t with p ≥ D0.6. Therefore
vp(r) ≥ 5, hence |r| ≥ D3, which is in a contradiction with |r| ≪f D2.5+o(1)

(for sufficiently large D). Therefore, in this case, each r determines at most
one prime q with q|r and q ≥ D0.6 (for sufficiently large D). We conclude
that there are ≪f (D0.6 +D0.86) primes q such that (4.3) holds (with q|r, g
reducible and (m,n) 6= (6, 2)).
Assume, finally, that q|r − αs. This case is completely analogous to the case
q|r, and we get the same estimate.
To finish the proof we have to add numbers of possibilities for q with q|s, q|r
and q|r − αs. We obtain that this sum is ≤ D0.9 (if D is sufficiently large).

Since there are ∼
D
|b|

ln D
|b|

prime numbers q with |qb| ≤ D, and since

lim
D→∞

D

|b| ln D
|b|

−D0.9

D

|b| ln D
|b|

= 1,

we conclude that there is a set of prime numbers of density 1, such that the
equation qbym = g(x) has only trivial rational solutions (if g is reducible of
degree n = 2 and m = 5 or m ≥ 7).

In the following Remark we will comment the exceptional case (m,n) =
(6, 2) with f reducible.

Remark 4.4. (i) In the proof of Theorem 4.3 (b), the case (m,n) = (6, 2)
with q|r (similarly with q|r − αs), we have obtained the relation s = b1v

3
1

where |b1| ≪f 1. Therefore v31 ≪f D2.5+o(1), hence 1 ≤ v1 ≪f D
5
6+o(1). It

implies that there are ≪f D
5
6+o(1) possibilities for s. We know that there are

≪f D
5
12+o(1) possibilities for r − αs. Therefore, we only can conclude that

there are ≪f D
5
6+

5
12+o(1) possibilities for r. It is not useful since 5

6 + 5
12 ≥ 1.

(ii) After a linear transformation over Z, we may write g(x) = x2 − A2

for a positive integer A. Namely, here we have f(x) = a2x
2 + a1x + a0 with

a2, a1, a0 ∈ Z and a2 6= 0. The equation qy6 = f(x) can be written in the
form q · 4a2y6 = (2a2x)

2 + 2a1(2a2x) + 4a2a0. Since f is reducible, after a
linear transformation of x and y over Z, we get qby6 = x2 − A2 where b is
6-free and A is a positive integer. It defines the family of hyperelliptic genus
two curves with equation x2 = qby6 + A2 (here b and A are fixed, while q

runs through the set of prime numbers). As we have already seen in (i), our
approach does not give any result in this case.
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In the case when f has at least one nonlinear Q-irreducible factor we will
obtain a weaker result compared with the result from Theorem 4.3. Recall
that a pair (m,n) is exceptional if one of the following conditions is satisfied:

(i) n = 5 or n = 6, and m = 2,
(ii) n = 4 and m = 3 or m = 4,
(iii) n = 3 and m ≥ 4,
(iv) n = 2 and m ≥ 5.

In Theorem 4.5 we will say that an exceptional pair (m,n) is conditionally
exceptional if one of the following conditions is satisfied:

E1 (m,n) ∈ {(2, 6), (4, 4), (6, 3)} and f is Q-irreducible.
E2 (m,n) = (2, 6) and f is a product of a quadratic and a quartic

irreducible polynomial over Q.

Theorem 4.5. Assume that the abc-conjecture is true. Let f ∈ Z[X ]
be a polynomial of degree n ≥ 2 without repeated roots having at least one
nonlinear irreducible factor over Q. Let m ≥ 2 be an integer such that the
curve ym = f(x) has genus ≥ 2.

(a) Assume that n 6= 2 and that (m,n) is not conditionally exceptional
(see the above conditions E1, E2). Then there exists a set of prime
numbers q of density 1 such that the equation qym = f(x) has no
nontrivial rational solutions.

(b) Assume that n = 2. Then there exists a set of prime numbers q of
density at least 1

2 such that the equation qym = f(x) has no rational
solutions.

Proof. (a) Similarly as in the proof of Theorem 4.3 we may consider
the corresponding equations qbym = g(x) and qbtm = sm−iG(r, s). We have
to prove that there is a set of prime numbers q of density 1 such that the
equation qbym = g(x) has no nontrivial rational solutions. Let us put

δ :=
1

n− 1− gcd(m,i)+1
m−1

.

Let D be a sufficiently large real number. We consider the equations of type
qbym = g(x) with |qb| ≤ D. By (2.1), if qbym = g(x) has a nontrivial rational
solution with x = r

s
and with r, s coprime, then

|r|, |s| ≪g |qb|δ+o(1).

Assume first that (m,n) is not exceptional, i.e., that δ < 1
2 . Since

each (r, s) gives rise to at most one equation, there are ≪g |qb|2δ+o(1) prime
numbers q such that the equation qbym = g(x) has a nontrivial rational

solution. Since 2δ < 1 and since there are ∼
D
|b|

ln D
|b|

prime numbers q with

|qb| ≤ D, we conclude, as at the end of the proof of Theorem 4.3, (b),
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that there is a set of prime numbers q of density 1 such that the equation
qbym = g(x) has no nontrivial rational solutions.

Assume now that (m,n) is exceptional. The proof depends on the
reducibility properties of f (or g) over Q, as well as on the value of δ. Since
n 6= 2 we have 1

2 ≤ δ < 1. We separately consider the cases when m 6= i and
when m = i (see the formulation of Lemma 2.2).

Assume that m 6= i, i.e, that (m,n) 6= (2, 6) and (m,n) 6= (4, 4). Assume
that qbym = g(x) has a nontrivial rational solution with x = r

s
and with r, s

coprime. Since s and G(r, s) are coprime, we conclude, by qbtm = sm−iG(r, s),
that q|s or q|G(r, s). Similarly as in the proof of Theorem 4.3, we have that
q > |s| for all but finitely many q. Therefore, for sufficiently large q, it must
be q|G(r, s). Therefore

sm−i = aum

for u ≥ 1 and |a| ≪f 1. We will separately discuss the cases (m,n) =
(2, 5), (m,n) = (3, 4), and (m,n) = (m, 3) with m ≥ 4.

If (m,n) = (2, 5) then we get s = au2, hence 1 ≤ u ≪ D0.25+0(1) (recall
that here δ = 0.5, hence |s| ≪f D0.5+o(1)). Therefore there are ≪f D0.25+o(1)

possibilities for s. Since there are ≪f D0.5+o(1) possibilities for r, we see

that there are ≪f D0.75+o(1) equations qby2 = g(x) with |qb| ≤ D having a
nontrivial rational solution. Therefore there exists a set of prime numbers q
of density 1, such that qy2 = f(x) has no nontrivial rational solutions.

Similarly, if (m,n) = (3, 4) then we get s2 = au3. It must be s = a1v
3,

hence v ≪ D
1
6+o(1) (recall that here δ = 1

2 ). Therefore we may proceed as for
(m,n) = (2, 5).

For (m, 3) with m ≥ 4 we have i = 3, hence sm−3 = aum. We will see
that this case, for m 6= 6, is similar to the case (m,n) = (2, 5). If m is not
divisible by 3 we get s = a1v

m with v ≥ 1 and |a1| ≪f 1. Here we get that

there are ≪ D
δ
m possibilities for s. It is easy to check that δ + δ

m
< 1 for

each m (not divisible by 3). Therefore we may proceed as for (m,n) = (2, 5).
Let us consider the case when m is divisible by 3. From sm−3 = aum we

get s = a1v
m
3 , with v ≥ 1 and |a1| ≪f 1. It implies that there are ≪ D

3δ
m

possibilities for s. It is easy to check that ifm ≥ 9, then δ+ 3δ
m

< 1 . Therefore,
for m ≥ 9, we can proceed as for (m,n) = (2, 5). The remaining case is m = 6,
hence δ = 5

6 . Unfortunately, here we have δ + 3δ
m

> 1. It is a reason why we
have excluded irreducible polynomials f . Therefore g has a rational root. We
may assume that g(0) = 0, hence we have qbt6 = s3rK(r, s), with quadratic
K. Similarly as in the proof of Theorem 4.3, using (2.1), we conclude that q
does not divide rs for all sufficiently large q. Since the common factors of r
and K(r, s) are bounded by an absolute constant (dependent only on f) we
get, for sufficiently large q,

r = a2z
6
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with z ≥ 1 and |a2| ≪f 1 (recall that here we may consider only the primes

q not dividing sr). We see that there are ≪f D
δ
6 possibilities for r. Since

3δ
6 + δ

6 < 1 we are done.
Assume now that m = i, i.e, that (m,n) = (2, 6) or (m,n) = (4, 4).
We first consider the case when f has at least one rational root (especially,

(m,n) is not conditionally exceptional). Similarly as in the case (m,n) = (6, 3)
we may assume that qbtm = rK(r, s). Similarly as in the proof of Theorem
4.3 we conclude that q does not divide r, for all sufficiently large q. Since
the common factors of r and K(r, s) are bounded by an absolute constant
(dependent only on f) we get, for sufficiently large q,

r = aum

with u ≥ 1 and |a| ≪f 1. We obtain that there are ≪f D
δ
m possibilities

for r. Since δ = 1
2 for m = 6 and δ = 3

4 for m = 4 we see that, in any

case, δ + δ
m

< 15
16 . Therefore there ≪f D

15
16+o(1) equations qbym = g(x) with

|qb| ≤ D having nontrivial rational solutions. We are done.
Assume, now, that f has no rational roots. In this case we introduce

a new approach with applying Lemma 4.2. Note that we may assume that
g = hk, where h is Q-irreducible non-linear monic polynomial over Z, and k is
a polynomial over Z, which may be irreducible or a product of two irreducible
polynomials over Q (recall that in this case f is not Q-irreducible). Let
G = HK be the corresponding factorization. Assume that qbym = g(x) has
a rational solution with x = r

s
and with r, s coprime. Then, by (2.1), we have

|r|, |s| ≪g |qb|δ+o(1). Since h, k are coprime over Q, there exist polynomials
h′, k′ over Q such that

h′h+ k′k = 1.

Therefore, there exist binary forms H ′,K ′ over Z, a non-zero integer b′, and
a positive integer M such that

H ′(r, s)H(r, s) +K ′(r, s)K(r, s) = b′sM ,

for all integers r, s with s 6= 0. Note that we consider pairs (r, s) with r, s

coprime. Therefore, each common divisor of H(r, s) and K(r, s) is a divisor
of b′. We separately estimate the possibilities when q|H(r, s) and q|K(r, s).

Assume first that (m,n) = (4, 4), especially δ = 3
4 . Then H,K are

quadratic (recall that we excluded the case when f is irreducible, and that we
are in the case when f has no rational roots). If q|K(r, s) and q is sufficiently
large, then q does not divide H(r, s), hence

(4.4) H(r, s) = au4,

where a ≪f 1 and u is an positive integer. Note that it means that there
are finitely many possibilities for a and that the number of the possibilities
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depends only on g (i.e., on f). Since

|r|, |s| ≪f Dδ+o(1),

we get u4 ≪ D2·δ+o(1) for u from (4.4), so u ≪ D
3
8+o(1). Therefore, if D

is sufficiently large, then u ≤ D0.4 for u from (4.4). We have to estimate
the number of solutions (r, s) in (4.4) for all possible u and a. After a linear
transformation we may assume that H(r, s) = r2 +As2, with A ∈ Z.

If A > 0 then by Lemma 4.2, (i) (with M = 4 and X = D0.4), there are
≪ (D0.4)1+o(1) pairs (r, s), for each fixed a. Since the number of parameters a
in (4.4) is bounded by a constant dependent only on f , which is fixed here, we
see that there are ≤ D0.5 possibilities for (r, s) (assuming that D is sufficiently
large). Since each (r, s) gives rise to at most one prime q, there are ≤ D0.5

prime numbers q with |qb| ≤ D such that the equation qby4 = g(x) has a
rational solution with q|K(r, s).

If A < 0, then by Lemma 4.2, (ii) (with M = 4 and X = Y = D0.4), we
obtain, in a similar way, that there are ≤ D0.5 prime numbers q with |qb| ≤ D

such that the equation qby4 = g(x) has a rational solution with q|K(r, s).
Similarly we obtain that if D is sufficiently large, then there are ≤ D0.5

prime numbers q, with |qb| ≤ D, such that the equation qby4 = g(x) has a
rational solution with q|H(r, s). Therefore, there are ≤ 2D0.5 prime numbers
q, with |qb| ≤ D, such that the equation qby4 = g(x) has a rational solution.
We conclude that there is a set of prime numbers q of density 1 such that the
equation qy4 = f(x) has no rational solutions.

Assume now that (m,n) = (2, 6), especially δ = 1
2 . Recall that we

excluded the case when f is irreducible, as well as the case when f is a product
of a quadratic and a quartic irreducible polynomials. Recall also, that we are
in the case when f has no rational roots. Assume first that H,K are cubic
Q-irreducible forms. Analogously as in the case (m,n) = (4, 4) we get, using
Lemma 4.2, (iii), with M = 2 and X = D0.76, that there are ≤ 2D0.8 prime
numbers q, with |qb| ≤ D, such that the equation qby2 = g(x) has a rational
solution (assuming that D is sufficiently large).

Assume, finally, that H is quadratic and K = K1K2 is a product of
quadratic irreducible forms. If q|K(r, s) then

(4.5) H(r, s) = au2

where a ≪f 1 and u is an positive integer (assuming that q is sufficiently

large). It implies that 1 ≤ u ≪ D0.5+o(1). On the other side, if q|H(r, s) and
q is sufficiently large, then

K1(r, s) = a1u
2
1

where a1 ≪f 1 and u1 is an positive integer (note that H,K1,K2 are pairwise

coprime over Q). We again obtain that 1 ≤ u1 ≪ D0.5+o(1). Therefore we
may proceed as in the case (m,n) = (4, 4).
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(b) Here n = 2 and G is an irreducible binary quadratic form of degree
m ≥ 5. Therefore, each (r, s) determines at most one prime number q such
that

(4.6) qbtm = sm−2G(r, s), t ∈ Z.

Assume that (4.6) holds. By (2.1), and Remark 2.3, (ii)

if m = 5 then |r|, |s| ≪f |qb|2+o(1),

if m = 6 then |r|, |s| ≪f |qb|2.5+o(1),

if m ≥ 7 then |r|, |s| ≪f |qb|1.75+o(1).

Therefore, for all but finitely many q, we have |s| < q3, especially vq(s) < 3.
The set S of primes q, such that the polynomial g has no roots modulo q,

has the density 1
2 . We may assume that G(r, s) = r2 +As2, with A ∈ Z \ {0}.

Since s and G(r, s) are relatively prime (note that we assume that r 6= 0), if
q ∈ S then from (4.6) we have q|s. Hence

1 +mvq(t) = (m− 2)vq(s)

(note that we excluded a finitely many prime numbers q that divide b). We
see that it is impossible if m is even. If m 6= 5 it implies vq(s) ≥ 3. Namely,
2vq(s) + 1 = m(vq(s) − vq(t)), which forces vq(s) > 2 if m 6= 5. Therefore, if
m ≥ 6, then for all but finitely many q ∈ S, the equation qbym = g(x) has no
nontrivial rational solutions.

Let us consider the case m = 5. Let D be a sufficiently large real number.
We consider the equations qby5 = g(x) with |qb| ≤ D. By (2.1), Remark
2.3, (ii) and the discussion after Remark 2.3, we see that if qby5 = g(x) has a
nontrivial solution with x = r

s
where r, s are coprime, then |r|, |s| ≪f D2+o(1).

Assume that q ∈ S. From (4.6) we get G(r, s) = au5 (where |a| ≪f 1, and

u ≥ 1). Since G(r, s) is quadratic in r, s we see that u5 ≪f D4+o(1), hence

1 ≤ u ≪f D0.8+o(1). By Lemma 4.2, (i) or (ii), with M = 5 we see that
there are ≤ D0.9 possibilities for such pairs (r, s) (for sufficiently large D).
Similarly as at the end of the proof of Theorem 4.3, (b), we get that there is
a set of prime numbers q of the density at least 1

2 , such that qby5 = g(x) has
no rational solutions.

In the following remark we discuss exceptional cases of Theorem 4.5 (the
conditionally exceptional cases).

Remark 4.6. (i) Assume that the polynomial f is irreducible and that
(m,n) ∈ {(2, 6), (4, 4), (6, 3)}. Then by the argument from the proof of
Proposition 3.4, (iii), it can be proved unconditionally that there is a set
of prime numbers q of density at least 1

n
, such that the equation qym = f(x)

has no rational solutions.
(ii) Assume that the abc-conjecture is true. Let f be a polynomial over

Q of degree n = 6. Assume that f is a product of a quadratic and a quartic
irreducible polynomial overQ. Using the argument from the proof of Theorem
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4.5 (b), it can be proved that there is a set of prime numbers q of density at
least 1

2 , such that the equation qy2 = f(x) has no rational solutions.
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