SOME APPLICATIONS OF THE $a b c-C O N J E C T U R E ~ T O ~ T H E ~$ DIOPHANTINE EQUATION $q y^{m}=f(x)$

Ivica Gusić
University of Zagreb, Croatia

Abstract

Assume that the $a b c$-conjecture is true. Let f be a polynomial over \mathbb{Q} of degree $n \geq 2$ and let $m \geq 2$ be an integer such that the curve $y^{m}=f(x)$ has genus ≥ 2. A. Granville in [3] proved that there is a set of exceptional pairs (m, n) such that if (m, n) is not exceptional, then the equation $d y^{m}=f(x)$ has only trivial rational solutions, for almost all m-free integers d. We prove that the result can be partially extended on the set of exceptional pairs. For example, we prove that if f is completely reducible over \mathbb{Q} and $n \neq 2$, then the equation $q y^{m}=f(x)$ has only trivial rational solutions, for all but finitely many prime numbers q.

1. Introduction

Let f be a polynomial over \mathbb{Q} of degree $n \geq 2$ and let $m \geq 2$ be an integer such that the curve $y^{m}=f(x)$ has genus ≥ 2. Let d be an m-free integer. Assume that the equation $d y^{m}=f(x)$ has a nontrivial rational solution (i.e., the solution that does not come from a rational root of f). Put $x=\frac{r}{s}$ where r, s are coprime integers. A. Granville proved that, if the $a b c$-conjecture is true, then there exists $\delta>0$ (dependent only on (m, n)) such that

$$
\begin{equation*}
|r|,|s|<_{f}|d|^{\delta+o(1)} . \tag{1.1}
\end{equation*}
$$

Using (1.1), he proved that if $\delta<\frac{1}{2}$ then the equation $d y^{m}=f(x)$ has no nontrivial rational solutions for almost all d (see Corollary 2.5). Unfortunately, there is an infinite set of exceptional pairs (m, n) for which $\delta \geq \frac{1}{2}$ holds. The purpose of this paper is to prove that a similar result is valid for the equations of the type $q y^{m}=f(x)$ with prime q, even for the exceptional pairs (m, n) (Theorem 4.3 and Theorem 4.5).

[^0]In Section 2 we describe Granville's results on equation $d y^{m}=f(x)$ with m-free d (modulo the $a b c$-conjecture). In Section 3 we apply (1.1) to a question on diophantine equations with separate variables (Theorem 3.5). In Section 4 we extend Granville's results to the equation $q y^{m}=f(x)$ with prime q (Theorem 4.3 and Theorem 4.5).

$$
\text { 2. The equation } d y^{m}=f(x)
$$

In this section we describe Granville's results from [3] concerning the equations $d y^{m}=f(x)$.

The $a b c$-conjecture (Oesterlé, Masser, Szpiro). If a, b, c are coprime positive integers satisfying $a+b=c$ then

$$
c \ll\left(\prod_{p \mid a b c} p\right)^{1+o(1)}
$$

In this paper we need the following important consequence of the abcconjecture.

Lemma 2.1. Assume that the abc-conjecture is true. Suppose that $G \in$ $\mathbb{Z}[X, Y]$ is homogenous, without repeated roots. Then for any coprime integers r, s

$$
\prod_{p \mid G(r, s)} p \gg_{G} \max \{|r|,|s|\}^{\operatorname{deg}(G)-2-o(1)}
$$

Proof. See, for example, [3, Proposition 2.1].
Using the estimation from Lemma 2.1, A. Granville proved the following result.

Lemma 2.2. Assume that the abc-conjecture is true. Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ without repeated roots, and let $m \geq 2$ be an integer such that the curve $y^{m}=f(x)$ has genus $g \geq 2$. Let d be an integer not divisible by the mth power of any prime. Assume that a rational pair (x, y) with $x=\frac{r}{s}$ where r, s are coprime satisfies

$$
d y^{m}=f(x)
$$

Then

$$
\begin{equation*}
|r|,|s| \lll f|d|^{\frac{1}{n-1-\frac{\mathrm{gcd}(m, i)+1}{m-1}}}+o(1) \tag{2.1}
\end{equation*}
$$

where $n=k \cdot m+i$ with $1 \leq i \leq m$.
Proof. In the case $m=2$, by [3, Theorem 1.1(ii)], we have

$$
|r|,|s| \ll|d|^{\frac{1}{2 g-2}+o(1)}
$$

Therefore we have to prove that it coincides with (2.1) for $m=2$. Note that \ll here depends only on f (see [3, Section 2, Proof of Theorem 1.1, for
rational points, after Corollary 2.2]). Since the curve $y^{2}=f(x)$ is hyperelliptic we have $g=\left\lfloor\frac{n-1}{2}\right\rfloor$ (especially, we have $n \geq 5$). We have to prove that $2 g-2=n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}$. Assume first that n is odd. Then $2 g-2=n-3$. On the other side, we have $i=1$, hence $n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}=n-1-\frac{1+1}{1}=n-3$. Assume now that n is even. Then $2 g-2=n-4$. On the other side, we have $i=2$, hence $n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}=n-1-\frac{2+1}{1}=n-4$.

In the case $m \geq 3$ the relation (2.1) coincides with (11.1) from [3, Section 11].

Remark 2.3. (i) We have seen in the proof of Lemma 2.2, that the condition $g \geq 2$ on the genus of the curve $y^{m}=f(x)$ for $m=2$, is equivalent with $n \geq 5$. If $m \geq 3$, then the corresponding curve is superelliptic which genus g satisfies $2 g-2=m n-m-n-\operatorname{gcd}(m, n)$ (see, for example, [7, Exercise A.4.6] or [9, p. 401, formula (4)]). Especially,
(a) if $m=3$ then $g \geq 2$ if and only if $n \geq 4$,
(b) if $m=4$ then $g \geq 2$ if and only if $n \geq 3$,
(c) if $m \geq 5$ then $g \geq 2$ for each $n \geq 2$.
(ii) By Lemma 2.2, under the abc-conjecture, the size of a rational solution of the equation $d y^{m}=f(x)$ depends on the value $\gamma(m, n):=n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}$. It can be easily checked the following:
(a) $\gamma(2,5)=\gamma(2,6)=2$ and $\gamma(2, n) \geq 3$ for $n \geq 7$,
(b) $\gamma(3,4)=2$ and $\gamma(3, n) \geq 3$ for $n \geq 5$,
(c) $\gamma(4,3)=\gamma(4,4)=\frac{4}{3}$ and $\gamma(4, n)>2$ for $n \geq 5$,
(d) $\gamma(5,3)=\frac{3}{2}, \gamma(6,3)=\frac{6}{5}$ and $\frac{6}{5} \leq \gamma(m, 3)<2$ for each $m \geq 4$,
(e) $\gamma(5,2)=\frac{1}{2}, \gamma(6,2)=\frac{2}{5}$ and $\frac{4}{7} \leq \gamma(m, 2)<1$ for each $m \geq 7$.

Definition 2.4. We say that a pair (m, n) from Remark 2.3 is exceptional if the condition $\gamma(m, n) \leq 2$ holds.

Let us fix a positive integer D, and consider an equation $d y^{m}=f(x)$ with $|d| \leq D$ (as in [3]). Then, if (r, s) is as in Lemma 2.2, we have

$$
|r|,|s| \ll{ }_{f} D^{\frac{1}{n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}}+o(1)}
$$

Since each such (r, s) with $f\left(\frac{r}{s}\right) \neq 0$ participates in a unique equation $d y^{m}=$ $f(x)$ with m-free d, we see that there are $<_{f} D^{\frac{2}{n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}}+o(1)}$ equations $d y^{m}=f(x)$ with $|d| \leq D$, that have nontrivial rational solutions. Here, we say that a solution is trivial if it comes from a rational root of f. For the sake of brevity, we will say that $d y^{m}=f(x)$ has only trivial rational solutions for almost all m-free d, if

$$
\lim _{D \rightarrow+\infty} \frac{\sharp\left\{d:|d| \leq D, d \text { is } m-\text { free and } d y^{m}=f(x) \text { has a nontriv. sol. }\right\}}{\sharp\{d:|d| \leq D \text { and } d \text { is } m-\text { free }\}}=0
$$

holds. The above discussion leads to the following corollary of Lemma 2.2.
Corollary 2.5 ([3, Cor. 1.2 and sect. 11]). Let the notation be as in Lemma 2.2. Assume that the curve $y^{m}=f(x)$ is of genus ≥ 2, and that neither of the following conditions is satisfied
(i) $n=5$ or $n=6$, and $m=2$,
(ii) $n=4$ and $m=3$ or $m=4$,
(iii) $n=3$ and $m \geq 4$,
(iv) $n=2$ and $m \geq 5$.

Then for almost all m-free integers d, the equation

$$
d y^{m}=f(x)
$$

has only trivial rational solutions.
Proof. For the convenience of readers we present a proof. Recall first that, by Remark 2.3 (i), if $m=2$ then $n \geq 5$, if $m=3$ then $n \geq 4$, and if $m=4$ then $n \geq 3$. Let us put $\delta:=\frac{1}{n-1-\frac{\operatorname{gccd}(m, i)+1}{m-1}}$. By Remark 2.3 (ii), if (m, n) does not satisfy any of conditions (i)-(iv) (i.e., if (m, n) is not exceptional), then $\delta<\frac{1}{2}$. Therefore there exists a real number δ^{\prime} with $0<2 \delta^{\prime}<1$ such that, for sufficiently large D, there are $\leq D^{2 \delta^{\prime}} m$-free integers d with $|d| \leq D$, such that the equation $d y^{m}=f(x)$ has a nontrivial rational solution (note that \ll in (2.1) depends only on f, which is fixed here). It is a classical fact that the set of m-free integers has density $\frac{1}{\zeta(m)}$ (in the set of integers), where ζ denotes the Riemann zeta function (see, for example, [17]). Therefore, for almost all m-free integers d, the equation $d y^{m}=f(x)$ has only trivial rational solutions.

3. A question on diophantine equations with separated variables

As an illustration, we apply estimation (2.1) to a question on the diophantine equations with separable variables. Yuri Bilu observed (published in [4, Proposition 3]) that if f is a polynomial over \mathbb{Q} of degree $n \geq 2$, and m is a composite positive integer, then there exists a polynomial g over \mathbb{Q} of degree m, such that the equation $g(y)=f(x)$ has no rational solutions.

Question 3.1. Let f be a polynomial over \mathbb{Q} of degree $n \geq 2$ and let m be a prime number. Does there exist a polynomial g over \mathbb{Q} of degree m, such that the equation $g(y)=f(x)$ has no rational solutions?

The answer is positive if $n=2,(m, n)=(2,3)$, or if $m \mid n$ (see Proposition 3.4 below). We demonstrate that if the $a b c$-conjecture is true, then the answer is positive in the remaining cases, too (Theorem 3.5).

Definition 3.1. We say that a subset P of the set of prime numbers has density ρ if

$$
\lim _{X \rightarrow \infty} \frac{\sharp\{p \in P: p \leq X\}}{\pi(X)}=\rho,
$$

where $\pi(X)$ denotes the number of primes that are $\leq X$.
Lemma 3.2. Let f be an irreducible polynomial over \mathbb{Z} of degree $n \geq 2$. Then the set of primes p, such that f has no roots modulo p, has the density $\geq \frac{1}{n}$.

Proof. See for example [15, Theorem 1 and Theorem 2].
Remark 3.3. In Question 3.1 we may assume that the polynomial f is \mathbb{Q}-irreducible, defined over \mathbb{Z} and monic. Namely the polynomial $\Phi \in \mathbb{Q}[x, t]$, defined by $\Phi(x, t):=f(x)-t$, is irreducible. By the Hilbert irreducibility theorem (see, for example, [14, Theorem 46]), there exists a rational number α such that $\Phi(x, \alpha)$ is \mathbb{Q}-irreducible. Since f (from Question 3.1) can be replaced by $f-\alpha$, for each rational α, we may assume that f is \mathbb{Q}-irreducible. Since f can be replaced by λf, for each nonzero $\lambda \in \mathbb{Q}$, we may assume that f is defined over \mathbb{Z} (and \mathbb{Q}-irreducible). Similarly, if $f(x)=a_{n} x^{n}+\ldots+a_{0}$, then

$$
f(x)=\frac{\left(a_{n} x\right)^{n}+a_{n-1}\left(a_{n} x\right)^{n-1}+\ldots+a_{1} a_{n}^{n-2}\left(a_{n} x\right)+a_{0} a_{n}^{n-1}}{a_{n}^{n-1}} .
$$

Therefore we may assume that f is monic.
Proposition 3.4. Let f be a polynomial over \mathbb{Q} of degree $n \geq 2$ and let m be a prime number. Assume that one of the following conditions holds:
(i) $n=2$,
(ii) $(m, n)=(2,3)$,
(iii) $m \mid n$.

Then there exists a polynomial g over \mathbb{Q} of degree m, such that the equation $g(y)=f(x)$ has no rational solutions.

Proof. (i) The cases $m=2$ and $m=3$ follow from the fact that there are affine conics and elliptic curves over \mathbb{Q} without rational points. For $m=5$ we may use the fact that $4 y^{5}-1=d x^{2}$ has no rational solutions for infinitely many square-free d, see($\left[11\right.$, Theorem 4]), or the fact that the equation $y^{5}+A=x^{2}$ has no rational solutions for $A=-3,-13,-37,-38,-52, \ldots$ (see [19, Corollary $3.2]$). Assume that $m \geq 7$. Let h be a cubic polynomial such that the equation $z^{2}=h(y)$ has no rational solutions, and let r be a \mathbb{Q}-irreducible polynomial of degree $\frac{m-3}{2}$. Then the equation

$$
r(y)^{2} h(y)=x^{2}
$$

has no rational solutions.
(ii) By Remark 3.3, we may assume that $f(x)=x^{3}+a x^{2}+b x+c$ is irreducible. Consider the elliptic curve

$$
E: y^{2}=x^{3}+a x^{2}+b x+c
$$

Then there are infinitely many square-free integers d such that the quadratic twist $E_{d}: d y^{2}=x^{3}+a x^{2}+b x+c$ has rank zero (see, for example, [12, Corollary 3] and note that elliptic curves over \mathbb{Q} are modular). Now, the positive answer to the question follows from the fact that there are only finitely many squarefree d such that E_{d} has a rational torsion point of order >2 (see [16, exercise $8.17(\mathrm{~d})]$ or [10, Lemma 5.5] for a proof over number fields).
(iii) By Remark 3.3, we may assume that $f \in \mathbb{Z}[X]$ is irreducible and monic. By Lemma 3.2, there is a prime number p such that f has no roots modulo p. Then the equation $p y^{m}=f(x)$ has no rational solutions. Namely, if (a, b) is a solution, then $a \neq 0$ and $b \neq 0$. Let v_{p} denote the discrete valuation at p. If $v_{p}(a) \geq 0$, then $v_{p}(f(a)) \geq 0$, and so $v_{p}(f(a))=0$. It implies $m v_{p}(b)=-1$, a contradiction. On the other side, if $v_{p}(a)<0$, then $v_{p}(f(a))=n v_{p}(a)$, which implies $m v_{p}(b)+1=n v_{p}(a)$. It is in a contradiction with $m \mid n$.

Note that Question 3.1 can be stated over any algebraic number field. Using recent results of B. Mazur and K. Rubin ([10]) on the 2-Selmer groups of elliptic curves, it can be proved that the answer is positive in the case $n=3, m=2$, see [5]. Note also that the statement from Proposition 3.4 holds unconditionally, in contrast to the rest of the article where the results usually depend on the $a b c$-conjecture. From this point on, we follow [3].

Theorem 3.5. Assume that the abc-conjecture is true. Then the answer to Question 3.1 is positive.

Proof. The answer is positive unconditionally for $n=2$ or $(m, n)=$ $(2,3)$, or $m \mid n$ (see Proposition 3.4). By Remark 3.3, in the remaining cases we may assume that $f \in \mathbb{Z}[X]$ is irreducible and monic (especially, f is without repeated roots). We will see that the $a b c$-conjecture implies that there is an integer $d \neq 0$ such that the equation

$$
d y^{m}=f(x)
$$

has no rational solutions. It follows directly from Corollary 2.5, assuming that (m, n) does not satisfy any of the following conditions
(i) $n=5$ and $m=2$,
(ii) $n=4$ and $m=3$,
(iii) $n=3$ and $m \geq 5$.

Assume that one of conditions (i), (ii), (iii) holds. We will show that there is a prime q such that the equation

$$
q y^{m}=f(x)
$$

has no rational solutions (in fact we will prove that there is a positive proportion of such primes q). Since f is irreducible there is no trivial solutions. For each rational number $x=\frac{r}{s}$, with relatively prime integers r, s, we have

$$
f\left(\frac{r}{s}\right)=\frac{s^{m-i} F(r, s)}{s^{(k+1) m}}
$$

where $n=k \cdot m+i$ with $1 \leq i \leq m$ and $F(r, s):=s^{n} f\left(\frac{r}{s}\right)$. Note that each pair (r, s) determines at most one prime q with

$$
\begin{equation*}
q t^{m}=s^{m-i} F(r, s), t \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

Each integer solution of (3.1) leads to a rational solution of the equation $q y^{m}=f(x)$ with $x=\frac{r}{s}$. On the other side, if $q y^{m}=f\left(\frac{r}{s}\right)$ holds for some rational y, then $q\left(y s^{k+1}\right)^{m}=s^{m-i} F(r, s)$. Since $m \geq 2$ we see that $y s^{k+1}$ is an integer. Therefore, for each (r, s) there is at most one prime number q such that the equation $q y^{m}=f(x)$ has a rational solution with $x=\frac{r}{s}$. If (r, s) leads to a solution of an equation of type (3.1), then we will say that (r, s) determines the prime number q.

By Remark 2.3, we have $\gamma(2,5)=\gamma(3,4)=2$ and $\gamma(m, 3) \geq \frac{6}{5}$ for each $m \geq 5$. In any case, by (2.1), if (r, s) determines some q, then $|r|,|s| \lll{ }_{f}$ $q^{\frac{5}{6}+o(1)}$ (note that since m is a prime number and since $m \geq 5$ for $n=3$, we can find a better estimation, but this one will be sufficient for our purpose). By the definition, it means that for each $\epsilon>0$ there exists a constant $K_{\epsilon}>0$, dependent only on f and ϵ, such that $|r|,|s| \leq K_{\epsilon} q^{\frac{5}{6}+\epsilon}$. Let S be the set of prime numbers p such that f has no roots modulo p. By Lemma 3.2 we know that S has density $\geq \frac{1}{n}$, especially S is infinite. Therefore, there exists $q \in S$ such that $K_{\epsilon} q^{\frac{5}{6}+\epsilon}<q$ for $\epsilon=0.01$. We claim that the equation $q y^{m}=f(x)$ has no nontrivial rational solutions. Contrary, there exist integers r, s, t with $s, t \neq 0$ and r, s coprime such that (3.1) holds. Since $|s|<q$, we see that q does not divide s. Since $q \in S$, we see that q does not divide $F(r, s)$. It is a contradiction. Note that, in fact, we have proved that the equation $q y^{m}=f(x)$ has no nontrivial rational solutions, for all but finitely many $q \in S$.

4. The equation $q y^{m}=f(x)$

In this section we assume that f is a polynomial over \mathbb{Z} of degree $n \geq 2$ without repeated roots, and that $m \geq 2$ is such that the genus g of the curve $y^{m}=f(x)$ is ≥ 2. A. Granville conjectured that a stronger version of Corollary 2.5. holds even for exceptional pairs (m, n). To be more precise, he conjectured that there is a constant κ_{f}^{\prime}, such that there are $\sim \kappa_{f}^{\prime} D^{\frac{1}{g+1}}$ squarefree integers d with $|d| \leq D$, for which $d y^{2}=f(x)$ has a nontrivial rational solution (see [3, Conjecture 1.3(ii)]). He also conjectured that there are $\sim \kappa_{f, m}^{\prime} D^{\frac{2}{n}}$ squarefree integers d with $|d| \leq D$, for which $d y^{m}=f(x)$ with
$m \geq 3$, has a nontrivial rational solution (see [3, Section 11, p. 22]). The estimate (2.1) is too weak to prove that conjecture. Nevertheless, it enables us to prove that there are a lot of prime numbers q, such that the equation $q y^{m}=f(x)$ has no nontrivial rational solutions, even in the exceptional cases (see Theorem 4.3 and Theorem 4.5 for a more precise formulation). Unlike the case of Theorem 3.5, where we could assume that f is \mathbb{Q}-irreducible, now we have to consider the reducible polynomials, too. Also, the set of exceptional cases is wider now, since we have to include the equations with $n=2$, as well as the cases when m is not prime.

For a natural number u, let $d(u)$ denote the number of divisors of u, and let $\omega(u)$ denote the number of distinct prime factors of u. Also, let $p_{n} \sharp$ denote the n-th primorial number (the product of the first n prime numbers).

Lemma 4.1. Let F be an irreducible binary form of degree $\lambda \geq 3$, with rational integer coefficients. Then the number of primitive solutions of the equation $|F(r, s)|=u$ does not exceed $c_{1} \lambda^{1+\omega(u)}$, where c_{1} is an absolute constant (here we say that a solution (r, s) is primitive if r, s are coprime integers).

Proof. See [1, Theorem, p. 69-70]
The following lemma will be used in a part of the proof of Theorem 4.5.
Lemma 4.2. Let M denotes arbitrary positive integer.
(i) Let $\nu(u)$ denote the number of integer solutions of equation $r^{2}+A s^{2}=$ u, with $A, u \in \mathbb{N}$. Then, for $a \in \mathbb{Z}$ and sufficiently large X,

$$
\sum_{1 \leq u \leq X} \nu\left(a u^{M}\right) \ll X^{1+o(1)} \ln X
$$

(ii) Let $\nu_{X}(u)$ denote the number of integer solutions of equation $r^{2}-A s^{2}=$ u, with $|r|,|s| \leq X$, where $A \in \mathbb{N}$ is not a square. Then, for $a \in \mathbb{Z}$ and sufficiently large X, Y,

$$
\sum_{1 \leq u \leq Y} \nu_{X}\left(a u^{M}\right) \ll Y^{1+o(1)} \ln X \ln Y
$$

(iii) Let F be an irreducible cubic form over \mathbb{Z}, and let $\nu(u)$ denote the number of primitive integer solutions of the equation $F(r, s)=u$ (i.e., the solutions with coprime integers r, s). Then, for $a \in \mathbb{Z}$ and sufficiently large X

$$
\sum_{1 \leq u \leq X} \nu\left(a u^{M}\right) \ll X(\ln X)^{2} .
$$

Proof. (i) Let us set $\alpha:=r+s \sqrt{-A}$, so that the relation $r^{2}+A s^{2}=u$ becomes $\alpha \bar{\alpha}=u$. If $(\alpha)=\prod \mathcal{P}^{\operatorname{ord}_{\mathcal{P}} \alpha}$ is the prime factorization of the ideal (α) in the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{-A})$, then $\operatorname{ord}_{\mathcal{P}} \alpha=\operatorname{ord}_{P} \bar{\alpha}$.

By the character of extension of rational primes in quadratic number fields, we conclude that there are at most $d(u)$ possibilities for (α). Since the ring of integers has at most six invertible elements, we see that $\nu(u) \ll d(u)$. Note that $d(u v) \leq d(u) d(v)$, and $d\left(u^{M}\right) \leq M^{\omega(u)} d(u)$ for each u, v, M. Hence,

$$
\nu\left(a u^{M}\right) \ll d\left(a u^{M}\right) \leq d(a) d\left(u^{M}\right) \leq d(a) M^{\omega(u)} d(u)
$$

Using the fact that if k is primorial then $\omega(k) \sim \frac{\ln k}{\ln \ln k}$ (see, for example, [6, p.471]), we get

$$
\omega(u)=\omega\left(p_{\omega(u) \sharp} \neq \frac{\ln p_{\omega(u)} \sharp}{\ln \ln p_{\omega(u)} \sharp} \leq \frac{\ln X}{\ln \ln X}\right.
$$

(note that $p_{\omega(u)} \sharp \leq u \leq X$ and that X is sufficiently large). We see that if X is sufficiently large, then $\omega(u) \leq \frac{2 \ln X}{\ln \ln X}$. Therefore $M^{\omega(u)} \leq M^{\frac{2 \ln X}{\ln \ln X}}=$ $\left(e^{\ln X}\right)^{\frac{2 \ln M}{\ln \ln X}}=X^{\frac{2 \ln M}{\ln \ln X}} \ll X^{o(1)}$. Summing and using

$$
\sum_{1 \leq u \leq X} d(u)=X \ln X+(2 \gamma-1) X+O\left(X^{\theta}\right)
$$

where γ is Euler's constant, and $\theta \leq 0.5$ (see [6, p.347-349 and 359] or [8] for a better estimation of θ), we get

$$
\sum_{1 \leq u \leq X} \nu\left(a u^{M}\right) \ll \sum_{1 \leq u \leq X} d(a) M^{\omega(u)} d(u) \ll M^{\frac{2 \ln X}{\ln \ln X}} \sum_{1 \leq u \leq X} d(u) \ll X^{1+o(1)} \ln X
$$

(ii) We have $\nu_{X}(u) \ll \ln X d(u)$ for sufficiently large X (see [13, Lemma 3] for a more precise estimation). Therefore we may proceed as in (i):
$\sum_{1 \leq u \leq Y} \nu_{X}\left(a u^{M}\right) \ll \ln X d(a) \sum_{1 \leq u \leq Y} M^{\omega(u)} d(u) \ll \ln X \cdot Y^{1+o(1)} \ln Y$.
(iii) By Lemma 4.1, we know that there is an absolute constant C such that

$$
\nu(u) \leq C \cdot 3^{\omega(u)}
$$

(see also [18, Theorem 1]). Since $\omega\left(a u^{M}\right) \leq \omega(a)+\omega(u)$, and

$$
\lim _{X \rightarrow \infty} \frac{1}{X(\ln X)^{2}} \sum_{1 \leq u \leq X} 3^{\omega(u)}=0.1433 \ldots
$$

(see, for example, [2, p.111]), we get

$$
\sum_{1 \leq u \leq X} \nu\left(a u^{M}\right) \leq \sum_{1 \leq u \leq X} C \cdot 3^{\omega(a)+\omega(u)} \ll \sum_{1 \leq u \leq X} 3^{\omega(u)} \ll X(\ln X)^{2}
$$

We will use the estimation (2.1) to prove that the equation $q y^{m}=f(x)$, with prime q, generally has no nontrivial rational solutions. Note that the set of prime numbers has zero density in the set of m-free numbers. Therefore, Corollary 2.5 provides no direct information about the equations $q y^{m}=f(x)$. However, if the pair (m, n) is not exceptional (see Definition 2.4 and Remark 2.3), then the argument from the proof of Corollary 2.5 can be applied to
prove that there is a set of prime numbers q of density 1 , such that the equations $q y^{m}=f(x)$ has no nontrivial rational solutions. In Theorem 4.3 we will get a stronger result for completely reducible polynomials f. Namely, we will prove that in that case the equation $q y^{m}=f(x)$ has no nontrivial rational solutions, for all but finitely many prime numbers q (assuming that $n \neq 2$). The proofs of Theorem 4.3 and Theorem 4.5 depend on the value of $\delta:=\frac{1}{n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}}$. The most comfortable situation is when $\delta<\frac{1}{2}$ (i.e., when (m, n) is not exceptional). Less pleasant is when $\frac{1}{2} \leq \delta<1$, and the unpleasant when $\delta>1$ (i.e., when $n=2$).

Theorem 4.3. Assume that the abc-conjecture is true. Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ without repeated roots, and let $m \geq 2$ be an integer such that the curve $y^{m}=f(x)$ has genus ≥ 2. Assume that f is completely reducible over \mathbb{Q}.
(a) If $n \geq 3$, then for all but finitely many primes q the equation $q y^{m}=$ $f(x)$ has only trivial rational solutions.
(b) If $n=2$ and $m \neq 6$, then there is a set of prime numbers q of density 1 such that the equation $q y^{m}=f(x)$ has only trivial rational solutions.

Proof. (a) Let us put $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$. We can write

$$
f(x)=\frac{\left(a_{n} x\right)^{n}+a_{n-1}\left(a_{n} x\right)^{n-1}+\ldots+a_{1} a_{n}^{n-2}\left(a_{n} x\right)+a_{0} a_{n}^{n-1}}{a_{n}^{n-1}}=\frac{g\left(x^{\prime}\right)}{a_{n}^{n-1}}
$$

where $x^{\prime}:=a_{n} x$. Set $a_{n}^{n-1}=b u^{m}$ where b is m-free integer. Note that g is defined over \mathbb{Z} and monic. We see that it is enough to prove that, for all but finitely many prime numbers q, the equation

$$
\begin{equation*}
q b y^{m}=g(x) \tag{4.1}
\end{equation*}
$$

has only trivial rational solutions. Further, since b depends only on f (i.e., since $|b|<_{f} 1$), we may assume that $\operatorname{gcd}(q, b)=1$ (in other words, we exclude from the consideration a finitely many primes q that divide b). For each rational number $x=\frac{r}{s}$ with relatively prime integers r, s, we have

$$
g\left(\frac{r}{s}\right)=\frac{s^{m-i} G(r, s)}{s^{(k+1) m}}
$$

where $n=k \cdot m+i$ with $1 \leq i \leq m$ and $G(r, s):=s^{n} g\left(\frac{r}{s}\right)$ (here we may exclude $r=0$ since it leads to at most one q). Each pair (r, s) determines at most one prime q with

$$
\begin{equation*}
q b t^{m}=s^{m-i} G(r, s), t \in \mathbb{Z} \tag{4.2}
\end{equation*}
$$

Each integer solution of (4.2) leads to the rational solution of the equation $q b y^{m}=g(x)$ with $x=\frac{r}{s}$. On the other side, if $q b y^{m}=g\left(\frac{r}{s}\right)$ holds for some rational y, then $q b\left(y s^{k+1}\right)^{m}=s^{m-i} G(r, s)$. Since $m \geq 2$, we see that $y s^{k+1}$
is an integer. Therefore, for each (r, s) there is at most one prime number q such that the equation $q b y^{m}=g(x)$ has a rational solution with $x=\frac{r}{s}$.

Note that all roots of g are integers. Let $G=L_{1} \cdot L_{2} \cdot \ldots \cdot L_{n}$ be the product of G on linear factors over \mathbb{Z}. Let us put $\delta:=\frac{1}{\gamma(m, n)}=\frac{1}{n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}}$.

Since $n \neq 2$, we have $\gamma(m, n)>1$ (see Remark 2.3), hence $\delta<1$. By (2.1), if $q b y^{m}=g(x)$ has a nontrivial rational solution, with $x=\frac{r}{s}$ where r, s are coprime, then

$$
|r|,|s|<_{g}|q b|^{\delta+o(1)}
$$

It means that, for each $\epsilon>0$, there exists $K_{\epsilon}>0$, such that $|r|,|s| \leq$ $K_{\epsilon}|q b|^{\delta+\epsilon}$. Put $L_{j}(r, s)=r-\alpha_{j} s, j=1,2, \ldots, n$ (note that $\alpha_{j} \in \mathbb{Z}$ for all j). Set $A=\max _{j}\left(1+\left|\alpha_{j}\right|\right)$ and choose $\epsilon>0$ such that $\delta+\epsilon<1$. Assume that $A K_{\epsilon}|q b|^{\delta+\epsilon}<q$ (it is satisfied for all but finitely many primes q). For such q the equation $q b y^{m}=g(x)$ has no nontrivial rational solutions. Assume contrary, i.e., assume that there is a nontrivial solution with $x=\frac{r}{s}$. Then $q \mid s^{m-i}$ or $q \mid L_{j}(r, s)$ for some j. It is impossible since $q>|s|$ and $q>\left|L_{j}(r, s)\right|$ for all j. Namely, $\left|L_{j}(r, s)\right|=\left|r-\alpha_{j} s\right| \leq|r|+\left.\alpha_{j}| | s\left|\leq\left(1+\left|\alpha_{j}\right|\right) K_{\epsilon}\right| q b\right|^{\delta+\epsilon} \leq$ $A K_{\epsilon}|q b|^{\delta+\epsilon}<q$.
(b) We will discuss the case $m=6$, too. Similarly as in (a), we may consider the corresponding equations $q b y^{m}=g(x)$ and $q b t^{m}=s^{m-i} G(r, s)$. We have to prove that there is a set of prime numbers q of density 1 such that the equation $q b y^{m}=g(x)$ has no nontrivial rational solutions, provided $m \neq 6$. Here $i=2$, hence each (r, s) determines at most one prime number q such that

$$
\begin{equation*}
q b t^{m}=s^{m-2} G(r, s), t \in \mathbb{Z} \tag{4.3}
\end{equation*}
$$

where $m \geq 5$ and G is a reducible quadratic form without double factors. Since $\gamma(m, n) \leq 1$ we can not apply directly the argument from (a).
Assume that (4.3) holds. By (2.1), and Remark 2.3, (ii)

$$
\begin{aligned}
& \text { if } m=5 \text { then }|r|,|s|<_{f}|q b|^{2+o(1)} \\
& \text { if } m=6 \text { then }|r|,|s|<_{f}|q b|^{2.5+o(1)} \text {, } \\
& \text { if } m \geq 7 \text { then }|r|,|s|<_{f}|q b|^{1.75+o(1)} \text {. }
\end{aligned}
$$

Therefore, for all but finitely many q we have $|s|<q^{3}$, especially $v_{q}(s)<3$. After a linear transformation we may assume that $G(r, s)=r(r-\alpha s), \alpha \in$ $\mathbb{Z} \backslash\{0\}$. Let D be a sufficiently large real number. We have to estimate the number of primes q with $|q b| \leq D$ such that (4.3) holds, for some (r, s) with r, s coprime. Note that, by (2.1) and Remark 2.3, (ii) we have

$$
\begin{aligned}
& \text { if } m=5 \text { then }|r|,|s|<_{f} D^{2+o(1)} \\
& \text { if } m=6 \text { then }|r|,|s|<_{f} D^{2.5+o(1)} \\
& \text { if } m \geq 7 \text { then }|r|,|s|<_{f} D^{1.75+o(1)} \text {. }
\end{aligned}
$$

We see from (4.3) that there are three possibilities for $r, s: q|s, q| r$ or $q \mid r-\alpha s$. The idea is to estimate the number of each of these possibilities, and to show
that the sum is negligible compared to the number of primes q with $|q b| \leq D$. Assume first that $q \mid s$. Since the integers s and $G(r, s)$ are coprime (we assume that $r \neq 0$), and since we may assume that q does not divide b, by (4.3) we get $1+m v_{q}(t)=(m-2) v_{q}(s)$. It is impossible if m is even, and it implies $v_{q}(s) \geq 3$ if $m \neq 5$. Therefore, the case with $q \mid s$ is impossible if q is sufficiently large and $m \neq 5$. It remains to consider the case $m=5$. By (4.3) and the fact that s and $G(r, s)$ are coprime we get

$$
G(r, s)=a u^{5}
$$

where $a \mid b$. Since $\operatorname{gcd}(r, r-\alpha s) \leq|\alpha|$ (for each coprime integers r, s), we get $r=a_{1} u_{1}^{5}$ and $r-\alpha s=a_{2} u_{2}^{5}$, with $u_{1}, u_{2} \in \mathbb{N}$ and $\left|a_{1}\right|,\left|a_{2}\right|<_{f} 1$. In other words, there are finitely many such systems of equations and the number of systems is dependent only on f (for all coprime integers r, s). We see that $u_{1}^{5}, u_{2}^{5}<_{f} D^{2+o(1)}$, hence $u_{1}, u_{2}<_{f} D^{0.4+o(1)}$. Therefore (if D is sufficiently large) there are $\ll D^{0.41}$ possibilities both for r and $r-\alpha s$. Since $r-(r-\alpha s)=$ αs, we see that there are $<_{f} D^{0.82}$ possibilities for s. We claim that, if D is sufficiently large, then each s determines at most one q with $q \geq D^{0.6}$ (and $q \mid s)$. Contrary we have

$$
q_{1} b t_{1}^{5}=s^{3} G\left(r_{1}, s\right) \text { and } q_{2} b t_{2}^{5}=s^{3} G\left(r_{2}, s\right)
$$

with $q_{1} \neq q_{2}, q_{1}\left|s, q_{2}\right| s$ and $q_{1}, q_{2} \geq D^{0.6}$ (we may assume that $|b|<q_{1}$ and $\left.|b|<q_{2}\right)$. From $q_{1} \mid s$ we get $3 v_{q_{1}}(s)=1+5 v_{q_{1}}\left(t_{1}\right)$, hence $v_{q_{1}}(s) \geq 2$, and similarly for q_{2}. Therefore, $|s| \geq q_{1}^{2} \cdot q_{2}^{2} \geq D^{2.4}$ (a contradiction with the fact that $|s|<_{f} D^{2+o(1)}$ and that D is sufficiently large). Now we conclude that there are $<_{f} D^{0.82}$ possibilities for q with $q \geq D^{0.6}$. Since there are $<D^{0.6}$ prime numbers q such that $q<D^{0.6}$, we conclude that, for sufficiently large D, there are $<_{f}\left(D^{0.6}+D^{0.82}\right)$ prime numbers q such that the equation $q b t^{m}=s^{m-2} G(r, s)$ has a solution with $q \mid s$.
Assume now that $q \mid r$. From (4.3) with $G(r, s)=r(r-\alpha s)$ and the fact that r, s and $r-\alpha s, s$ are coprime, we get, for a sufficiently large q,

$$
s^{m-2}=a_{1} u_{1}^{m}, r-\alpha s=a_{2} u_{2}^{m}
$$

where $u_{1}, u_{2} \in \mathbb{N}$ and $\left|a_{1}\right|,\left|a_{2}\right|<_{f} 1$. As above we see that

$$
\begin{aligned}
& \text { if } m=5 \text { then } u_{2}^{m}<_{f} D^{2+o(1)} \text {, hence } u_{2}<_{f} D^{0.4+o(1)} \text {, } \\
& \text { if } m=6 \text { then } u_{2}^{m}<_{f} D^{2.5+o(1)} \text {, hence } u_{2}<_{f} D^{0.417+o(1)} \text {, } \\
& \text { if } m \geq 7 \text { then } u_{2}^{m}<_{f} D^{1.75+o(1)} \text {, hence } u_{2}<_{f} D^{0.25+o(1)} \text {. }
\end{aligned}
$$

Therefore, in any case, there are $\ll D^{0.42}$ possibilities for $r-\alpha s$.
Let us estimate the number of possibilities for s. If m is odd then from $s^{m-2}=a_{1} u_{1}^{m}$ we get $s=b_{1} v_{1}^{m}$ with $\left|b_{1}\right|<_{f} 1$ and $v_{1}^{m}<_{f} D^{2+o(1)}$ (hence $\left.1 \leq v_{1}<_{f} D^{0.4+o(1)}\right)$. If m is even then we get $s=b_{1} v_{1}^{\frac{m}{2}}$ with $\left|b_{1}\right|<_{f} 1$. This is the point when we have to exclude the case $m=6$ (similarly happens in the case when $q \mid r-\alpha s)$. In Remark 4.4(i), we will explain it in more details. It is easy to see that if $m \neq 6$, then $1 \leq v_{1} \ll_{f} D^{0.4375+o(1)}$. Therefore,
there are $<_{f} D^{0.44}$ possibilities for $s($ if $m \neq 6)$. Combining with $\ll D^{0.42}$ possibilities for $r-\alpha s$, we get that there are $<_{f} D^{0.86}$ possibilities for r. Note that r from (4.3) has at most one prime divisor p with $p \geq D^{0.6}$ (if D is sufficiently large). Contrary, from $q b t^{m}=s^{m-2} r(r-\alpha s)$ and $|b|<_{f} 1$, there is a common prime divisor p of r and t with $p \geq D^{0.6}$. Therefore $v_{p}(r) \geq 5$, hence $|r| \geq D^{3}$, which is in a contradiction with $|r|<_{f} D^{2.5+o(1)}$ (for sufficiently large D). Therefore, in this case, each r determines at most one prime q with $q \mid r$ and $q \geq D^{0.6}$ (for sufficiently large D). We conclude that there are $<_{f}\left(D^{0.6}+D^{0.86}\right)$ primes q such that (4.3) holds (with $q \mid r, g$ reducible and $(m, n) \neq(6,2))$.
Assume, finally, that $q \mid r-\alpha s$. This case is completely analogous to the case $q \mid r$, and we get the same estimate.
To finish the proof we have to add numbers of possibilities for q with $q|s, q| r$ and $q \mid r-\alpha s$. We obtain that this sum is $\leq D^{0.9}$ (if D is sufficiently large). Since there are $\sim \frac{\frac{D}{|b|}}{\ln \frac{D}{|b|}}$ prime numbers q with $|q b| \leq D$, and since

$$
\lim _{D \rightarrow \infty} \frac{\frac{D}{|b| \ln \frac{D}{|b|}}-D^{0.9}}{\frac{D}{|b| \ln \frac{D}{|b|}}}=1,
$$

we conclude that there is a set of prime numbers of density 1 , such that the equation $q b y^{m}=g(x)$ has only trivial rational solutions (if g is reducible of degree $n=2$ and $m=5$ or $m \geq 7$).

In the following Remark we will comment the exceptional case $(m, n)=$ $(6,2)$ with f reducible.

Remark 4.4. (i) In the proof of Theorem 4.3 (b), the case $(m, n)=(6,2)$ with $q \mid r$ (similarly with $q \mid r-\alpha s$), we have obtained the relation $s=b_{1} v_{1}^{3}$ where $\left|b_{1}\right|<_{f} 1$. Therefore $v_{1}^{3} \ll_{f} D^{2.5+o(1)}$, hence $1 \leq v_{1}<_{f} D^{\frac{5}{6}+o(1)}$. It implies that there are $<_{f} D^{\frac{5}{6}+o(1)}$ possibilities for s. We know that there are $<_{f} D^{\frac{5}{12}+o(1)}$ possibilities for $r-\alpha s$. Therefore, we only can conclude that there are $<_{f} D^{\frac{5}{6}+\frac{5}{12}+o(1)}$ possibilities for r. It is not useful since $\frac{5}{6}+\frac{5}{12} \geq 1$.
(ii) After a linear transformation over \mathbb{Z}, we may write $g(x)=x^{2}-A^{2}$ for a positive integer A. Namely, here we have $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$ with $a_{2}, a_{1}, a_{0} \in \mathbb{Z}$ and $a_{2} \neq 0$. The equation $q y^{6}=f(x)$ can be written in the form $q \cdot 4 a_{2} y^{6}=\left(2 a_{2} x\right)^{2}+2 a_{1}\left(2 a_{2} x\right)+4 a_{2} a_{0}$. Since f is reducible, after a linear transformation of x and y over \mathbb{Z}, we get $q b y^{6}=x^{2}-A^{2}$ where b is 6 -free and A is a positive integer. It defines the family of hyperelliptic genus two curves with equation $x^{2}=q b y^{6}+A^{2}$ (here b and A are fixed, while q runs through the set of prime numbers). As we have already seen in (i), our approach does not give any result in this case.

In the case when f has at least one nonlinear \mathbb{Q}-irreducible factor we will obtain a weaker result compared with the result from Theorem 4.3. Recall that a pair (m, n) is exceptional if one of the following conditions is satisfied:
(i) $n=5$ or $n=6$, and $m=2$,
(ii) $n=4$ and $m=3$ or $m=4$,
(iii) $n=3$ and $m \geq 4$,
(iv) $n=2$ and $m \geq 5$.

In Theorem 4.5 we will say that an exceptional pair (m, n) is conditionally exceptional if one of the following conditions is satisfied:
$E_{1}(m, n) \in\{(2,6),(4,4),(6,3)\}$ and f is \mathbb{Q}-irreducible.
$E_{2}(m, n)=(2,6)$ and f is a product of a quadratic and a quartic irreducible polynomial over \mathbb{Q}.

Theorem 4.5. Assume that the abc-conjecture is true. Let $f \in \mathbb{Z}[X]$ be a polynomial of degree $n \geq 2$ without repeated roots having at least one nonlinear irreducible factor over \mathbb{Q}. Let $m \geq 2$ be an integer such that the curve $y^{m}=f(x)$ has genus ≥ 2.
(a) Assume that $n \neq 2$ and that (m, n) is not conditionally exceptional (see the above conditions E_{1}, E_{2}). Then there exists a set of prime numbers q of density 1 such that the equation $q y^{m}=f(x)$ has no nontrivial rational solutions.
(b) Assume that $n=2$. Then there exists a set of prime numbers q of density at least $\frac{1}{2}$ such that the equation $q y^{m}=f(x)$ has no rational solutions.

Proof. (a) Similarly as in the proof of Theorem 4.3 we may consider the corresponding equations $q b y^{m}=g(x)$ and $q b t^{m}=s^{m-i} G(r, s)$. We have to prove that there is a set of prime numbers q of density 1 such that the equation $q b y^{m}=g(x)$ has no nontrivial rational solutions. Let us put

$$
\delta:=\frac{1}{n-1-\frac{\operatorname{gcd}(m, i)+1}{m-1}}
$$

Let D be a sufficiently large real number. We consider the equations of type $q b y^{m}=g(x)$ with $|q b| \leq D$. By (2.1), if $q b y^{m}=g(x)$ has a nontrivial rational solution with $x=\frac{r}{s}$ and with r, s coprime, then

$$
|r|,|s| \ll_{g}|q b|^{\delta+o(1)} .
$$

Assume first that (m, n) is not exceptional, i.e., that $\delta<\frac{1}{2}$. Since each (r, s) gives rise to at most one equation, there are $<_{g}|q b|^{2 \delta+o(1)}$ prime numbers q such that the equation $q b y^{m}=g(x)$ has a nontrivial rational solution. Since $2 \delta<1$ and since there are $\sim \frac{\frac{D}{\mid b}}{\ln \frac{D}{|b|}}$ prime numbers q with $|q b| \leq D$, we conclude, as at the end of the proof of Theorem 4.3, (b),
that there is a set of prime numbers q of density 1 such that the equation $q b y^{m}=g(x)$ has no nontrivial rational solutions.

Assume now that (m, n) is exceptional. The proof depends on the reducibility properties of f (or g) over \mathbb{Q}, as well as on the value of δ. Since $n \neq 2$ we have $\frac{1}{2} \leq \delta<1$. We separately consider the cases when $m \neq i$ and when $m=i$ (see the formulation of Lemma 2.2).

Assume that $m \neq i$, i.e, that $(m, n) \neq(2,6)$ and $(m, n) \neq(4,4)$. Assume that $q b y^{m}=g(x)$ has a nontrivial rational solution with $x=\frac{r}{s}$ and with r, s coprime. Since s and $G(r, s)$ are coprime, we conclude, by $q b t^{m}=s^{m-i} G(r, s)$, that $q \mid s$ or $q \mid G(r, s)$. Similarly as in the proof of Theorem 4.3, we have that $q>|s|$ for all but finitely many q. Therefore, for sufficiently large q, it must be $q \mid G(r, s)$. Therefore

$$
s^{m-i}=a u^{m}
$$

for $u \geq 1$ and $|a|<_{f} 1$. We will separately discuss the cases $(m, n)=$ $(2,5),(m, n)=(3,4)$, and $(m, n)=(m, 3)$ with $m \geq 4$.

If $(m, n)=(2,5)$ then we get $s=a u^{2}$, hence $1 \leq u \ll D^{0.25+0(1)}$ (recall that here $\delta=0.5$, hence $\left.|s|<_{f} D^{0.5+o(1)}\right)$. Therefore there are $<_{f} D^{0.25+o(1)}$ possibilities for s. Since there are $<_{f} D^{0.5+o(1)}$ possibilities for r, we see that there are $<_{f} D^{0.75+o(1)}$ equations $q b y^{2}=g(x)$ with $|q b| \leq D$ having a nontrivial rational solution. Therefore there exists a set of prime numbers q of density 1 , such that $q y^{2}=f(x)$ has no nontrivial rational solutions.

Similarly, if $(m, n)=(3,4)$ then we get $s^{2}=a u^{3}$. It must be $s=a_{1} v^{3}$, hence $v \ll D^{\frac{1}{6}+o(1)}$ (recall that here $\delta=\frac{1}{2}$). Therefore we may proceed as for $(m, n)=(2,5)$.

For $(m, 3)$ with $m \geq 4$ we have $i=3$, hence $s^{m-3}=a u^{m}$. We will see that this case, for $m \neq 6$, is similar to the case $(m, n)=(2,5)$. If m is not divisible by 3 we get $s=a_{1} v^{m}$ with $v \geq 1$ and $\left|a_{1}\right|<_{f} 1$. Here we get that there are $\ll D^{\frac{\delta}{m}}$ possibilities for s. It is easy to check that $\delta+\frac{\delta}{m}<1$ for each m (not divisible by 3). Therefore we may proceed as for $(m, n)=(2,5)$. Let us consider the case when m is divisible by 3 . From $s^{m-3}=a u^{m}$ we get $s=a_{1} v^{\frac{m}{3}}$, with $v \geq 1$ and $\left|a_{1}\right|<_{f} 1$. It implies that there are $\ll D^{\frac{3 \delta}{m}}$ possibilities for s. It is easy to check that if $m \geq 9$, then $\delta+\frac{3 \delta}{m}<1$. Therefore, for $m \geq 9$, we can proceed as for $(m, n)=(2,5)$. The remaining case is $m=6$, hence $\delta=\frac{5}{6}$. Unfortunately, here we have $\delta+\frac{3 \delta}{m}>1$. It is a reason why we have excluded irreducible polynomials f. Therefore g has a rational root. We may assume that $g(0)=0$, hence we have $q b t^{6}=s^{3} r K(r, s)$, with quadratic K. Similarly as in the proof of Theorem 4.3, using (2.1), we conclude that q does not divide $r s$ for all sufficiently large q. Since the common factors of r and $K(r, s)$ are bounded by an absolute constant (dependent only on f) we get, for sufficiently large q,

$$
r=a_{2} z^{6}
$$

with $z \geq 1$ and $\left|a_{2}\right|<_{f} 1$ (recall that here we may consider only the primes q not dividing $s r)$. We see that there are $<_{f} D^{\frac{\delta}{6}}$ possibilities for r. Since $\frac{3 \delta}{6}+\frac{\delta}{6}<1$ we are done.

Assume now that $m=i$, i.e, that $(m, n)=(2,6)$ or $(m, n)=(4,4)$.
We first consider the case when f has at least one rational root (especially, (m, n) is not conditionally exceptional). Similarly as in the case $(m, n)=(6,3)$ we may assume that $q b t^{m}=r K(r, s)$. Similarly as in the proof of Theorem 4.3 we conclude that q does not divide r, for all sufficiently large q. Since the common factors of r and $K(r, s)$ are bounded by an absolute constant (dependent only on f) we get, for sufficiently large q,

$$
r=a u^{m}
$$

with $u \geq 1$ and $|a|<_{f} 1$. We obtain that there are $\ll ⿸ f_{f} D^{\frac{\delta}{m}}$ possibilities for r. Since $\delta=\frac{1}{2}$ for $m=6$ and $\delta=\frac{3}{4}$ for $m=4$ we see that, in any case, $\delta+\frac{\delta}{m}<\frac{15}{16}$. Therefore there $<_{f} D^{\frac{15}{16}+o(1)}$ equations $q b y^{m}=g(x)$ with $|q b| \leq D$ having nontrivial rational solutions. We are done.

Assume, now, that f has no rational roots. In this case we introduce a new approach with applying Lemma 4.2. Note that we may assume that $g=h k$, where h is Q-irreducible non-linear monic polynomial over \mathbb{Z}, and k is a polynomial over \mathbb{Z}, which may be irreducible or a product of two irreducible polynomials over \mathbb{Q} (recall that in this case f is not \mathbb{Q}-irreducible). Let $G=H K$ be the corresponding factorization. Assume that $q b y{ }^{m}=g(x)$ has a rational solution with $x=\frac{r}{s}$ and with r, s coprime. Then, by (2.1), we have $|r|,|s|<_{g}|q b|^{\delta+o(1)}$. Since h, k are coprime over \mathbb{Q}, there exist polynomials h^{\prime}, k^{\prime} over \mathbb{Q} such that

$$
h^{\prime} h+k^{\prime} k=1 .
$$

Therefore, there exist binary forms H^{\prime}, K^{\prime} over \mathbb{Z}, a non-zero integer b^{\prime}, and a positive integer M such that

$$
H^{\prime}(r, s) H(r, s)+K^{\prime}(r, s) K(r, s)=b^{\prime} s^{M}
$$

for all integers r, s with $s \neq 0$. Note that we consider pairs (r, s) with r, s coprime. Therefore, each common divisor of $H(r, s)$ and $K(r, s)$ is a divisor of b^{\prime}. We separately estimate the possibilities when $q \mid H(r, s)$ and $q \mid K(r, s)$.

Assume first that $(m, n)=(4,4)$, especially $\delta=\frac{3}{4}$. Then H, K are quadratic (recall that we excluded the case when f is irreducible, and that we are in the case when f has no rational roots). If $q \mid K(r, s)$ and q is sufficiently large, then q does not divide $H(r, s)$, hence

$$
\begin{equation*}
H(r, s)=a u^{4} \tag{4.4}
\end{equation*}
$$

where $a \ll_{f} 1$ and u is an positive integer. Note that it means that there are finitely many possibilities for a and that the number of the possibilities
depends only on g (i.e., on f). Since

$$
|r|,|s|<_{f} D^{\delta+o(1)}
$$

we get $u^{4} \ll D^{2 \cdot \delta+o(1)}$ for u from (4.4), so $u \ll D^{\frac{3}{8}+o(1)}$. Therefore, if D is sufficiently large, then $u \leq D^{0.4}$ for u from (4.4). We have to estimate the number of solutions (r, s) in (4.4) for all possible u and a. After a linear transformation we may assume that $H(r, s)=r^{2}+A s^{2}$, with $A \in \mathbb{Z}$.

If $A>0$ then by Lemma 4.2, (i) (with $M=4$ and $X=D^{0.4}$), there are $\ll\left(D^{0.4}\right)^{1+o(1)}$ pairs (r, s), for each fixed a. Since the number of parameters a in (4.4) is bounded by a constant dependent only on f, which is fixed here, we see that there are $\leq D^{0.5}$ possibilities for (r, s) (assuming that D is sufficiently large). Since each (r, s) gives rise to at most one prime q, there are $\leq D^{0.5}$ prime numbers q with $|q b| \leq D$ such that the equation $q b y^{4}=g(x)$ has a rational solution with $q \mid K(r, s)$.

If $A<0$, then by Lemma 4.2 , (ii) (with $M=4$ and $X=Y=D^{0.4}$), we obtain, in a similar way, that there are $\leq D^{0.5}$ prime numbers q with $|q b| \leq D$ such that the equation $q b y^{4}=g(x)$ has a rational solution with $q \mid K(r, s)$.

Similarly we obtain that if D is sufficiently large, then there are $\leq D^{0.5}$ prime numbers q, with $|q b| \leq D$, such that the equation $q b y^{4}=g(x)$ has a rational solution with $q \mid H(r, s)$. Therefore, there are $\leq 2 D^{0.5}$ prime numbers q, with $|q b| \leq D$, such that the equation $q b y^{4}=g(x)$ has a rational solution. We conclude that there is a set of prime numbers q of density 1 such that the equation $q y^{4}=f(x)$ has no rational solutions.

Assume now that $(m, n)=(2,6)$, especially $\delta=\frac{1}{2}$. Recall that we excluded the case when f is irreducible, as well as the case when f is a product of a quadratic and a quartic irreducible polynomials. Recall also, that we are in the case when f has no rational roots. Assume first that H, K are cubic \mathbb{Q}-irreducible forms. Analogously as in the case $(m, n)=(4,4)$ we get, using Lemma 4.2, (iii), with $M=2$ and $X=D^{0.76}$, that there are $\leq 2 D^{0.8}$ prime numbers q, with $|q b| \leq D$, such that the equation $q b y^{2}=g(x)$ has a rational solution (assuming that D is sufficiently large).

Assume, finally, that H is quadratic and $K=K_{1} K_{2}$ is a product of quadratic irreducible forms. If $q \mid K(r, s)$ then

$$
\begin{equation*}
H(r, s)=a u^{2} \tag{4.5}
\end{equation*}
$$

where $a<_{f} 1$ and u is an positive integer (assuming that q is sufficiently large). It implies that $1 \leq u \ll D^{0.5+o(1)}$. On the other side, if $q \mid H(r, s)$ and q is sufficiently large, then

$$
K_{1}(r, s)=a_{1} u_{1}^{2}
$$

where $a_{1}<_{f} 1$ and u_{1} is an positive integer (note that H, K_{1}, K_{2} are pairwise coprime over \mathbb{Q}). We again obtain that $1 \leq u_{1} \ll D^{0.5+o(1)}$. Therefore we may proceed as in the case $(m, n)=(4,4)$.
(b) Here $n=2$ and G is an irreducible binary quadratic form of degree $m \geq 5$. Therefore, each (r, s) determines at most one prime number q such that

$$
\begin{equation*}
q b t^{m}=s^{m-2} G(r, s), t \in \mathbb{Z} \tag{4.6}
\end{equation*}
$$

Assume that (4.6) holds. By (2.1), and Remark 2.3, (ii)

$$
\begin{aligned}
& \text { if } m=5 \text { then }|r|,|s|<_{f}|q b|^{2+o(1)} \\
& \text { if } m=6 \text { then }|r|,|s|<_{f}|q b|^{2.5+o(1)} \text {, } \\
& \text { if } m \geq 7 \text { then }|r|,|s|<_{f}|q b|^{1.75+o(1)} \text {. }
\end{aligned}
$$

Therefore, for all but finitely many q, we have $|s|<q^{3}$, especially $v_{q}(s)<3$.
The set S of primes q, such that the polynomial g has no roots modulo q, has the density $\frac{1}{2}$. We may assume that $G(r, s)=r^{2}+A s^{2}$, with $A \in \mathbb{Z} \backslash\{0\}$. Since s and $G(r, s)$ are relatively prime (note that we assume that $r \neq 0$), if $q \in S$ then from (4.6) we have $q \mid s$. Hence

$$
1+m v_{q}(t)=(m-2) v_{q}(s)
$$

(note that we excluded a finitely many prime numbers q that divide b). We see that it is impossible if m is even. If $m \neq 5$ it implies $v_{q}(s) \geq 3$. Namely, $2 v_{q}(s)+1=m\left(v_{q}(s)-v_{q}(t)\right)$, which forces $v_{q}(s)>2$ if $m \neq 5$. Therefore, if $m \geq 6$, then for all but finitely many $q \in S$, the equation $q b y^{m}=g(x)$ has no nontrivial rational solutions.

Let us consider the case $m=5$. Let D be a sufficiently large real number. We consider the equations $q b y^{5}=g(x)$ with $|q b| \leq D$. By (2.1), Remark 2.3, (ii) and the discussion after Remark 2.3, we see that if $q b y^{5}=g(x)$ has a nontrivial solution with $x=\frac{r}{s}$ where r, s are coprime, then $|r|,|s|<_{f} D^{2+o(1)}$. Assume that $q \in S$. From (4.6) we get $G(r, s)=a u^{5}$ (where $|a|<_{f} 1$, and $u \geq 1)$. Since $G(r, s)$ is quadratic in r, s we see that $u^{5}<_{f} D^{4+o(1)}$, hence $1 \leq u<_{f} D^{0.8+o(1)}$. By Lemma 4.2, (i) or (ii), with $M=5$ we see that there are $\leq D^{0.9}$ possibilities for such pairs (r, s) (for sufficiently large D). Similarly as at the end of the proof of Theorem 4.3, (b), we get that there is a set of prime numbers q of the density at least $\frac{1}{2}$, such that $q b y^{5}=g(x)$ has no rational solutions.

In the following remark we discuss exceptional cases of Theorem 4.5 (the conditionally exceptional cases).

Remark 4.6. (i) Assume that the polynomial f is irreducible and that $(m, n) \in\{(2,6),(4,4),(6,3)\}$. Then by the argument from the proof of Proposition 3.4, (iii), it can be proved unconditionally that there is a set of prime numbers q of density at least $\frac{1}{n}$, such that the equation $q y^{m}=f(x)$ has no rational solutions.
(ii) Assume that the $a b c$-conjecture is true. Let f be a polynomial over \mathbb{Q} of degree $n=6$. Assume that f is a product of a quadratic and a quartic irreducible polynomial over \mathbb{Q}. Using the argument from the proof of Theorem
4.5 (b), it can be proved that there is a set of prime numbers q of density at least $\frac{1}{2}$, such that the equation $q y^{2}=f(x)$ has no rational solutions.

Acknowledgements.

The author thanks the referee for several very helpful comments and suggestions.

References

[1] E. Bombieri, W. M. Schmidt, On Thue's equation, Invent. Math. 88 (1987), 69-81.
[2] S. R. Finch, Mathematical constants, Cambridge University Press, Cambridge, 2003.
[3] A. Granville, Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not. IMRN 2007 Art. ID 027, 24pp.
[4] I. Gusić, A characterization of linear polynomials, J. Number Theory 115 (2005), 343-347.
[5] I. Gusić, A remark on Diophantine equation $f(x)=g(y)$, Glas. Mat. Ser. III 46(66) (2011), 333-338.
[6] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, sixth edition, Oxford University Press, Oxford, 2008.
[7] M. Hindry, J. H. Silverman, Diophantine geometry, an introduction, GTM 201, Springer, 2000.
[8] M. N. Huxley, Exponential sums and lattice points III., Proc. London Math. Soc. 87 (2003), 591-609.
[9] J. C. Koo, On holomorphic differentials of some algebraic function field of one variable over C, Bull. Austral. Math. Soc. 43 (1991), 399-405.
[10] B. Mazur, K. Rubin, Ranks of twists of elliptic curves and Hilberts tenth problem, Invent. Math. 181 (2010), 541-575.
[11] J. Nakagawa, K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
[12] K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (1998), 651-660
[13] A. Pethő, V. Ziegler, Arithmetic progressions on Pell equations, J. Number Theory 128 (2008), 1389-1409.
[14] A. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, Cambridge, 2000.
[15] J. P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. 40 (2003), 429-440.
[16] J. H. Silverman, The arithmetic of elliptic curves, GTM 106, Springer, Berlin, 1986.
[17] H. M. Stark, On the asymptotic density of the k-free integers, Proc. Amer. Math. Soc. 17 (1966), 1211-1214.
[18] C. L. Stewart, On the number of solutions of polynomial congruences and Thue equation, J. Amer. Math. Soc. 4 (1991), 793-835.
[19] M. Stoll, On the arithmetic of the curves $y^{2}=x^{l}+A$ and their Jacobians, J. Reine Angew. Math. 501 (1998), 171-189.
I. Gusić

Faculty of Chemical Engin. and Techn.
University of Zagreb
Marulićev trg 19, 10000 Zagreb
Croatia
E-mail: igusic@fkit.hr
Received: 21.6.2010.
Revised: 2.10.2010. \& 2.1.2011. \& 30.4.2011.

[^0]: 2010 Mathematics Subject Classification. 11D45, 11D41.
 Key words and phrases. abc-conjecture, Diophantine equation.

