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Abstract. Let R be a semiprime ring and let F, f : R → R be
(not necessarily additive) maps satisfying F (xy) = F (x)y + xf(y) for all
x, y ∈ R. Suppose that there are integers m and n such that F (uv) =
mF (u)F (v) + nF (v)F (u) for all u, v in some nonzero ideal I of R. Under
some mild assumptions on R, we prove that there exists c ∈ C(I⊥⊥) such
that c = (m + n)c2, nc[I⊥⊥, I⊥⊥] = 0 and F (x) = cx for all x ∈ I⊥⊥.

The main result is then applied to the case when F is multiplicative or
anti-multiplicative on I.

1. Introduction

Let R be an associative ring not necessarily with an identity element.
Recall that a ring R is a prime ring if aRb = 0 (where a, b ∈ R) implies a = 0
or b = 0, and R is a semiprime ring if aRa = 0 (where a ∈ R) implies a = 0.
A ring R is said to be n-torsion free (n is an integer) if na = 0 (where a ∈ R)
implies a = 0. For a, b ∈ R we shall write [a, b] = ab− ba.

Let M be an R-bimodule. Recall that an additive map d : R → M is
called a derivation if d (xy) = d (x) y+xd (y) for all x, y ∈ R. An additive map
D : R → M is a generalized derivation if there exists a derivation d : R → M
such that D (xy) = D (x) y+xd (y) for all x, y ∈ R (this notion was introduced
by Brešar in [4]). Obviously, each derivation is also a generalized derivation.

A map ϕ from R to a ring R′ is called multiplicative (resp. anti-
multiplicative) if ϕ (xy) = ϕ (x)ϕ (y) (resp. ϕ (xy) = ϕ (y)ϕ (x)) for all x, y ∈
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R. Thus, ϕ : R → R′ is a homomorphism (resp. an anti-homomorphism) of
rings if it is both additive and multiplicative (resp. anti-multiplicative). An
additive map ϕ : R → R′ is called a Jordan homomorphism if ϕ(xy + yx) =
ϕ(x)ϕ(y)+ϕ(y)ϕ(x) for all x, y ∈ R. If R′ is 2-torsion free then ϕ is a Jordan

homomorphism if and only if ϕ(x2) = ϕ(x)
2
for all x ∈ R.

In 1989 Bell and Kappe ([3]) obtained the following result: if d is a
derivation and d is also a homomorphism or an anti-homomorphism of a
semiprime ring R, then d = 0. In case R is prime they have proved that a
derivation d : R → R, which is a homomorphism or an anti-homomorphism
on some nonzero right ideal I of R, must be the zero map. This result was
later generalized and extended by many authors ([1,6–8,11,12], etc.) In 2004
Rehman ([11]) treated the problem of describing a generalized derivation D of
a prime ring R which is also a homomorphism or an anti-homomorphism on
a nonzero ideal I of R. Later, Gusić in [8] considered a slightly more general
problem and obtained the following result.

Theorem 1.1 (I. Gusić). Let F and f be arbitrary maps of a prime ring
R such that

(1.1) F (xy) = F (x) y + xf (y) for all x, y ∈ R.

Suppose that I is a nonzero ideal of R. Then the following holds.

(a) If F is multiplicative on I then f = 0, and F = 0 or F = id.
(b) If F is anti-multiplicative on I then f = 0, and F = 0 or F = id.

Moreover, in the latter case R is commutative.

Note that additivity of the maps F and f is not assumed in Theorem
1.1. However, assuming that F and f satisfy (1.1) and F is multiplicative or
anti-multiplicative on a nonzero ideal I of R implies in particular that both
F and f are automatically additive.

The aim of this paper is to generalize the result of Gusić ([8]) to semiprime
rings. Moreover, instead of assuming that F is either multiplicative or anti-
multiplicative on a nonzero ideal I of a semiprime ring R we consider the
following more general condition:

(1.2) F (uv) = mF (u)F (v) + nF (v)F (u) for all u, v ∈ I,

where m and n are fixed integers (see Theorem 3.3). In particular, we shall
see that both F and f are automatically additive on I⊥⊥. Typical maps
satisfying (1.1) and (1.2) are those of the form x 7→ cx when restricted to I,
with c satisfying c = (m+n)c2, [c, I] = 0 and nc[I, I] = 0. We shall prove that,
under certain mild conditions, these maps are basically the only examples of
maps satisfying (1.1) and (1.2) and that (1.2) holds for all u, v ∈ I⊥⊥ as well
(see Theorem 3.3).
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2. Preliminaries

From now on R denotes an arbitrary semiprime ring. Our main
result relies on the following characterization of generalized derivations of
a semiprime ring which was obtained by Lee ([10, Theorem 3]).

Theorem 2.1 (T.-K. Lee). Let I be a dense right ideal of a semiprime
ring R. Suppose that D : I → Qmr (R) is a generalized derivation with its
associated derivation d. Then both D and d can be uniquely extended to a
generalized derivation and a derivation of Qmr (R) , respectively, and there
exists q ∈ Qmr (R) such that

D (x) = qx+ d (x)

for all x ∈ Qmr (R) .

Recall that a right ideal I of R is said to be dense if given any 0 6= r1 ∈ R,
r2 ∈ R there exists r ∈ R such that r1r 6= 0 and r2r ∈ I. One defines a dense
left ideal in an analogous fashion. Let us also mention that an ideal I of R is
called essential if for every nonzero ideal J of R we have I ∩ J 6= 0. Let I be
any ideal of a semiprime ring R. Then I is dense as a right ideal if and only
if I is dense as a left ideal if and only if I is essential ideal. Moreover, the
left, the right and the two–sided annihilator of I in R coincide. We denote
this annihilator by I⊥. We remark that I ∩ I⊥ = 0 and also that I ⊕ I⊥ is
always an essential ideal of R. Thus, I is essential if and only if I⊥ = 0. We
write I⊥⊥ for (I⊥)⊥. Note that each nonzero ideal I of a semiprime ring R is
an essential ideal of I⊥⊥.

By Qmr (R) we denote the maximal right ring of quotients (or Utumi
right ring of quotients) of R. For an account on the theory of maximal rings
of quotients of semiprime rings the reader is referred to [2]. Let us just recall
here that any semiprime ring R can be considered as a subring of its maximal
right ring of quotients Qmr (R). It turns out that Qmr (R) is a semiprime
ring (or a prime ring if R is prime) with the identity element. By C (R) we
denote the center of Qmr (R), which is called the extended centroid of R. It
turns out that C (R) is a field if and only if R is prime. Furthermore, for any
essential ideal I of R and any q ∈ Qmr (R), qIq = 0 implies q = 0. Namely,
assume that qIq = 0 for some q 6= 0. Then there would exist x ∈ I such that
0 6= qx ∈ R (see [2, Proposition 2.1.7]). Therefore, 0 6= (qx)R (qx) ⊆ qIqx
and this would yield qIq 6= 0, a contradiction.

3. The results

Lemma 3.1. Let R be a semiprime ring and suppose that F : R → R and
f : R → R are maps satisfying

F (xy) = F (x)y + xf(y) for all x, y ∈ R.
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Then f (xy) = f (x) y + xf (y) for all x, y ∈ R.

Proof. For all x, y, z ∈ R we have

x
(

f(yz)− f(y)z − yf(z)
)

= F (xyz)− F (x)yz − F (xy)z

+ F (x)yz − F (xyz) + F (xy)z = 0.

Since R is semiprime it follows that f (xy) = f (x) y + xf (y) for all x, y ∈ R.

Lemma 3.2. Let R be a semiprime ring and suppose that F : R → R and
f : R → R are maps satisfying

F (xy) = F (x)y + xf(y) for all x, y ∈ R.

Then for each ideal I of R the following holds:

(i) F
(

I⊥
)

⊆ I⊥ and f
(

I⊥
)

⊆ I⊥,

(ii) F
(

I⊥⊥
)

⊆ I⊥⊥ and f
(

I⊥⊥
)

⊆ I⊥⊥,

(iii) if F is additive on I then F and f are additive on I⊥⊥.

Proof. Let u ∈ I⊥ and v ∈ I. Then F (u)v ∈ I. Since F (0) = 0,
we have F (u)v + uf(v) = 0. This implies F (u)v = −uf(v) ∈ I ∩ I⊥ = 0.
Since u ∈ I⊥ and v ∈ I are arbitrary, it follows F (I⊥) ⊆ I⊥. Similarly,
vf(u) = −F (v)u ∈ I ∩ I⊥ = 0. Hence, If(I⊥) = 0 and so f

(

I⊥
)

⊆ I⊥.
Thus, (i) holds true.

Replacing I by I⊥ in (i) we obtain (ii).
Next, suppose that F is additive on I. Consequently, for all x, y ∈ I⊥⊥

and u ∈ I we have
(

F (x+ y)− F (x)− F (y)
)

u = F ((x+ y)u)− (x+ y) f (u)− F (xu) + xf (u)

− F (yu) + yf (u)

= F (xu + yu)− F (xu)− F (yu) = 0.

Since F
(

I⊥⊥
)

⊆ I⊥⊥ and since I is an essential ideal of a semiprime ring

I⊥⊥ it follows that F (x+ y) = F (x) + F (y) for all x, y ∈ I⊥⊥. Therefore, F
is additive on I⊥⊥. Consequently,

x (f(y + z)− f (y)− f (z)) = F (x (y + z))− F (x) (y + z)− F (xy) + F (x) y

− F (xz) + F (x) z

= 0

for all x ∈ R, y, z ∈ I⊥⊥. Thus, f is additive on I⊥⊥.

We are now ready to prove our main result.

Theorem 3.3. Let I be a nonzero ideal of a semiprime ring R. Let F :
R → R and f : R → R be maps satisfying

F (xy) = F (x)y + xf(y) for all x, y ∈ R.
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Suppose that there are integers m and n such that R is (m+ n)-torsion free
and

(3.3) F (uv) = mF (u)F (v) + nF (v)F (u) for all u, v ∈ I.

Then F and f are additive on I⊥⊥.
Furthermore, suppose that at least one of the following holds:

(i) m = 0,
(ii) n = 0,
(iii) R is 2-torsion free and m-torsion free,
(iv) R is 2-torsion free and n-torsion free.

Then f
(

I⊥⊥
)

= 0 and there exists c ∈ C
(

I⊥⊥
)

such that c = (m+ n)c2,

nc[I⊥⊥, I⊥⊥] = 0 and F (x) = cx for all x ∈ I⊥⊥. In particular, identity
(3.3) holds for all u, v ∈ I⊥⊥.

The proof of Theorem 3.3 consists of several steps.

Step 1. Maps F and f are additive on I⊥⊥.

Proof. For x, y ∈ R, by G (x, y) we denote F (x+ y) − F (x) − F (y).
First notice that G(xz, yz) = G(x, y)z for all x, y, z ∈ R. For all x, y, z ∈ I we
have

mG (x, y)F (z) + nF (z)G (x, y) = F (xz + yz)− F (xz)− F (yz)

= G (xz, yz) = G(x, y)z.

This further implies

(3.4)
mG (x, y)G (z, u) + nG (z, u)G (x, y)

= G (x, y) (z + u)−G (x, y) z −G (x, y)u = 0

for all x, y, z, u ∈ I. In particular, (m+ n)G (x, y)
2
= 0. Since R is (m+ n)-

torsion free we get G (x, y)
2
= 0. Obviously, (3.4) implies

(m+ n) (G (x, y)G (z, u) +G (z, u)G (x, y)) = 0

and hence

(3.5) G (x, y)G (z, u) +G (z, u)G (x, y) = 0

for all x, y, z, u ∈ I. Let w ∈ R. Setting x = zw, y = uw in (3.5) we get

G (z, u)wG (z, u) = 0.

Consequently, G (z, u)RG (z, u) = 0 for all z, u ∈ I and hence G (I, I) = 0.
Thus, F is additive on I. According to Lemma 3.2 we may now conclude that
both F and f are additive on I⊥⊥.

Step 2. There exists q ∈ Qmr

(

I⊥⊥
)

such that F (x) = qx+ f (x) for all

x ∈ I⊥⊥.
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Proof. Since F and f are additive on I⊥⊥ and since F
(

I⊥⊥
)

⊆ I⊥⊥,

and f
(

I⊥⊥
)

⊆ I⊥⊥ (see Lemma 3.2), we may consider F |I⊥⊥ as a generalized
derivation and f |I⊥⊥ as its corresponding derivation, both mapping from
I⊥⊥ to I⊥⊥. Hence we may apply T.-K. Lee’s result [10, Theorem 3] (see
also Theorem 2.1) to conclude that there exists q ∈ Qmr

(

I⊥⊥
)

such that

F (x) = qx+ f (x) for all x ∈ I⊥⊥.

Step 3. If f(I⊥⊥) = 0, then there exists q ∈ C(I⊥⊥) such that q =
(m+ n)q2 and nq2[I⊥⊥, I⊥⊥] = 0.

Proof. We have F (x) = qx for all x ∈ I⊥⊥. Thus,

(3.6) quv = mquqv + nqvqu

for all u, v ∈ I. Interchanging the roles of u and v, we get

(3.7) qvu = mqvqu+ nquqv,

and adding up (3.6) and (3.7) we obtain

(3.8) quv + qvu = (m+ n)quqv + (m+ n)qvqu.

Multiplying (3.8) with w ∈ R from the right, we get

(3.9) quvw + qvuw = (m+ n)quqvw + (m+ n)qvquw.

Replacing v by vw in (3.8), we get

(3.10) quvw + qvwu = (m+ n)quqvw + (m+ n)qvwqu.

Subtracting (3.10) from (3.9) yields

qv[u,w] = (m+ n)qv[qu, w],

that is

qv([u,w]− (m+ n)[qu, w]) = 0.

Replacing u by ur, r ∈ R, we get

qv([u,w]r + u[r, w]− (m+ n)[qu, w]r − (m+ n)qu[r, w]) = 0

which implies

(3.11) (qv − (m+ n)qvq)u[r, w] = 0.

Replacing v by vx, x ∈ I⊥⊥, in (3.11), we get

(3.12) (qvx − (m+ n)qvxq)u[r, w] = 0.

Replacing u by xu in (3.11), we get

(3.13) (qvx − (m+ n)qvqx)u[r, w] = 0.

Subtracting (3.13) from (3.12) yields, since R is (m+ n)-torsion free,

(3.14) qv[q, x]u[r, w] = 0
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for all u, v ∈ I, w, r ∈ R and x ∈ I⊥⊥. Setting r = qx and w = x in (3.14) we
obtain

qv [q, x] u [q, x]x = 0

for all u, v ∈ I and x ∈ I⊥⊥. In particular,

qv [q, x]xuqv [q, x]x = 0

for all u, v ∈ I and x ∈ I⊥⊥. This implies qI [q, x]x = 0 for each x ∈ I⊥⊥.
Consequently,

[q, x] xI [q, x]x = 0

and hence [q, x]x = 0 for each x ∈ I⊥⊥. Linearizing this identity we obtain

(3.15) [q, x] y + [q, y]x = 0

for all x, y ∈ I⊥⊥. Setting y = qx in (3.15) we obtain [q, x] qx = 0 and hence

[q, x]
2
= 0 for all x ∈ I⊥⊥. Now, (3.15) implies [q, x] [q, y]x = 0 which in turn

gives

(3.16) [q, x] [q, y] z + [q, z] [q, y]x = 0

for all x, y, z ∈ I⊥⊥. Setting y = zx in (3.16) we get

0 = [q, x] [q, zx] z + [q, z] [q, zx]x

= [q, x] z [q, x] z + [q, x] [q, z]xz + [q, z] z [q, x] x+ [q, z] [q, z]x2.

Since [q, x]x = 0, [q, x]
2
= 0, and [q, x] [q, z]x = 0 it follows that

(3.17) [q, x] z [q, x] z = 0

for all x, z ∈ I⊥⊥. Let t ∈ R. Replacing z by z + zt in (3.17) we see that

[q, x] zt [q, x] z = 0

for all x, z ∈ I⊥⊥, t ∈ R. Since R is semiprime and [q, I⊥⊥]I⊥⊥ ⊆ R it follows
that

[

q, I⊥⊥
]

I⊥⊥ = 0. Since [q, I⊥⊥] ∈ Qmr(I
⊥⊥), this yields [q, I⊥⊥] = 0.

Thus, q ∈ C
(

I⊥⊥
)

.
Now, (3.3) implies

(3.18)
(

q − (m+ n) q2
)

u2 = 0

and hence

(3.19)
(

q − (m+ n) q2
)

(uv + vu) = 0

for all u, v ∈ I. Let α = q − (m+ n) q2 ∈ C(I⊥⊥). Setting v = ur in (3.19),
where r ∈ R, we get αuru = 0. Consequently, αuRαu = 0 for all u ∈ I. This
implies αI = 0 and hence α = 0. Thus, q = (m+ n) q2.

Since q ∈ C(I⊥⊥) and q = (m+ n)q2, (3.6) implies

(3.20) mq2uv + nq2vu = quv = mq2uv + nq2uv
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for all u, v ∈ I. Hence, nq2[I, I] = 0. Now, for all u, v ∈ I and w,w′ ∈ I⊥⊥

we have

0 = nq2[u,wv] = nq2[u,w]v + nq2w[u, v] = nq2[u,w]v.

This implies nq2[u,w] = 0. Thus, nq2
[

I, I⊥⊥
]

= 0 and so

0 = nq2[uw′, w] = nq2[u,w]w′ + nq2u[w′, w] = nq2u[w′, w]

for all u ∈ I and w,w′ ∈ I⊥⊥. Hence, nq2I[I⊥⊥, I⊥⊥] = 0, which further
implies Inq2[I⊥⊥, I⊥⊥] = 0 and finally nq2[I⊥⊥, I⊥⊥] = 0.

Step 4. If n = 0, then f
(

I⊥⊥
)

= 0 and there exists c ∈ C(I⊥⊥) such

that c = mc2 and F (x) = cx for all x ∈ I⊥⊥.

Proof. By Step 2, there exists c ∈ Qmr

(

I⊥⊥
)

such that F (x) = cx +

f (x) for all x ∈ I⊥⊥. Calculating F (xyz) in two different ways:

F (xyz) = mF (xy)F (z) = m
(

(cxy + f (xy)) (cz + f (z))
)

= m
(

(cxy + f (xy)) cz + cxyf (z) + f (xy) f (z)
)

,

and

F (xyz) = mF (x)F (yz) = m
(

(cx+ f (x)) (cyz + f (yz))
)

= m
(

(cx+ f (x)) cyz + cxf (yz) + f (x) f (yz)
)

,

we get, since R is m-torsion free,

0 =
(

(cxy + f (xy)) c− (cx+ f (x)) cy
)

z + cxyf (z)− cxf (yz) + f (xy) f (z)

− f (x) f (yz)

for all x, z ∈ I, y ∈ I⊥⊥. Recall that f |I⊥⊥ is a derivation (see Lemma 3.1,
Lemma 3.2 and Step 1). Consequently,

0 =
(

(cxy + f (xy)) c− (cx+ f (x)) cy
)

z − cxf (y) z + f (x) yf (z)

+ xf (y) f (z)− f (x) yf (z)− f (x) f (y) z

=
(

(cxy + f (xy)) c− (cx+ f (x)) cy − cxf (y)− f (x) f (y)
)

z + xf (y) f (z)

for all x, z ∈ I, y ∈ I⊥⊥. Let

G (x, y, z) =
(

(cxy + f (xy)) c− (cx+ f (x)) cy − cxf (y)− f (x) f (y)
)

z

+ xf (y) f (z) .

Since G
(

I, I⊥⊥, I
)

= 0, we have

0 = G (x, y, zy)−G (x, y, z) y

= xf (y) f (zy)− xf (y) f (z) y

= xf (y) zf (y)

for all x, z ∈ I, y ∈ I⊥⊥. Thus, If (y) If (y) = 0 for each y ∈ I⊥⊥. Since
f
(

I⊥⊥
)

⊆ I⊥⊥ it follows that f
(

I⊥⊥
)

= 0. It remains to apply Step 3.
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Step 5. If m = 0, then f
(

I⊥⊥
)

= 0 and there exists c ∈ C(I⊥⊥) such

that c = nc2, c[I⊥⊥, I⊥⊥] = 0 and F (x) = cx for all x ∈ I⊥⊥.

Proof. By Step 2, there exists c ∈ Qmr

(

I⊥⊥
)

such that F (x) = cx +

f (x) for all x ∈ I⊥⊥. We can express F (uxv) , with u, v, x ∈ I, in the
following two ways:

F (uxv) = nF (v)F (ux) = nF (v)F (u)x+ nF (v)uf (x)

= F (uv)x+ nF (v) uf (x)

and

F (uxv) = F (u)xv + uf (xv) = F (u)xv + uf (x) v + uxf (v) .

Consequently,

F (uv)x = F (u)xv + uf (x) v + uxf (v)− nF (v)uf (x) .

On the other hand

F (uv)x = F (u) vx + uf (v)x.

Comparing the last two identities we obtain

(3.21) F (u) [v, x] = u (f (x) v + xf (v)− f (v) x)− nF (v)uf (x)

for all u, v, x ∈ I. Let w, z ∈ I. Since F (I2) ⊆ I, inserting x = v and u =
F (wz) in (3.21) we get

0 = nF (v)F (wz) f (v)− F (wz) vf (v)

= (F (wzv)− F (wz) v) f (v)

= wzf (v) f (v) .

Thus, I2f (v)
2
= 0 and hence f (v)

2
= 0 for each v ∈ I. Since f is additive

on I it follows that f (u) f (v) + f (v) f (u) = 0 for all u, v ∈ I. Consequently,

(3.22)
f (u) f (w)wf (v) f (u)

= f (u) f (w) f (wv) f (u)− f (u) f (w) f (w) vf (u) = 0

and similarly f (u) f (v)wf (w) f (u) = 0 for all u, v, w ∈ I. Replacing w by
w + v in (3.22) we obtain

f (u) f (w) vf (v) f (u) + f (u) f (v)wf (v) f (u) = 0

which yields

f (u) f (v)wf (u) f (v) = 0

for all u, v, w ∈ I. Consequently, f (I) f (I) = 0. Thus, for all u, v ∈ I we
have

f (u) vf (u) = f (u) f (vu)− f (u) f (v)u = 0

which in turn implies f (I) = 0. Hence, f (x) u = f (xu) − xf (u) = 0 for all
x ∈ I⊥⊥ and so f

(

I⊥⊥
)

= 0. Step 3 finishes the proof.
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Step 6. The map (m + n)F : I → R is a Jordan homomorphism.
Furthermore, if R is 2-torsion free, then F (xyx) = (m + n)2F (x)F (y)F (x)
for all x, y ∈ I.

Proof. By (3.3), for all u ∈ I,

F (u2) = (m+ n)F (u)2.

According to Step 1, the map F is additive on I. Hence, the map (m+ n)F :
I → R is a Jordan homomorphism. The second statement follows from e.g. [9,
Lemma 3.1].

Step 7. If R is 2-torsion free and w ∈ I is such that mnF (wxw) = 0 for
all x ∈ I, then mnF (w) = 0.

Proof. By (3.3), for all x, z ∈ I, mnF (wxwz) = 0. Thus,

0 = mnF (wxwz) = mnF (wxw)z +mnwxwf(z) = mnwxwf(z),

which implies
(mnwf(z))I(mnwf(z)) = 0.

Since mnwf(z) ∈ I, this yields mnwf(z) = 0. Therefore, mnF (wz) =
mnF (w)z for all z ∈ I. Then, by Step 6, for all z ∈ I,

0 = mnF (w(wz)w) = (m+ n)2mnF (w)F (wz)F (w)

= (m+ n)2mnF (w)2zF (w).

Since F (I) ⊆ I⊥⊥, and R is (m+ n)-torsion free, we conclude mnF (w)2 = 0.
Now we have

0 = mnF (wzw) = m2nF (wz)F (w) +mn2F (w)F (wz)

= m2nF (w)zF (w) +mn2F (w)2z = m2nF (w)zF (w).

Finally, (mnF (w))I(mnF (w)) = 0 which implies mnF (w) = 0.

Step 8. If mnF ([u, v]) = 0 for all u, v ∈ I, then mn[F (u), F (v)] = 0 for
all u, v ∈ I.

Proof. By (3.3), mnF ([u, v]w) = 0 for all u, v, w ∈ I. Consequently, for
all u, v, x ∈ I and w ∈ I⊥⊥ we have

mn[u, x]vf(w) = mn(F ([u, x]vw)− F ([u, x]v)w) = 0.

Hence, (mn[u, x]f(w))I(mn[u, x]f(w)) = 0 and so mn[u, x]f(w) = 0 for all
u, x ∈ I, w ∈ I⊥⊥. According to Lemma 3.2, f(I) ⊆ I⊥⊥. Consequently, for
all u, v, x, z ∈ I we have

0 = mnf([u, x]vf(z))

= mnf([u, x])vf(z) +mn[u, x]f(v)f(z) +mn[u, x]vf(f(z))

= mnf([u, x])vf(z)
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which implies mnf([u, x]) = 0 for all u, x ∈ I. Since, by (3.3), mnF (w[u, v]) =
0 for all u, v, w ∈ I, we have mnF (w)[u, v] = 0 for all u, v, w ∈ I. This
implies mnF (w)u[x, v] = 0 for all x ∈ I⊥⊥, and u, v, w ∈ I. In particular,
we have mnF (w)u[mnF (w), v] = 0 for all u, v, w ∈ I, since F (I) ⊆ I⊥⊥.
Therefore, [mnF (w), I]I[mnF (w), I] = 0 and so [mnF (w), I] = 0. Hence,
[mnF (w), II⊥⊥] = 0, which in turn implies I[mnF (w), I⊥⊥] = 0. This yields
[mnF (w), I⊥⊥] = 0. In particular, [mnF (u), F (v)] = 0 for all u, v ∈ I.

Step 9. If R is 2-torsion free, then mn[F (u), F (v)] = 0 for all u, v ∈ I.

Proof. According to Step 6, the map (m + n)F : I → R is a Jordan
homomorphism. By e.g. [9, Lemma 3.4], for all u, v, x ∈ I,

(

(m+ n)F (uv)− (m+ n)2F (u)F (v)
)

(m+ n)F (x)

×
(

(m+ n)F (uv)− (m+ n)2F (v)F (u)
)

+
(

(m+ n)F (uv)− (m+ n)2F (v)F (u)
)

(m+ n)F (x)

×
(

(m+ n)F (uv)− (m+ n)2F (u)F (v)
)

= 0.

Since R is (m+ n)-torsion free, this implies
(

F (uv)− (m+ n)F (u)F (v)
)

F (x)
(

F (uv)− (m+ n)F (v)F (u)
)

+
(

F (uv)− (m+ n)F (v)F (u)
)

F (x)
(

F (uv)− (m+ n)F (u)F (v)
)

= 0.

By (3.3), this yields

mn
(

[F (v), F (u)]F (x)[F (u), F (v)] + [F (u), F (v)]F (x)[F (v), F (u)]
)

= 0,

that is, since R is 2-torsion free,

(3.23) mn
(

[F (u), F (v)]F (x)[F (u), F (v)]
)

= 0

for all u, v, x ∈ I. By (3.3), for all u, v ∈ I,

(m− n)[F (u), F (v)] = F ([u, v])

and so (3.23) yields

mnF ([u, v])F (x)F ([u, v]) = 0

for all u, v, x ∈ I. By Step 6,

mnF ([u, v]x[u, v]) = 0

for all u, v, x ∈ I. Step 7 implies mnF ([u, v]) = 0 for all u, v ∈ I. Finally Step
8 yields mn[F (u), F (v)] = 0 for all u, v ∈ I.

Step 10. If R is 2-torsion free and m-torsion free, then f
(

I⊥⊥
)

= 0

and there exists c ∈ C
(

I⊥⊥
)

such that c = (m + n)c2 and F (x) = cx for all

x ∈ I⊥⊥. Furthermore, nc[I⊥⊥, I⊥⊥] = 0 and (3.3) holds for all u, v ∈ I⊥⊥.
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Proof. By Step 9, nF (v)F (u) = nF (u)F (v) for all u, v ∈ I. Then (3.3)
implies

F (uv) = (m+ n)F (u)F (v)

for all u, v ∈ I. Using Step 4 with the integers (m + n) and 0, we see that
f
(

I⊥⊥
)

= 0 and there exists c ∈ C(I⊥⊥) such that c = (m + n)c2 and

F (x) = cx for all x ∈ I⊥⊥. Then

nc2vu = n(cv)(cu) = nF (v)F (u) = nF (u)F (v) = n(cu)(cv) = nc2uv

for all u, v ∈ I. Thus nc2[I, I] = 0. In particular, nc2[I, II⊥⊥] = 0, which
further implies Inc2[I, I⊥⊥] = 0. Hence, nc2[I, I⊥⊥] = 0. This yields, using a
similar argument as before, that nc2[I⊥⊥, I⊥⊥] = 0. Obviously, this implies
that the ideal generated by nc[I⊥⊥, I⊥⊥] is a nilpotent ideal of the semiprime
ring I⊥⊥ and so it is the zero ideal. Thus, nc[I⊥⊥, I⊥⊥] = 0.

Step 11. If R is 2-torsion free and n-torsion free, then f
(

I⊥⊥
)

= 0 and

there exists c ∈ C
(

I⊥⊥
)

such that c = (m + n)c2 and F (x) = cx for all

x ∈ I⊥⊥. Furthermore, c[I⊥⊥, I⊥⊥] = 0 and (3.3) holds for all u, v ∈ I⊥⊥.

Proof. By Step 9, mF (u)F (v) = mF (v)F (u) for all u, v ∈ I. Then (3.3)
implies

F (uv) = (m+ n)F (v)F (u)

for all u, v ∈ I. Using Step 5 with the integers 0 and (m + n), we see
that f

(

I⊥⊥
)

= 0 and there exists c ∈ C(I⊥⊥) such that c = (m + n)c2,

c[I⊥⊥, I⊥⊥] = 0 and F (x) = cx for all x ∈ I⊥⊥.

Hence, we have proved Theorem 3.3.
We now consider two special cases, when F is multiplicative or anti-

multiplicative on I. Using Theorem 3.3 we obtain the following.

Corollary 3.4. Let I be a nonzero ideal of a semiprime ring R. Let
F : R → R and f : R → R be maps satisfying

F (xy) = F (x)y + xf(y) for all x, y ∈ R.

Then the following holds.

(i) If F is multiplicative on I then f
(

I⊥⊥
)

= 0 and there exists an

idempotent c ∈ C
(

I⊥⊥
)

such that F (x) = cx for all x ∈ I⊥⊥.

Furthermore, F is multiplicative on I⊥⊥.
(ii) If F is anti-multiplicative on I, then f

(

I⊥⊥
)

= 0 and there exists an

idempotent c ∈ C
(

I⊥⊥
)

such that c
[

I⊥⊥, I⊥⊥
]

= 0 and F (x) = cx for

all x ∈ I⊥⊥. Furthermore, F is multiplicative and anti-multiplicative
on I⊥⊥.

Suppose that I is an essential ideal of a semiprime ring R. Then I⊥ = 0
and I⊥⊥ = R. Thus, Corollary 3.4 yields the following result.
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Corollary 3.5. Let I be an essential ideal of a semiprime ring R. Let
F : R → R and f : R → R be maps satisfying

F (xy) = F (x)y + xf(y) for all x, y ∈ R.

Then the following holds.

(i) If F is multiplicative on I then f = 0 and there exists an idempotent
c ∈ C (R) such that F (x) = cx for all x ∈ R. Furthermore, F is
multiplicative on R.

(ii) If F is anti-multiplicative on I then f = 0 and there exists an
idempotent c ∈ C (R) such that c [R,R] = 0 and F (x) = cx for all
x ∈ R. Furthermore, F is multiplicative and anti-multiplicative on R.

Remark 3.6. Suppose that R is a prime ring. Then each nonzero ideal
of R is essential and C (R) is a field. Thus, Corollary 3.5 yields the result of
Gusić [8] (see Theorem 1.1).

The following example (cf. [5]) shows that the assumptions that F is
multiplicative or anti-multiplicative on I in Corollary 3.4 cannot be replaced
by F (x2) = F (x)2 for all x ∈ I.

Example 3.7. Let A = F 〈X,Y 〉 be the free algebra in noncommuting
indeterminates X and Y over a field F. Let A1 be a subalgebra of A generated
by X and Y , that is, A1 = XA+ YA. We define F : A1 → A1 by

F (p) =

{

p if p ∈ XA
0 if p /∈ XA

.

Then F (pq) = F (p)q for all p, q ∈ A1 and F (p2) = F (p)2 for all p ∈ A1.
Suppose that there exists an idempotent c ∈ C(A1) such that F (p) = cp for all
p ∈ A1. Then 0 = F (p) = cp for all p /∈ XA. In particular, c(X + Y ) = 0 and
cY = 0, which implies cX = 0. Then X = F (X) = cX = 0, a contradiction.
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