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ON CERTAIN FUNCTIONAL EQUATION ARISING FROM

(m,n)− JORDAN CENTRALIZERS IN PRIME RINGS
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Abstract. The purpose of this paper is to prove the following result.
Let m ≥ 1, n ≥ 1 be some fixed integers and let R be a prime ring with
char(R) = 0 or (m + n)2 < char(R). Suppose there exists an additive
mapping T : R → R satisfying the relation 2(m + n)2T (x3) = m(2m +
n)T (x)x2 + 2mnxT (x)x + n(2n + m)x2T (x) for all x ∈ R. In this case T

is a two-sided centralizer.

Throughout, R will represent an associative ring with center Z(R). Given
an integer n ≥ 2, a ring R is said to be n−torsion free, if for x ∈ R, nx =
0 implies x = 0. As usual the commutator xy − yx will be denoted by
[x, y]. We shall use the commutator identities [xy, z] = [x, z] y + x [y, z] and
[x, yz] = [x, y] z + y [x, z] for all x, y, z ∈ R. Recall that a ring R is prime if
for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0 and is semiprime
in case aRa = (0) implies a = 0. We denote by char(R) the characteristic of
a prime ring R. An additive mapping D : R → R, where R is an arbitrary
ring, is called a derivation if D(xy) = D(x)y + xD(y) holds for all pairs
x, y ∈ R, and is called a Jordan derivation in case D(x2) = D(x)x + xD(x)
is fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R,
such that D(x) = [a, x] holds for all x ∈ R. Every derivation is a Jordan
derivation. The converse is in general not true. A classical result of Herstein
([10]) asserts that any Jordan derivation on a prime ring with char(R) 6= 2
is a derivation. A brief proof of Herstein’s result can be found in [3]. Cusack
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([8]) generalized Herstein’s result to 2−torsion free semiprime rings (see also
[4] for an alternative proof).

We denote by Qr, Ql, Qs, C and RC the right, left, symmetric Martindale
ring of quotients, extended centroid and central closure of a semiprime ring
R, respectively. For the explanation of Qr, Ql, Qs, C and RC we refer the
reader to [1]. An additive mapping T : R → R is called a left centralizer in
case T (xy) = T (x)y holds for all pairs x, y ∈ R. In case R has the identity
element T : R → R is a left centralizer iff T is of the form T (x) = ax for
all x ∈ R, where a ∈ R is some fixed element. For a semiprime ring R all
left centralizers are of the form T (x) = qx for all x ∈ R, where q ∈ Qr is
some fixed element (see Chapter 2 in [1]). An additive mapping T : R → R

is called a left Jordan centralizer in case T (x2) = T (x)x holds for all x ∈ R.
The definition of right centralizer and right Jordan centralizer should be self-
explanatory. We call T : R → R a two-sided centralizer in case T is both
a left and a right centralizer. In case T : R → R is a two-sided centralizer,
where R is a semiprime ring with extended centroid C, then there exists an
element λ ∈ C such that T (x) = λx for all x ∈ R (see Theorem 2.3.2 in
[1]). Zalar ([20]) has proved that any left (right) Jordan centralizer on a
semiprime ring is a left (right) centralizer. For results concerning centralizers
in rings and algebras we refer to [11, 15, 17–20] where further references can
be found. A mapping F, which maps a ring R into itself, is called centralizing
on R in case [F (x), x] ∈ Z(R) holds for all x ∈ R. A classical result of
Posner ([13]) (Posner’s second theorem) states that the existence of a nonzero
centralizing derivation on a prime ring R with char(R) 6= 2 forces the ring to
be commutative. Let X be a real or complex Banach space and let L(X) and
F (X) denote the algebra of all bounded linear operators on X and the ideal
of all finite rank operators in L(X), respectively. An algebra A(X) ⊂ L(X) is
said to be standard in case F (X) ⊂ A(X). Let us point out that any standard
operator algebra is prime, which is a consequence of Hahn-Banach theorem.
Let m ≥ 0, n ≥ 0 be fixed integers with m+ n 6= 0 and let R be an arbitrary
ring. An additive mapping T : R → R is called an (m,n)−Jordan centralizer
in case

(1) (m+ n)T (x2) = mT (x)x+ nxT (x)

holds for all x ∈ R. The concept of (m,n)−Jordan centralizer was introduced
by Vukman ([19]). Obviously, (1, 0)-Jordan centralizer is a left Jordan
centralizer, (0, 1)− Jordan centralizer is a right Jordan centralizer, and in
case (1, 1)−Jordan centralizer we have the relation

(2) 2T (x2) = T (x)x+ xT (x), x ∈ R.

Vukman ([15]) has proved that in case there exists an additive mapping
T : R → R, where R is a 2−torsion free semiprime ring, satisfying the
relation (2), then T is a two-sided centralizer. Vukman ([19]) conjectured
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that any (m,n)−Jordan centralizer on a semiprime ring with suitable torsion
restrictions, where m ≥ 1, n ≥ 1 are some fixed integers, is a two-sided
centralizer. Vukman ([19]) has proved the following result which proves a
special case of the conjecture we have just mentioned above.

Theorem 1. Let m ≥ 1, n ≥ 1 be some fixed integers and let R be a prime
ring with char(R) 6= 6mn(m + n). Suppose T : R → R is an (m,n)−Jordan
centralizer. If Z(R) is nonzero, then T is a two-sided centralizer.

One can easily prove that any (m,n)−Jordan centralizer T : R → R,

where R is an arbitrary ring, satisfies the relation

2(m+ n)2T (x3) = m(2m+ n)T (x)x2 + 2mnxT (x)x+ n(2n+m)x2T (x)

for all x ∈ R (see [19] for the details). Recently, Vukman ([19]) considered
the above relation in standard operator algebras on a real or complex Hilbert
space. It is our aim in this paper to prove the following result.

Theorem 2. Let m ≥ 1, n ≥ 1 be some fixed integers and let R be a
prime ring with char(R) = 0 or (m + n)2 < char(R) and let T : R → R be
an additive mapping satisfying the relation

(3) 2(m+ n)2T (x3) = m(2m+ n)T (x)x2 + 2mnxT (x)x+ n(2n+m)x2T (x)

for all x ∈ R. In this case T is a two-sided centralizer.

For the proof of Theorem 2 we need Theorem 3 below, which might be
of independent interest. As the main tool in this paper we use the theory of
functional identities (Brešar-Beidar-Chebotar theory). We refer the reader to
[6] for introductory account of functional identities and to [7] for full treatment
of this theory. Let R be an algebra over a commutative ring φ. Further let

(4) p(x1, x2, x3) =
∑

π∈S3

xπ(1)xπ(2)xπ(3)

be a fixed multilinear polynomial in noncommuting indeterminates xi over φ.
Here S3 stands for the symmetric group of order 3 and e ∈ S3 for its identity
element. Further, let L be a subset of R closed under p, i.e., p(x̄3) ∈ L
for all x1, x2, x3 ∈ L, where x̄3 = (x1, x2, x3). We shall consider a mapping
T : L → R satisfying

(5)

2(m+ n)2T (p(x̄3)) = m(2m+ n)
∑

π∈S3

T (xπ(1))xπ(2)xπ(3)

+ 2mn
∑

π∈S3

xπ(1)T (xπ(2))xπ(3) + n(2n+m)
∑

π∈S3

xπ(1)xπ(2)T (xπ(3))

for all x1, x2, x3 ∈ L. In the first step of the proof of the following theorem
we derive a functional identity from (5). Let us mention that the idea of
considering the expression [p(x̄3), p(ȳ3)] in its proof is taken from [2].
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Theorem 3. Let R be an algebra over φ. Suppose that L is a 6-free Lie
subalgebra of R closed under p. If T : L → R is an additive map satisfying
(3) for all x ∈ L, then there exists p ∈ C(L) and λ : L → C(L) such that
2m(2m+ n)(m+ n)2T (x) = px+ λ(x) for all x ∈ L, where C(L) is extended
centroid of L.

Proof. A complete linearization of (3) gives us (5). Note that for any
a ∈ L and x̄3 ∈ L3 we have

[p(x̄3), a] =
∑

π∈S3

[

xπ(1)xπ(2)xπ(3), a
]

=
∑

π∈S3

xπ(1)xπ(2)xπ(3)a− a
∑

π∈S3

xπ(1)xπ(2)xπ(3)

=
∑

π∈S3

xπ(1)xπ(2)xπ(3)a− a
∑

π∈S3

xπ(1)xπ(2)xπ(3) +
∑

π∈S3

xπ(1)axπ(2)xπ(3)

−
∑

π∈S3

xπ(1)axπ(2)xπ(3) +
∑

π∈S3

xπ(1)xπ(2)axπ(3) −
∑

π∈S3

xπ(1)xπ(2)axπ(3)

=
∑

π∈S3

xπ(1)axπ(2)xπ(3) − a
∑

π∈S3

xπ(1)xπ(2)xπ(3) +
∑

π∈S3

xπ(1)xπ(2)axπ(3)

−
∑

π∈S3

xπ(1)axπ(2)xπ(3) +
∑

π∈S3

xπ(1)xπ(2)xπ(3)a−
∑

π∈S3

xπ(1)xπ(2)axπ(3)

=
∑

π∈S3

[

xπ(1), a
]

xπ(2)xπ(3)+
∑

π∈S3

xπ(1)

[

xπ(2), a
]

xπ(3)+
∑

π∈S3

xπ(1)xπ(2)

[

xπ(3), a
]

= p([x1, a] , x2, x3) + p(x1, [x2, a] , x3) + p(x1, x2, [x3, a]).

Using this in (5) we obtain

2(m+ n)2T ([p(x̄3), a] = 2(m+ n)2T (p([x1, a] , x2, x3))

+ 2(m+ n)2T (p(x1, [x2, a] , x3)) + 2(m+ n)2T (p(x1, x2, [x3, a])).

It follows that

2(m+ n)2T ([p(x̄3), a] =
∑

π∈S3

m(2m+ n)T (
[

xπ(1), a
]

)xπ(2)xπ(3)

+
∑

π∈S3

m(2m+ n)T (xπ(1))
[

xπ(2)xπ(3), a
]

+
∑

π∈S3

2mn
[

xπ(1), a
]

T (xπ(2))xπ(3)

+
∑

π∈S3

2mnxπ(1)T (
[

xπ(2), a
]

)xπ(3) +
∑

π∈S3

2mnxπ(1)T (xπ(2))
[

xπ(3), a
]

+
∑

π∈S3

n(2n+m)
[

xπ(1)xπ(2), a
]

T (xπ(3))

+
∑

π∈S3

n(2n+m)xπ(1)xπ(2)T (
[

xπ(3), a
]

).
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Further, let s : Z → Z be a mapping defined by s (i) = i − 3. For each
σ ∈ S3 the mapping s−1σs : {4, 5, 6} → {4, 5, 6} will be denoted by σ. Then
we have in particular, where a = p(x4, x5, x6)

(6)

2(m+ n)2T ([p(x1, x2, x3), p(x4, x5, x6)]

=
∑

π∈S3

m(2m+ n)T (
[

xπ(1), p(x4, x5, x6)
]

)xπ(2)xπ(3)

+
∑

π∈S3

m(2m+ n)T (xπ(1))
[

xπ(2)xπ(3), p(x4, x5, x6)
]

+
∑

π∈S3

2mn
[

xπ(1), p(x4, x5, x6)
]

T (xπ(2))xπ(3)

+
∑

π∈S3

2mnxπ(1)T (
[

xπ(2), p(x4, x5, x6)
]

xπ(3)

+
∑

π∈S3

2mnxπ(1)T (xπ(2))
[

xπ(3), p(x4, x5, x6)
]

+
∑

π∈S3

n(2n+m)
[

xπ(1)xπ(2), p(x4, x5, x6)
]

T (xπ(3))

+
∑

π∈S3

n(2n+m)xπ(1)xπ(2)T (
[

xπ(3), p(x4, x5, x6)
]

)

and

2(m+ n)2T (
[

xπ(1), p(x4, x5, x6)
]

) = −2(m+ n)2T (
[

p(x4, x5, x6), xπ(1)

]

)

=
∑

σ∈S3

m(2m+ n)T (
[

xπ(1), xσ̄(1)

]

xσ̄(2)xσ̄(3)

+
∑

σ∈S3

m(2m+ n)T (xσ̄(1))
[

xπ(1), xσ̄(2)xσ̄(3)

]

+
∑

σ∈S3

2mn
[

xπ(1), xσ̄(1)

]

T (xσ̄(2))xσ̄(3)

+
∑

σ∈S3

2mnxσ̄(1)T (xσ̄(2))
[

xπ(1), xσ̄(3)

]

+
∑

σ∈S3

2mnxσ̄(1)T (
[

xπ(1), xσ̄(2)

]

)xσ̄(3)

+
∑

σ∈S3

n(2n+m)
[

xπ(1), xσ̄(1)xσ̄(2)

]

T (xσ̄(3))

+
∑

σ∈S3

n(2n+m)xσ̄(1)xσ̄(2)T (
[

xπ(1), xσ̄(3)

]

,

for all x1, ..., x6 ∈ L. We shall write

ϕ(xπ(1)) = 2(m+ n)2T (
[

xπ(1), p(x4, x5, x6)
]

.
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Similarly we define

ϕ(xπ(2)) = 2(m+ n)2T (
[

xπ(2), p(x4, x5, x6)
]

,

and

ϕ(xπ(3)) = 2(m+ n)2T (
[

xπ(3), p(x4, x5, x6)
]

.

Using this together with (6) we obtain

(7)

(2(m+ n)2)2T ([p(x1, x2, x3), p(x4, x5, x6)]

=
∑

π∈S3

m(2m+ n)ϕ(xπ(1))xπ(2)xπ(3)

+
∑

π∈S3

2m(2m+ n)(m+ n)2T (xπ(1))
[

xπ(2)xπ(3), p(x4, x5, x6)
]

+
∑

π∈S3

4mn(m+ n)2
[

xπ(1), p(x4, x5, x6)
]

T (xπ(2))xπ(3)

+
∑

π∈S3

2mnxπ(1)ϕ(xπ(2))xπ(3)

+
∑

π∈S3

4mn(m+ n)2xπ(1)T (xπ(2))
[

xπ(3), p(x4, x5, x6)
]

+
∑

π∈S3

2n(2n+m)(m+ n)2
[

xπ(1)xπ(2), p(x4, x5, x6)
]

T (xπ(3))

+
∑

π∈S3

n(2n+m)xπ(1)xπ(2)ϕ(xπ(3)).

Since
[

xπ(1)xπ(2), p(x4, x5, x6)
]

=
∑

σ∈S3

[

xπ(1)xπ(2), xσ̄(1)xσ̄(2)xσ̄(3)

]

,

then (7) reduces to

(2(m+ n)2)2T ([p(x1, x2, x3), p(x4, x5, x6)]

=
∑

π∈S3

∑

σ∈S3

m(2m+ n)ϕ(xπ(1))xπ(2)xπ(3)

+
∑

π∈S3

∑

σ∈S3

2m(2m+ n)(m+ n)2T (xπ(1))
[

xπ(2)xπ(3), xσ̄(1)xσ̄(2)xσ̄(3)

]

+
∑

π∈S3

∑

σ∈S3

4mn(m+ n)2
[

xπ(1), xσ̄(1)xσ̄(2)xσ̄(3)

]

T (xπ(2))xπ(3)

+
∑

π∈S3

∑

σ∈S3

2mnxπ(1)ϕ(xπ(2))xπ(3)(8)

+
∑

π∈S3

∑

σ∈S3

4mn(m+ n)2xπ(1)T (xπ(2))
[

xπ(3), xσ̄(1)xσ̄(2)xσ̄(3)

]
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+
∑

π∈S3

∑

σ∈S3

2n(2n+m)(m+ n)2
[

xπ(1)xπ(2), xσ̄(1)xσ̄(2)xσ̄(3)

]

T (xπ(3))

+
∑

π∈S3

∑

σ∈S3

n(2n+m)xπ(1)xπ(2)ϕ(xπ(3)).

If we replace the roles of denotations π and σ, then from (8) we get

(2(m+ n)2)2T ([p(x1, x2, x3), p(x4, x5, x6)]

=
∑

π∈S3

∑

σ∈S3

m(2m+ n)ϕ̄(xσ̄(1))xσ̄(2)xσ̄(3)

+
∑

π∈S3

∑

σ∈S3

2m(2m+ n)(m+ n)2T (xσ̄(1))
[

xπ(1)xπ(2)xπ(3), xσ̄(2)xσ̄(3)

]

+
∑

π∈S3

∑

σ∈S3

4mn(m+ n)2
[

xπ(1)xπ(2)xπ(3), xσ̄(1)

]

T (xσ̄(2))xσ̄(3)

+
∑

π∈S3

∑

σ∈S3

2mnxσ̄(1)ϕ̄(xσ̄(2))xσ̄(3)(9)

+
∑

π∈S3

∑

σ∈S3

4mn(m+ n)2xσ̄(1)T (xσ̄(2))
[

xπ(1)xπ(2)xπ(3), xσ̄(3)

]

+
∑

π∈S3

∑

σ∈S3

2n(2n+m)(m+ n)2
[

xπ(1)xπ(2)xπ(3), xσ̄(1)xσ̄(2)

]

T (xσ̄(3))

+
∑

π∈S3

∑

σ∈S3

n(2n+m)xσ̄(1)xσ̄(2)ϕ̄(xσ̄(3)).

for all x1, ..., x6 ∈ L, where

ϕ̄(xσ̄(i)) = 2(m+ n)2T (
[

p(x1, x2, x3), xσ̄(i)

]

for i = 1, 2, 3. We obtain that

ϕ̄(xπ(i)) = −ϕ(xπ(i))

for i = 1, 2, 3. Comparing (8) and (9) we obtain the following identity

0=
∑

π∈S3

∑

σ∈S3

(

m(2m+ n)ϕ(xπ(1))xπ(2) + 2mnxπ(1)ϕ(xπ(2))

+4mn(m+ n)2xσ̄(1)T (xσ̄(2))xσ̄(3)xπ(1)xπ(2)

−4mn(m+ n)2xπ(1)T (xπ(2))xσ̄(1)xσ̄(2)xσ̄(3)

+2m(2m+ n)(m+ n)2T (xσ̄(1))xσ̄(2)xσ̄(3)xπ(1)xπ(2)

−2m(2m+ n)(m+ n)2T (xπ(1))xσ̄(1)xσ̄(2)xσ̄(3)xπ(2)

)

xπ(3)
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+
∑

π∈S3

∑

σ∈S3

(

m(2m+ n)ϕ(xσ̄(1))xσ̄(2) + 2mnxσ̄(1)ϕ(xσ̄(2))

+4mn(m+ n)2xπ(1)T (xπ(2))xπ(3)xσ̄(1)xσ̄(2)

−4mn(m+ n)2xσ̄(1)T (xσ̄(2))xπ(1)xπ(2)xπ(3)

+2m(2m+ n)(m+ n)2T (xπ(1))xπ(2)xπ(3)xσ̄(1)xσ̄(2)

−2m(2m+ n)(m+ n)2T (xσ̄(1))xπ(1)xπ(2)xπ(3)xσ̄(2)

)

xσ̄(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)

(

n(2n+m)xπ(2)ϕ(xπ(3))(10)

−4mn(m+ n)2xπ(2)xπ(3)xσ̄(1)T (xσ̄(2))xσ̄(3)

+4mn(m+ n)2xσ̄(1)xσ̄(2)xσ̄(3)T (xπ(2))xπ(3)xπ(2)xπ(3)

−2n(2n+m)(m+ n)2xπ(2)xπ(3)xσ̄(1)xσ̄(2)T (xσ̄(3))

+2n(2n+m)(m+ n)2xπ(2)xσ̄(1)xσ̄(2)xσ̄(3)T (xπ(3))
)

+
∑

π∈S3

∑

σ∈S3

xσ̄(1)

(

n(2n+m)xσ̄(2)ϕ(xσ̄(3))

−4mn(m+ n)2xσ̄(2)xσ̄(3)xπ(1)T (xπ(2))xπ(3)

+4mn(m+ n)2xπ(1)xπ(2)xπ(3)T (xσ̄(2))xσ̄(3)

−2n(2n+m)(m+ n)2xσ̄(2)xσ̄(3)xπ(1)xπ(2)T (xπ(3))

+2n(2n+m)(m+ n)2xσ̄(2)xπ(1)xπ(2)xπ(3)T (xσ̄(3))
)

for all x1, ..., x6 ∈ L.
Define maps E,F : L5 → R by the rule

E(u1, u2, u3, u4, u5) = m(2m+ n)ϕ(u1)u2 + 2mnu1ϕ(u2)

+ 4mn(m+ n)2(u3T (u4)u5u1u2 − u1T (u2)u3u4u5)

+ 2m(2m+ n)(m+ n)2(T (u3)u4u5u1u2 − T (u1)u3u4u5u2)

and

F (u1, u2, u3, u4, u5) = n(2n+m)u1ϕ(u2)

− 4mn(m+ n)2(u1u2u3T (u4)u5 − u3u4u5T (u1)u2)

− 2n(2n+m)(m+ n)2(u1u2u3u4T (u5)− u1u3u4u5T (u2))

for all ū5 ∈ L5.
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Accordingly, (10) can be rewritten as

0 =
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), xσ̄(1), xσ̄(2), xσ̄(3))xπ(3)

+
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), xπ(3), xσ̄(1), xσ̄(2))xσ̄(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)F (xπ(2), xπ(3), xσ̄(1), xσ̄(2), xσ̄(3))

+
∑

π∈S3

∑

σ∈S3

xσ̄(1)F (xπ(1), xπ(2), xπ(3), xσ̄(2), xσ̄(3))

and hence

0 =

3
∑

i=1







∑

π∈S3
π(3)=i

∑

σ∈S3

E(xπ(1), xπ(2), xσ̄(1), xσ̄(2), xσ̄(3))






xi

+
6

∑

i=4







∑

π∈S3

∑

σ∈S3
σ̄(3)=i

E(xπ(1), xπ(2), xπ(3), xσ̄(1), xσ̄(2))






xi

+
3

∑

j=1

xj







∑

π∈S3
π(1)=j

∑

σ∈S3

F (xπ(2), xπ(3), xσ̄(1), xσ̄(2), xσ̄(3))







+

6
∑

j=4

xj







∑

π∈S3

∑

σ∈S3
σ̄(1)=j

F (xπ(1), xπ(2), xπ(3), xσ̄(2), xσ̄(3))







for all x1, .., x6 ∈ L. Then we have that

6
∑

i=1

Ei
i(x̄6)xi +

6
∑

j=1

F
j
j (x̄6)xj = 0

for all x̄6 ∈ L6, where Ei, Fj : L
5 → R and Ei, F j : L6 → R are mappings

Ei(x̄6) = E(x1, ..., xi−1, xi, ...x6)

and

F j(x̄6) = F (x1, ..., xj−1, xj , ...x6).

Now we simply apply the definition of 6-freeness L. There exists maps p6,j :
L4 → R, j = 1, ..., 5 and λ6 : L5 → C(L) such that

∑

π∈S3
π(3)=3

∑

σ∈S3

E(xπ(1), xπ(2), xσ̄(1), xσ̄(2), xσ̄(3)) =

5
∑

j=1

xjp6,j(x̄
j
5) + λ6(x̄5)
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for all x̄5 ∈ L5. Recalling the definition of map E and after some steps we
arrive at

(11) 2m(2m+ n)(m+ n)2T (x) = xp+ λ(x),

for all x ∈ L, where p ∈ L and λ : L → C(L). The symmetric analogue in
which maps F are involved, is clearly proved in the same way. Therefore

2n(2n+m)(m+ n)2T (x) = p̄x+ λ̄(x)

for all x ∈ L and some p̄ ∈ L and λ̄ : L → C(L). Therefore

2mn(2m+ n)(2n+m)(m+ n)2T (x) = n(2n+m)(xp+ λ(x)),

2mn(2m+ n)(2n+m)(m+ n)2T (x) = m(2m+ n)(p̄x+ λ̄(x))

for all x ∈ L. Comparing this two identities we arrive at

n(2n+m)xp−m(2m+ n)p̄x ∈ C(L)

for all x ∈ L. It follows that n(2n+m)p = m(2m+ n)p̄ ∈ C(L), which yields
p, p̄ ∈ C(L). Therefore the proof is completed.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. The complete linearization of (3) gives us (5).
Assume first that R is not a PI ring. According to Theorem 3 there exist
p ∈ C and λ : R → C such that

2m(2m+ n)(m+ n)2T (x) = xp+ λ(x).

Then we have

x2((m+ n)2xp+ 2(m+ n)2λ(x)) = (m+ n)2λ(x3),

which yields

x2(xp+ 2λ(x)) = λ(x3),

for all x ∈ R. A complete linearization of this identity leads to
∑

π∈S3

xπ(1)xπ(2)(xπ(3)p+ 2λ(xπ(3)) = λ(p(x̄3))

for all x1, x2, x3 ∈ R. Since R is not a PI ring it follows that

(12) xp+ 2λ(x) = 0

for all x ∈ R. Now our aim is to show that λ = 0. Thus [xp, y] = 0 for all
x, y ∈ R. Then we have [x, y] zp = 0 for all x, y, z ∈ R. It follows that R

is commutative or p = 0. If p = 0, then λ(x) = 0 for all x ∈ R by (12). If
[x, y] = 0, then from (12) follows that λ(x)y − λ(y)x = 0 for all x, y ∈ R.
Consequently λ = 0.
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Now suppose that R is a PI ring. It is well-known that in this case R

has a nonzero center (see [14]). Let c be a nonzero central element. Pick any
x ∈ R and set x1 = x2 = cx and x3 = x in (5) we get

(13)
12(m+ n)2T (c2x3) = 2m(2m+ n)(2T (cx)x2 + T (x)x2c)c

+ 4mn(2xT (cx)x+ xT (x)xc)c + 2n(2n+m)(2x2T (cx) + x2T (x)c)c.

Next, setting x1 = x2 = c and x3 = x3 in (5), we have

(14)
12(m+ n)2T (c2x3) = 2m(2m+ n)(2T (c)x3 + T (x3)c)c

+ 4mn(x3T (c) + T (c)x3 + T (x3)c)c+ 2n(2n+m)(2x3T (c) + T (x3)c)c.

Comparing both identities we obtain

(15)
m(2m+ n)T (cx)x2 + 2mnxT (cx)x+ n(2n+m)x2T (cx)

= 2m(m+ n)T (c)x3 + 2n(n+m)x3T (c)

for all x ∈ R. If x = c we have

(16) T (c2) = T (c)c.

Setting x1 = x and x2 = x3 = c in the complete linearization of (15) we get

(17) (m+ n)T (cx) = mT (c)x+ nxT (c)

for all x ∈ R. Multiplying (17) by c2 we get

(m+ n)T (cx)c2 = mT (c2)xc+ nxT (c2)c

and substituting x by cx in (17) we get

(m+ n)T (c2x)c = mT (c2)xc+ nxT (c2)c.

Comparing the last two identities we see that

(18) T (c2x) = T (cx)c.

Setting x1 = x and x2 = x3 = c in (5) we have

(19)

12(m+ n)2T (c2x) = 2m(2m+ n)(2T (x)c2 + 4T (c)xc)

+ 2mn(2T (x)c2 + 2T (c)xc+ 2xT (c)c)

+ 2n(2n+m)(2c2T (x) + 4xT (c)xc)

and so

(20) T (cx) = T (x)c = cT (x).

Setting x1 = x2 = x and x3 = c in the complete linearization of (15) and
using (20) we get

T (c)x2 + x2T (c) = 2xT (c)x.

This can be rewritten as

[[T (c), x] , x] = 0
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for all x ∈ R. From Posner’s second theorem it follows that [T (c), x] = 0 for
all x ∈ R. From (17) consequently we get

(21) T (cx) = T (c)x = xT (c).

Next we replace x for xy in (17) we obtain

(22)
(m+ n)T (xy)c = (mT (c)x)y + x(nyT (c))

= (m+ n)T (x)yc+ (m+ n)xT (y)c− (m+ n)xT (c)y.

Multiplying this identity on the left by z we get

(23)
(m+ n)zT (xy)c = (m+ n)zT (x)yc

+ (m+ n)zxT (y)c− (m+ n)zxT (c)y.

Then substituting x for zx in (22) we have

(24)
(m+ n)T (zxy)c = (m+ n)T (zx)yc

+ (m+ n)zxT (y)c− (m+ n)zxT (c)y.

From (23) and (24) we obtain

(25) T (zxy) = zT (xy) + T (zx)y − zT (x)y.

We use the last identity and (21) to get

T (zcy) = zT (cy) + T (zc)y− zT (c)y.

Then by (21) we have

T (zyc) = zT (cy) + zT (c)y− zT (c)y,

and so
T (zy)c = zT (y)c

which yields T (zy) = zT (y). Similarly we get T (zy) = T (z)y for all y, z ∈ R

and T is two-sided centralizer. Therefore the proof is completed.

The relation (25) leads to the following relation

F (xyx) = F (xy)x− xF (y)x + xF (yx)

for all x, y ∈ R, where F is an additive mapping which maps a ring R into
itself. The question arises about the solution of the above equation. Let us
consider some relations which are similar to the above relation. An additive
mapping D : R → R, where R is an arbitrary ring, is called a Jordan triple
derivation in case

D(xyx) = D(x)yx + xD(y)x + xyD(x)

holds for all pairs x, y ∈ R. One can easily prove that any Jordan derivation
on a 2−torsion free ring is a Jordan triple derivation (see [3] for the details).
Brešar ([5]) has proved the following result.

Theorem 4. Let R be a 2− torsion free semiprime ring and let D : R →
R be a Jordan triple derivation. In this case D is a derivation.
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Since, as we have mentioned above, any Jordan derivation on a 2−torsion
free ring is a Jordan triple derivation, Theorem 4 generalizes Cusack’s
generalization of Herstein’s theorem. Brešar’s result above has been recently
generalized by Liu and Shiue ([12]). Motivated by Theorem 4 Vukman,
Eremita and Kosi-Ulbl ([16]) have proved the following result (see also [9]).

Theorem 5. Let R be a 2− torsion free semiprime ring and let T : R → R

be an additive mapping satisfying the relation

(26) T (xyx) = T (x)yx− xT (y)x+ xyT (x)

for all pairs x, y ∈ R. In this case T is of the form 2T (x) = qx + xq for all
x ∈ R, where q ∈ QS is some fixed element.

We proceed with the following result.

Proposition 6. Let R be a 2−torsion free semiprime ring with the
identity element e and let F : R → R be an additive mapping satisfying
the relation

(27) F (xyx) = F (xy)x− xF (y)x + xF (yx)

for all pairs x, y ∈ R. In this case F is of the form

2F (x) = D(x) + F (e)x+ xF (e),

where D : R → R is a derivation.

Proof. Putting in the relation (27) y = e we obtain

(28) F (x2) = F (x)x − xF (e)x+ xF (x)

for all x ∈ R. Let us denote 2F (x)− F (e)x− xF (e) by D(x). Then applying
the relation (28) a simple calculation shows that

(29) D(x2) = D(x)x + xD(x)

holds for all x ∈ R. We have an additive mapping D : R → R satisfying the
relation (29) for all x ∈ R. In other words, D is a Jordan derivation on R.
Applying Cusack’s generalization of Herstein’s theorem one concludes that D
is a derivation, which completes the proof.

Proposition 6 together with Theorem 5 leads to the following conjecture.

Conjecture 7. Let R be a 2−torsion free semiprime ring and let F :
R → R be an additive mapping satisfying the relation

F (xyx) = F (xy)x− xF (y)x + xF (yx)

for all pairs x, y ∈ R. In this case F is of the form 2F (x) = D(x) + qx+ xq

for all x ∈ R, where D : R → R is a derivation and q ∈ QS is some fixed
element.
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