ON THE STRUCTURE OF THE AUTOMORPHISM GROUP OF A MINIMAL NONABELIAN p-GROUP (METACYCLIC CASE)

IZABELA MALINOWSKA
University of Białystok, Poland

Abstract. In this paper we find the complete structure for the automorphism groups of metacyclic minimal nonabelian 2-groups. This, together with [6, 7], gives the complete answer to the Question 15 from [5] (respectively Question 20 from [4]) in the case of metacyclic groups. We also correct some inaccuracies and extend the results from [13].

1. Introduction

All groups considered here are finite and the notation used is standard. Finite p-groups are an important group class of finite groups. Since the classification of finite simple groups is finally completed, the study of finite p-groups becomes more and more active. Many leading group theorists, for example, Berkovich, Glauberman, Janko etc., turn their attention to the study of finite p-groups, see [1–4, 9, 10, 12]. Since a finite p-group has "too many" normal subgroups and, consequently, there is an extremely large number of nonisomorphic p-groups of a given fixed order, the classification of finite p-groups in the classical sense is impossible. In [1–3] Berkovich and Janko have developed some techniques for working with minimal non-abelian subgroups of finite p-groups. Roughly speaking, they show that some control over the lattice of subgroups in p-groups can be gained by considering maximal abelian subgroups together with minimal non-abelian subgroups. In [12] Janko points out that in studying the structure of non-abelian p-groups G, the minimal non-abelian subgroups of G play an important role since they generate the group G. More precisely, if A is a maximal normal abelian subgroup of G, then

2010 Mathematics Subject Classification. 20D45, 20D15.
Key words and phrases. Automorphisms, p-groups.
minimal non-abelian subgroups of G cover the set $G \setminus A$ (see Proposition 1.6 in [12]). A p-group G is said to be \textit{minimal nonabelian} (or brevity, A_{1}-group), if G is nonabelian, but all its proper subgroups are abelian. In [5] Berkovich formulated 22 questions concerning p-groups. In Question 15 (respectively Question 20 from [4]) he proposed to describe the automorphism groups of A_{1}-groups. The following lemma gives the classification of A_{1}-groups.

Lemma 1.1. (L. Redei) Let G be a minimal nonabelian p-group. Then $G = \langle x, y \rangle$ and one of the following holds

1. $x^{p^m} = y^{p^n} = z = 1$, $[x, y] = z$, $[x, z] = [y, z] = 1$, $m, n \in \mathbb{N}$, $m \geq n \geq 1$; where in case $p = 2$ we must have $m > 1$;
2. $x^{p^m} = y^{p^n} = 1$, $[x, y] = x^{p^m - 1}$, $m, n \in \mathbb{N}$, $m \geq 2$, $n \geq 1$;
3. $a^4 = 1$, $a^2 = b^2$, $[a, b] = a^2$, $G \cong Q_8$.

In this paper we find the complete structure for the automorphism groups of metacyclic minimal nonabelian 2-groups. This, together with [6, 7], gives the complete answer to the Question 15 from [5] (respectively Question 20 from [4]) in the case of metacyclic groups. In Section 2 we generalize the results from [13] and we specify a method of finding relations in an automorphism group, that we will use in the next Sections. In the first part of Section 3 we state some results from [13], that we will use in the next part of the note, but also we specify the exact statements. Unfortunately we must point out that in Section 3 of [13] in Case A the expression "$C_{K}(G')$" should be replaced by "$\Omega_{m-1}(K)$." In the end of Section 3 we state the relations in the automorphism group of a split metacyclic 2-group. In this way we remove some inaccuracies from Theorem 3.7 in [8] (see Example 1 in [13]). In Section 4 we find the complete structure of the automorphism group of a metacyclic minimal nonabelian 2-group. These relations were not considered in [8].

If L is a subgroup of a group G, then $C_{\text{Aut} G}(L)$ denotes the group of those automorphisms of G that centralize L and $N_{\text{Aut} G}(L)$ denotes the group of those automorphisms of G that normalize L. If M and N are normal subgroups of a group G, then $\text{Aut}_{N}(G) = C_{\text{Aut}(G)}(G/N)$ denotes the group of all automorphisms of G normalizing N and centralizing G/N. Also $\text{Aut}_{N}^{M}(G)$ denotes $\text{Aut}_{N}(G) \cap C_{\text{Aut}(G)}(M)$. If L is a subgroup of a p-group G and $l \in \mathbb{N}$ then we set $\Omega_{l}(L) = \langle g \in L \mid g^{p^{l}} = 1 \rangle$ and $\bar{\Omega}_{l}(L) = \langle g^{p^{l}} \mid g \in L \rangle$.

In [15] the authors investigated the automorphism group of a semidirect product $G = H \rtimes K$. They defined the following subgroups

\begin{align*}
A &= \{ \theta \in \text{Aut} G \mid [K, \theta] = 1 \text{ and } H^{\theta} = H \}, \\
B &= \{ \theta \in \text{Aut} G \mid [H, \theta] = 1 \text{ and } [K, \theta] \subseteq H \}, \\
C &= \{ \theta \in \text{Aut} G \mid [K, \theta] = 1 \text{ and } [H, \theta] \subseteq K \}, \\
D &= \{ \theta \in \text{Aut} G \mid [H, \theta] = 1 \text{ and } K^{\theta} = K \}.
\end{align*}

By definition, we have $BD = B \rtimes D \subseteq C_{\text{Aut} G}(K)$ and $AC = C \rtimes A \subseteq C_{\text{Aut} G}(H)$.
2. Crossed homomorphisms and automorphisms

We call an ordered triple \((Q,N,\theta)\) data if \(N\) is an abelian group, \(Q\) is a group and \(\theta : Q \to \text{Aut} N\) is a homomorphism. If \(\theta\) is a homomorphism of \(Q\) into \(\text{Aut} N\), then \(Q\) acts on \(N\) when we define, for each \(x \in Q\) and \(a \in N\), \(a^x\) is the image of \(a\) under \(x^\theta\). If \(N\) is a normal subgroup of \(G\), then the action of \(G/N\) on \(Z(N)\) is given by \(a^N = a^{gN} = a^g\). Given data \((Q,N,\theta)\) a crossed homomorphism is a function \(\lambda : Q \to N\) such that \((xy)^\lambda = (x^\lambda y)^\lambda\) for all \(x, y \in Q\). We denote the set of such crossed homomorphisms by \(Z^1(Q,N)\).

It forms a group under the operation \(q^{\lambda_1+\lambda_2} = q^{\lambda_1}q^{\lambda_2}\); if \(\theta\) is trivial, then \(Z^1(Q,N) = \text{Hom}(Q,N)\).

We recall a known result ([11], Satz 1.17.1) needed in the sequel:

Lemma 2.1. Let \(N\) be a normal subgroup of \(G\). Then there is a natural isomorphism from \(Z^1(G/N,Z(N))\) to \(\text{Aut}_N^Z(G)\) sending each crossed homomorphism \(f : G/N \to Z(N)\) to the automorphism \(\varphi_f : x \mapsto x(xN)^f\) of \(G\).

Lemmas 2.2–2.3 are more general versions of Lemma 2.5 and Theorem 2.6 (see also [13]).

Lemma 2.2. Let \(N\) be an normal subgroup of \(G\). Let \(M\) be a normal subgroup of \(G\) such that \(M \leq Z(G)\). Assume that that \(L = \{\lambda \in Z^1(G/N,Z(N)) \mid (G/N)^\lambda \subseteq M\}\) and \(A = N_{\text{Aut} G}(M) \cap N_{\text{Aut} G}(N)\). Then

1. \(A \subseteq \text{Aut}(G)\) and \(L \leq Z^1(G/N,Z(N))\).

2. If \(\alpha \in A\) and \(\lambda \in L\) then the function \(\mu : gN \mapsto ((g^{\alpha^{-1}}N)^\lambda)^\alpha\) is a crossed homomorphism and \(\mu \in L\).

Proof. The first part of (1) is obvious.

(2) Assume that \(\alpha \in A\) and \(\lambda \in L\). First let \(Nq_1 = Nq_2\), then \(q_2 = q_1h\) for some \(h \in N\). Then

\[
(g_2N)^\mu = ((g_2^{\alpha^{-1}}N)^\lambda)^\alpha = (((g_1h)^{\alpha^{-1}}N)^\lambda)^\alpha = ((g_1^{\alpha^{-1}}N)^\lambda)^\alpha = (g_1N)^\mu
\]

since \(N\) is normalized by \(\alpha\). So \(\mu\) is well defined.

Let \(g_1N, g_2N \in G/N\). We have

\[
(g_1N \cdot g_2N)^\mu = (g_1g_2N)^\alpha = (((g_1g_2)^{\alpha^{-1}}N)^\lambda)^\alpha = (((g_1^{\alpha^{-1}}N)^\lambda g_2^{\alpha^{-1}}(g_2^{\alpha^{-1}}N)^\lambda))^{\alpha} = (((g_1^{\alpha^{-1}}N)^\lambda)^\alpha g_2((g_2^{\alpha^{-1}}N)^\lambda))^{\alpha} = ((g_1N)^\alpha g_2N \cdot (g_2N)^\mu).
\]

It is evident that \(\mu \in L\) since \((G/N)^\mu \subseteq M\). □

Lemma 2.3. Let \(G, N, M, L\) and \(A\) be as in Lemma 2.2. Assume that \(E := \{\varphi \in \text{Aut}_N^Z(G) \mid [G, \varphi] \subseteq M\}\). Then
(1) $E \leq \text{Aut } G$ and there is a natural isomorphism from L to E sending each crossed homomorphism $f : G/N \rightarrow M$ to the automorphism $\varphi_f : x \mapsto x(xN)^f$ of G.

(2) If $\alpha \in A$ and $\varphi \in E$ is determined by the crossed homomorphism $\lambda \in L$, then $\alpha^{-1}\lambda\alpha$ is determined by the crossed homomorphism $\mu \in L$ defined by $\mu : gN \mapsto ((g^{\alpha^{-1}}N)^{\lambda})^\alpha$.

(3) A normalizes E and $AE \leq \text{Aut } G$.

Proof. (1) It is evident that $E \leq \text{Aut } G$. By definitions of M, L, E and Lemma 2.1 we get the second part of the statement.

(2)-(3) Assume that $\alpha \in A$ and $\beta \in E$. By (1) there exists $\lambda \in Z^1(G/N, Z(N))$ such that $h^\beta = h(hN)^\lambda$ ($h \in G$) and $(hN)^\lambda \in M$ for all $h \in G$. If $h \in G$ then

$$h^{\alpha^{-1}\beta\alpha} = (h^{\alpha^{-1}})^\beta = (h^{\alpha^{-1}}(h^{\alpha^{-1}}N)^\lambda)^\alpha = h((h^{\alpha^{-1}}N)^{\lambda})^\alpha$$

and $((h^{\alpha^{-1}}N)^{\lambda})^\alpha \in M$. Hence by Lemmas 2.1 and 2.2 $\alpha^{-1}\beta\alpha \in E$, so A normalizes E. Now it is clear that $AE \leq \text{Aut } G$.

For the sake of completeness we recall some results from [13]. We will use them in this note.

Lemma 2.4 ([13]). Let N be an normal subgroup of G such that G/N is cyclic of order n. Assume that g is an element of G with $G = \langle N, g \rangle$.

(1) If $a \in Z(N)$ and $a^{g^{n^{-1}+\cdots+g+1}} = 1$, then the function $\lambda : G/N \rightarrow Z(N)$, defined by $g^iN)^\lambda = a^{g^{i-1}+\cdots+g+1}$ ($i \in \mathbb{N}$) and $N^\lambda = 1$, is a crossed homomorphism.

(2) If $\lambda \in Z^1(G/N, Z(N))$ then there exists $a \in Z(N)$ such that $a^{g^{n^{-1}+\cdots+g+1}} = 1$, $(g^iN)^\lambda = a^{g^{i-1}+\cdots+g+1}$ ($i \in \mathbb{N}$) and $N^\lambda = 1$.

Lemma 2.5 ([13]). Let G, N, g be as in Lemma 2.4. Let M be a normal subgroup of G such that $M \leq Z(N)$ and for all $a \in M$ $a^{g^{n^{-1}+\cdots+g+1}} = 1$. Assume that $L = \{\lambda \in Z^1(G/N, Z(N)) \mid (G/N)^\lambda \leq M\}$ and $A = N_{\text{Aut } G}(N) \cap N_{\text{Aut } G}(M)$. Then

(1) $A \leq \text{Aut } G$ and $L \leq Z^1(G/N, Z(N))$; moreover $L \cong M$.

(2) If $\alpha \in A$ and $\lambda \in L$ then the function $\mu : G/N \rightarrow Z(N)$ defined by $\mu : hN \mapsto ((h^{\alpha^{-1}}N)^{\lambda})^{\alpha}$ is a crossed homomorphism and $\mu \in L$.

Theorem 2.6 ([13]). Let G, N, L, M, g and A be as in Lemma 2.5. Assume that $E := \{\varphi \in \text{Aut } N^G \mid |G, \varphi| \leq M\}$. Then $E \leq \text{Aut } G$, $L \cong E \cong M$, A normalizes E, $AE \leq \text{Aut } G$ and $A \cap E \cong \{g^{-1}g^\varphi \mid \varphi \in A \cap E\}$.

We will need the following lemma:
Lemma 2.7. Let \(G \) be a group, \(g, h, z \in G \) and \([h, g] = z\), \([g, z] = 1 = [h, z]\). Assume that \(i, j \in \mathbb{N} \) and \(\alpha \in \text{Aut} \, G \). Then

1. \(h^{g^{-1} + \ldots + g + 1} = h^i z^{\beta(i-1)} \);
2. if \(g^\alpha = g, h^\alpha = h^i, z^\alpha = z \), then \((h^{g^{-1} + \ldots + g + 1})^\alpha = h^{ij} z^{\beta(i-1)} \);
3. if \(g^\alpha = g, h^\alpha = h^i, z^\alpha = z^j \), then \((h^{g^{-1} + \ldots + g + 1})^\alpha = h^{ij} z^{\beta(i-1)} \);
4. if \(g^\alpha = g^i, h^\alpha = h, z^\alpha = z \), then \((h^{g^{-1} + \ldots + g + 1})^\alpha = h^i z^{\beta(i-1)} \);
5. if \(g^\alpha = g^i, h^\alpha = h, z^\alpha = z \), then \((h^{g^{-1} + \ldots + g + 1})^\alpha = h^i z^{\beta(i-1)} \).

By Lemmas 2.3, 2.4 and 2.7 we get

Lemma 2.8. Let \(G, N, M, E, g \) be as in Theorem 2.6 and \(i, j \in \mathbb{N}, i = j^{-1} \mod n \). Assume that \(\lambda \in \mathbb{Z}^1(G/N, Z(N)) \), \((gN)^\lambda = h \) for some \(h \in M \) and \(\beta \in E \) is an automorphism determined by \(\lambda \). Assume also that \(\alpha \in \text{Aut} \, G, [h, g] = z \) and \([g, z] = 1\). Then

1. if \(g^\alpha = g^i, h^\alpha = h, z^\alpha = z \), then \(((g^\alpha^{-1} N)^\lambda)^\alpha = h^i z^{\beta(i-1)} \);
 in particular if \(z = 1 \), then \(\beta^\alpha = \beta^i \);
2. if \(g^\alpha = g^i, h^\alpha = h, z^\alpha = z \), then \(((g^\alpha^{-1} N)^\lambda)^\alpha = h^i z^{\beta(i-1)} \);
 in particular if \(z = 1 \), then \(\beta^\alpha = \beta^i \);
3. if \(g^\alpha = g, h^\alpha = h^i \), then \(((g^\alpha^{-1} N)^\lambda)^\alpha = h^i \) and \(\beta^\alpha = \beta^i \).

3. A split metacyclic 2-group

Let \(G = H \times K \) be a split metacyclic 2-group, where \(H = \langle x \rangle \) and \(K = \langle y \rangle \) and let \(A, B, C \) and \(D \) be the subgroups of \(\text{Aut} \, G \) defined in the introduction. In this section we refer to the appropriate cases of the split metacyclic 2-groups from [8], but occasionally we repeat some known results for readers’ convenience. In fact we consider only Case A.

Let \(G = H \times K = \langle x, y \mid x^{2^m} = y^{2^n} = 1, x^y = x^{1+2^{m-1}} \rangle \), where \(m \geq 3, n \geq 1, 1 \leq r \leq \min\{m-2, n\} \).

It is convenient to consider \(G \) in the following three subcases (see [8])

(I) \(m \leq n \), (II) \(n \leq m - r < m \), (III) \(m - r < n < m \).

Moreover there exist two special cases. They are case (II), when \(m = 2r \), \(n = r = m - r \geq 2 \) and \(G = \langle x, y \mid x^{2^r} = y^2 = 1, x^y = x^{1+2^r} \rangle \) and case (III), when \(r = n > m - n \geq 2 \) and \(G = \langle x, y \mid x^{2^m} = y^2 = 1, x^y = x^{1+2^m-n} \rangle \).

These are referred to as exceptional cases. We will also need the following number theoretic result (see [8,13]), which is easily established by induction.

Lemma 3.1. Let \(m, n \) and \(r \) be positive integers.

1. For all \(m \geq 2, n \geq 1 \), \((1 + 2^m)^{2^n} \equiv 1 + 2^{m+n} \) (mod \(2^{2m+n-1} \))
 and \((1 + 2^m)^{2^n-1} \equiv 1 + 2^{m+n-1} \) (mod \(2^{m+n} \)).
(2) For \(n \geq 2, r \geq 1 \) and \(m = n + r \), let \(S = 1 + u + \cdots + u^{2r-1} \), where \(u \equiv 1 \pmod{2^n} \). Then \(S \equiv 2^r + 2^{m-1} \pmod{2^n} \) if \(u \not\equiv 1 \pmod{2^{n+1}} \) and \(S \equiv 2^r \pmod{2^n} \) if \(u \equiv 1 \pmod{2^{n+1}} \).

Using Lemma 3.1 the following lemmas are easily established.

Lemma 3.2.

(1) \(\Omega_H(K) = \langle x^{2^r} \rangle \),
(2) \(\Omega_K(H) = \langle y^{2^r} \rangle \),
(3) \(\Omega' = [H, K] = \langle x^{2^{m-r}} \rangle \),
(4) \(G \) is nil \(2 \leq r \leq m \).

Lemma 3.3. \(\Omega_{m-r}(K), [H, \Omega_{m-r}(K)] \) are given in the three cases as follows:

(I) \(\Omega_{m-r}(K) = \langle y^{2^{n-m+r}} \rangle \leq Z(G) \) if \([H, \Omega_{m-r}(K)] = 1 \);
(II) \(\Omega_{m-r}(K) = \langle y \rangle = C_K(G'), [H, \Omega_{m-r}(K)] = \langle x^{2^{m-r}} \rangle = G' \leq Z(G) \);
(III) \(\Omega_{m-r}(K) = \langle y^{2^{n-m+r}} \rangle \leq C_K(G'), [H, \Omega_{m-r}(K)] = \langle x^{2^r} \rangle \leq Z(G) \).

As in [14] when \(p \) was odd or by considering matrices of maps from [8] one could find the effect of an automorphism \(\varphi \) on the generators of \(G \).

Lemma 3.4. Let \(G, x, y \) be as above.

(1) Assume that \(n \neq r \). Then a map \(\varphi : G \to G \) is an automorphism if and only if \(x^{-1}x^\varphi \in \Omega_1(H)\Omega_{m-r}(K), \ y^\varphi y^{-1} \in \Omega_n(H)C_K(H) \);
(2) Assume that \(n = r \). Then a map \(\varphi : G \to G \) is an automorphism if and only if either \(x^{-1}x^\varphi \in \Omega_1(H)\Omega_{m-r}(K), y^\varphi y^{-1} \in \Omega_n(H) \) or \(x^{-1}x^\varphi \in \Omega_1(H)\Omega_{m-r}(K) \), \(y^\varphi y^{-1} \in \Omega_n(H)g^{2^{m-r}} \).

By Theorem 2.6 and the definitions of \(A, B \) and \(D \) we get the following lemma.

Lemma 3.5. Let \(G, A, B, D \) be as above. Then

(1) \(B \cong \text{Aut}_H^G(G) \),
(2) \(AD = A \times D \) normalizes \(B \),
(3) \(B \cap D = 1 \).

For the proofs of Theorem 3.6 and Lemma 3.7 see [13].

Theorem 3.6. Let \(G \) be as above.

(1) \(\text{Aut} G = C_{\text{Aut} G}^1(G)C_{\text{Aut} G}^0(K) \) if and only if \(r \neq n \);
(2) \(C_{\text{Aut} G}^1(K) = BD \);
(3) \(C_{\text{Aut} G}^1(K) = AC \) if and only if \(n \leq m \).

We set \(M := [H, \Omega_{m-r}(K)]\Omega_{m-r}(K), N := G'K \) and

\[E := \{ \varphi \in \text{Aut}_N^G(G) \mid [H, \varphi] \subseteq M \} \subseteq \text{Aut}_N^G(G) \).

Lemma 3.7. Let \(G, M \) be as above and \(n \neq r \).

(1) \(M \) is abelian and normal in \(G \).
(2) If \(a \in M \) then \(a^{2^{m-r}+\cdots+x+1} = 1 \).
Lemma 3.8. Let G, A, D, E be as above and $n \neq r$. Then
(1) $E \leq \text{Aut } G$;
(2) $E \cong M$;
(3) $AD = A \times D$ normalizes E;
(4) $E \cap A \cong [H, \Omega_{m-r}(K)]$;
(5) $C_{\text{Aut } G}(K) = AE$;
(6) $D \cong \text{Aut}_{C_{\text{Aut } H}}(K)$.

Proof. In the proof of Lemma 3.9 in [13] we put $\Omega_{m-r}(K)$ instead of $C_{K}(G')$.

We define $c \in \text{Aut } G$ by setting $x^c = xy$, when $m - r \geq n \neq r$, and $x^c = x^{2^{m-r}+r}$, when $m - r < n \neq r$, $y^c = y$. We also set $F := (c) \leq E$.

Theorem 3.9. Let G, E, A, F be as above and $n \neq r$. Then
(1) $F \cong \Omega_{m-r}(K)$, $AF = AE$ and $A \cap F = 1$;
(2) $\text{Aut } G = BDAF$ and $|\text{Aut } G| = |B||D||A||F|$.

Proof. In the proof of Theorem 3.10 in [13] we put $\Omega_{m-r}(K)$ instead of $C_{K}(G')$.

By Theorem 3.9 and Lemma 3.4 it is obvious that

Theorem 3.10. Let G, A, B, D, F, T be as above. Then
(1) $A \cong \text{Aut } H \cong C_2 \times C_{2^{m-2}}$ and $B \cong \Omega_{n}(H) \cong C_{2^{\text{min}(m,n)}}$;
(2) $D \cong C_{K}(H) \cong C_{2^{m-r}}$ except if $n > 1 = r$ when $D \cong \text{Aut } K \cong C_2 \times C_{2^{m-2}}$;
(3) If $n \neq r$, then $F \cong \Omega_{m-r}(K) \cong C_{2^{\text{min}(m-r,n)}}$;
(4) Assume that $n = r$. Then $T \cong \Omega_{m-r}(K) \cong C_{2^{\text{min}(m-r,n)}}$ except if $r = 2$ when $T \cong C_2 \times C_2$.

We define automorphisms of G on generators as follows

$x^{a_1} = x^{-1}$, $x^{a_2} = x^5$, $y^{a_1} = y^{a_2} = y$;

$x^b = x$, $y^b = \begin{cases} xy, & n \geq m \\ x^{2^{m-n}} y, & n < m \end{cases}$;

$x^c = \begin{cases} xy, & m - r \geq n \\ xy^{2^{m-r}+r} y, & m - r < n \end{cases}$, $y^c = y$.

Now we assume that $n \neq r$ and $r \geq 2$. In this case we define

$x^d = x$, $y^d = y^{1+2^r}$.

By Theorem 3.6, 3.9 and Lemma 3.8 it is clear that $\text{Aut } G = FABD$ and each automorphism φ of G can be presented uniquely as $\varphi = \alpha \beta \gamma \delta$, where $\alpha \in F, \beta \in A, \gamma \in B, \delta \in D$. It is clear that $A = \langle a_1, a_2 \rangle$, $B = \langle b \rangle$, $D = \langle d \rangle$ and AD is abelian. It is evident that $G = HK = KH$, so if $g \in G$, then $g = kh$ for some $k \in K, h \in H$. In the proof of Lemma 3.11 (2) we will use this reverse notation of elements of G.
We define i, j, k, s, t, u, w, z are such that

$i = 0$ in (I), $5^i = 1 + 2^{m-r}$ mod 2^m in (II), $5^i = 1 + 2^m$ mod 2^m in (III),

$j = 0$ in (I), $5^j = 1 - 2^{m-r+1}$ mod 2^m in (II),

$5^i = 1 - 2^{n+1}$ mod 2^m in (III),

$k = 1 + 2r + 2^{m-1}$ in (I), $k = 1 + 2^r$ in (II)&(III),

$u = 1 - 2^{m+s}$ in (I), $u = 1 - 2^{m-n}$ in (II), $u = 1 - 2^s$ in (III),

$5^i = (1 - 2^{n-1}) u^{-1}$ mod 2^n in (I),

$5^i = (1 - 2^{m-r-n-1}) u^{-1}$ mod 2^m in (II),

$5^i = (1 - 2^{m-1}) u^{-1}$ mod 2^m in (III),

$s = u^{-1}$ mod 2^n in (I), $s = u^{-1}$ mod 2^m in (II)&(III),

$(1 + 2^r) w = u$ mod 2^n,

$z = -2^{m-n+r} + 2^{n-1}$ in (I), $z = -2^{m-n} + 2^{m-r+1}$ in (II),

$z = -2^r + 2^{n-1}$ in (III).

Lemma 3.11. Let a_1, a_2, b, c, d be as above. Assume that $n \neq r$ and $r \geq 2$.

Then

1. $e^{a_1} = c^{-1} a_1^2$, $e^{a_2} = c^5 a_2^2$, $e^d = c^{1+2r}$;
2. $b^{a_1} = b^{-1}$, $b^{a_2} = b^5$, $b^{d^{-1}} = b^k$;
3. $e^b = c^a b^d w^u$.

Proof. (1) Let $N = G'K$ and $M = [H, \Omega_{m-r}(K)]\Omega_{m-r}(K)$. Then $a_1, a_2, d \in N_{Aut(G)}(N) \cap N_{Aut(G)}(M)$, $c \in Aut\Omega N(G)$ and $h := x^{-1} x^2 \in M$. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^e = g(gN)^h$ ($g \in G$), $(x^i N)^h = h^{x^{-1} + \ldots + x^{i+1}}$ ($i \in \mathbb{N}$). By Lemma 2.8 (3) we get the last relation. Now we use Lemma 2.8 (1) to get the first two relations: in (I) we have $[h, x] = [y^{2^{m-r}}, x] = 1$; in (II) since $[h, x] = [y, x] = x^{-2^{m-n}}$, we obtain

$$((x^{a_1-1} N)^h a_1 = y^{-1} x^{2^{m-r} (2^m-1) (2^{m-1}-1)} = y^{-1} x^{2^{m-r}},$$

$$((x^{a_2} N)^h a_2^{-1} = y^5 x^{2^{m-r+1}};$$

in (III) since $[h, x] = [y^{2^{m-r}}, x] = x^{-2^r}$, by Lemma 2.8 (1) we obtain

$$((x^{a_1-1} N)^h a_1 = x^2 y^{2^{m-r}},$$

$$(x^{a_2} N)^h a_2^{-1} = x^{-2^{n+1}} y^5 x^{2^{m-r}}.$$}

(2) Note that $x^b = x$ and $y^b = y x^{1+2^{m-r}}$ in (I), $y^b = y x^{2^{m-n}}$ in (II),

$y^b = y x^{2^{m-n} + 2^{m-r}}$ in (III). Let $Q = \langle x \rangle$. Then $a_1, a_2, d \in N_{Aut(G)}(Q)$, $b \in Aut\Omega Q(G)$ and $h := y^{-1} y^b \in Q$. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get $g^h = g(gQ)^h$ ($g \in G$), $(y^Q)^h = h^{y^{-1} + \ldots + y^{i+1}}$ ($i \in \mathbb{N}$). By Lemma 2.8 (3)
we obtain the first two relations. Now we use Lemma 2.8 (2) to get the last relation: in (I) since \([h, y] = [x^{1+2m-n}, y] = x^{2m-r(1+2m-r)}\) we obtain
\[
((y^dN)^\lambda)^{-1} = (x^{1+2m-r})^{1+2r} x^{2m-r(1+2m-r)2r^{-1}(2r+1)} = x^{(1+2m-r)(1+2r+2m-r)};
\]
in (II) we get \([h, y] = [x^{2m-n}, y] = 1\); in (III) since \([h, y] = [x^{2m-n+22m-n-r}, y]\) we obtain
\[
((y^dN)^\lambda)^{-1} = (x^{2m-n+22m-n-r})^{1+2r} x^{2m-r(2m-n+22m-n-r)(2r+1)2r^{-1}} = (x^{2m-n+22m-n-r})^{1+2r}.
\]

(3) The direct computations with the help of Lemma 3.1 give the relation.

\[\square\]

Theorem 3.12. Let \(G\) be as above and \(m \geq 3\), \(n \geq 1\), \(1 \leq r \leq \min\{m - 2, n\}\), \(n \neq r\) and \(r \geq 2\). Then \(\text{Aut} G\) can be given by the following presentation, where the relations with commuting generators are omitted:
\[
\text{Aut} G = \langle a_1, a_2, b, c, d \mid a_1^2 = a_2^{2m-2} = b_{2n}^{2m-n} = c_{2m-n}^2 = d_{2m-n}^2 = 1, c^{a_1} = c^{-1}a_1, c^{a_2} = c^{5}a_2, c^{d} = c^{1+2r}, b^{a_1} = b^{-1}, b^{a_2} = b^5, b^{d} = b^k, c^{b} = c^{a_2}b^d d^e \rangle.
\]

4. Metacyclic minimal nonabelian 2-groups

In this section we will deal with groups \(G = \langle x, y \mid x^{2m} = y^{2n} = 1, x^y = x^{1+2m-1} \rangle\); where \(m, n \in \mathbb{N}\), \(m \geq 2, n \geq 1\). So \(G = H \rtimes K\) is a split metacyclic 2-group, where \(H = \langle x \rangle\) and \(K = \langle y \rangle\).

First assume that \(n \geq m \geq 3\). We define automorphisms of \(G\) on generators as follows
\[
x^{a_1} = x^{-1}, \quad x^{a_2} = x^5, \quad y^{a_1} = y^{a_2} = y;
\]
\[
x^b = x, \quad y^b = \begin{cases} x^y, & m \geq n \\ x^{2^{m-n}} y, & n < m \end{cases};
\]
\[
x^c = \begin{cases} x^y, & m > n \\ x^{2^{m-n+1}} y, & m \leq n \end{cases}, \quad y^c = y;
\]
\[
x^{d_1} = x^{d_2} = x, \quad y^{d_1} = y^{-1}, \quad y^{d_2} = y^5.
\]

By Theorems 3.6, 3.9 and Lemma 3.8 it is clear that \(\text{Aut} G = FABD\) and each automorphism \(\varphi\) of \(G\) can be presented uniquely as \(\varphi = \alpha \beta \gamma \delta\), where \(\alpha \in F, \beta \in A, \gamma \in B, \delta \in D\). It is clear that \(A = \langle a_1, a_2 \rangle, \quad B = \langle b \rangle, \quad D = \langle d_1, d_2 \rangle\) and \(AD\) is abelian. It is evident that \(G = HK = KH\), so if \(g \in G\), then \(g = kh\) for some \(k \in K, h \in H\). In the proof of Lemma 4.1(2) we will use also this reverse notation of elements of \(G\).
Lemma 4.1. Let \(a_1, a_2, b, c, d_1, d_2 \) be as above. Assume that \(m \geq 3, n \geq 3 \).

Then

1. \(c^{a_1} = c^{-1} a_2 \), \(c^{a_2} = c^5, c^{d_1} = c^{-1}, c^{d_2} = c^5 \), where \(i = 0 \) when \(m > n \) and \(i = 2m-3 \) when \(m \leq n \);
2. \(b^{a_1} = b^{-1}, b^{a_2} = b^5, b^{d_1} = b^{-1}, b^{d_2} = b^5 \);
3. if \(n-m \geq 1 \), then \(c^b = c^s a_2 b^{-2^{m-n+1}} d_2 w \), where \(s, t, w \) are such that
 \(s = 5^t = (1 - 2^{m-n+1})^{-1} \mod 2m, 5^w = 1 - 2^{m-n+1} \mod 2n \);
4. if \(m = n, \) then \(c^b = c^{-1} a_1 a_2^{2m-3} b^{-2+2^{m-n-1}} d_1 \);
5. if \(m-n > 1, \) then \(c^b = c^s a_2 b^{-2^{m-n}} d_2 \), where \(s, t, w \) are such that
 \(s = 5^t = (1 - 2^{m-n})^{-1} \mod 2m, 5^w = 1 - 2^{m-n} \mod 2n \);
6. if \(m = n+1, \) then \(c^b = c^{-1} a_1 a_2^{2m-3} b^{-2+2^{m-2}} d_1 \).

Proof. (1) Let \(N = G' K \) and \(M = [H, \Omega_{m-r}(K)] \Omega_{m-r}(K) \). Then \(a_k, d_k \in N_{Aut G}(N) \cap N_{Aut G}(M) \) \((k = 1, 2, c \in Aut N(G) \) and \(h := x^{-1} x^5 \in M \). By Lemmas 2.1, 2.4, 3.7 and 3.3 we get \(g^5 = g(N)^{b_1} \langle g \rangle \), \((x^4) N \rangle \) = \(h^2 x^2 \cdots x \) (i \(\in \mathbb{N} \)). For the first two relations see the proof of Lemma 3.11 (1) with \(r = 1 \). By Lemma 2.8 (3) we obtain the last two relations.

(2) Note that \(x^b = x \) and \(y^b = y x^1 + 2^{m-1} \) when \(m \geq n, \) \(y^b = y x^{2^{m-n}} \) when \(m > n \). Let \(Q = \langle x \rangle \). Then \(a_k, d_k \in N_{Aut G}(Q) \) \((k = 1, 2, c \in Aut Q(G) \) and \(y^{-1} y^b \in Q \). By Lemmas 2.1, 2.4, 3.7 and 3.3 we get \(g^b = g(N)^{b_1} \langle g \rangle \), \((y^q) N \rangle \) = \(h^q x^2 \cdots x \) (i \(\in \mathbb{N} \)). By Lemma 2.8 (3) we obtain the first two relations. Now we will use Lemma 2.8 (2) to get the last two relations: if \(m > n \) then \[y^{2^{m-n}} y \] = \(1 \), so we get the last two relations; if \(m \leq n, \) then \[x^{1+2^{m-n}} y \] = \(x^{2^{m-1}} \) and we get \[(y^{d_1} N)^{b_1} \] = \(x^{1+2^{m-n}} x^{2^{m-n} - 1} x^{2^{m-n} - 1} \) = \(x^{-1} \) and \[(y^{d_2} N)^{b_2} \] = \(x^{1+2^{m-1}} x^{2^{m-1} - 10} = (x^{1+2^{m-1}})^5 \).

(3)-(6) The direct computations with the help of Lemma 3.1 give the relations.

In the next theorems the relations with commuting generators are omitted.

Theorem 4.2. Let \(G \) be as above and \(m, n \geq 3 \). Then \(Aut G \) can be given by the following presentation:
\[Aut G = \langle a_1, a_2, b, c, d_1, d_2 | a_1^2 = a_2^{2m-2} = b^{2^{min(m,n)}} = c^{2^{min(n,m)}} = d^{2^{m-n}} = 1, c^{d_1} = c^{-1} a_2, c^{d_2} = c^{-1}, c^{d_2} = c^5, b^{d_1} = b^{-1}, b^{d_2} = b^5, b^{d_1} = b^{-1}, b^{d_2} = b^5, c^{d_1} = c^5, c^{d_2} = c \rangle, \] where \(i \) is given in Lemma 4.1 and \(\alpha \) is the appropriate relation in (3)-(4) of Lemma 4.1.

If \(m = 2 \) and \(n = 1 \), then \(G \cong Aut G \) is dihedral of order 8.
Now assume that $m > n = 2$. We define automorphisms of G on generators as follows
\[x^{a_1} = x^{-1}, \quad x^{a_2} = x^{5}, \quad y^{a_1} = y^{a_2} = y; \quad x^b = x, \quad y^b = x^{2m-2}y; \]
\[x^c = xy, \quad y^c = y; \quad x^d = x, \quad y^d = y^{-1}. \]

Theorem 4.3. Let G be as above and $m > n = 2$. Then $\text{Aut} G$ can be given by the following presentation:

1. If $m > 3$, then $\text{Aut} G = \langle a_1, a_2, b, c, d | a_1^2 = a_2^{2m-2} = b^4 = c^4 = d^2 = 1, c^{a_1} = c^{-1}a_2^{2m-3}, c^d = c^{-1}, b^{a_1} = b^{-1}, b^d = b^{-1}, b^c = ba_1^2 \rangle$, where $5^m = 1 - 2^{1-m}$.
2. If $m = 3$, then $\text{Aut} G = \langle a_1, a_2, b, c, d | a_1^2 = a_2^2 = b^4 = c^4 = d^2 = 1, c^{a_1} = c^{-1}a_2, c^d = c^{-1}, b^{a_1} = b^{-1}, b^d = b^{-1}, c^b = c^{-1}a_1a_2d \rangle$.

Now assume that $m \geq 3$, $n = 1$. We define automorphisms of G on generators as follows
\[x^{a_1} = x^{-1}, \quad x^{a_2} = x^{5}, \quad y^{a_1} = y^{a_2} = y; \]
\[x^b = x, \quad y^b = x^{2m-1}y; \quad x^c = xy, \quad y^c = y. \]

Theorem 4.4. Let G be as above and $m \geq 3$, $n = 1$. Then $\text{Aut} G$ can be given by the following presentation:
\[\text{Aut} G = \langle a_1, a_2, b, c | a_1^2 = a_2^{2m-2} = b^2 = c^2 = 1, c^{a_1} = ca_2^{2m-3}, c^b = ca_2^{2m-3} \rangle. \]

Now assume that $m = n = 2$. We define automorphisms of G on generators as follows
\[x^a = x^{-1}, \quad y^a = y; \quad x^b = x, \quad y^b = xy; \]
\[x^c = xy^2, \quad y^c = y; \quad x^d = x, \quad y^d = y^{-1}. \]

Theorem 4.5. Let G be as above and $m = n = 2$. Then $\text{Aut} G$ can be given by the following presentation:
\[\text{Aut} G = \langle a, b, c, d | a^2 = b^4 = c^2 = d^2 = 1, b^a = b^{-1}, b^c = bd \rangle. \]

References

