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ON THE STRUCTURE OF THE AUTOMORPHISM GROUP
OF A MINIMAL NONABELIAN p-GROUP (METACYCLIC
CASE)
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ABSTRACT. In this paper we find the complete structure for the
automorphism groups of metacyclic minimal nonabelian 2-groups. This,
together with [6,7], gives the complete answer to the Question 15 from [5]
(respectively Question 20 from [4]) in the case of metacyclic groups. We
also correct some inaccuracies and extend the results from [13].

1. INTRODUCTION

All groups considered here are finite and the notation used is standard.

Finite p-groups are an important group class of finite groups. Since the
classification of finite simple groups is finally completed, the study of finite
p-groups becomes more and more active. Many leading group theorists, for
example, Berkovich, Glauberman, Janko etc., turn their attention to the study
of finite p-groups, see [1-4,9,10,12]. Since a finite p-group has ”too many”
normal subgroups and, consequently, there is an extremely large number of
nonisomorphic p-groups of a given fixed order, the classification of finite p-
groups in the classical sense is impossible. In [1-3] Berkovich and Janko have
developed some techniques for working with minimal non-abelian subgroups
of finite p-groups. Roughly speaking, they show that some control over the
lattice of subgroups in p-groups can be gained by considering maximal abelian
subgroups together with minimal non-abelian subgroups. In [12] Janko points
out that in studying the structure of non-abelian p-groups GG, the minimal non-
abelian subgroups of G play an important role since they generate the group
G. More precisely, if A is a maximal normal abelian subgroup of G, then
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minimal non-abelian subgroups of G cover the set G\ A (see Proposition 1.6
in [12]). A p-group G is said to be minimal nonabelian (for brevity, .A;-group),
if G is nonabelian, but all its proper subgroups are abelian. In [5] Berkovich
formulated 22 questions concerning p-groups. In Question 15 (respectively
Question 20 from [4]) he proposed to describe the automorphism groups of
Aji-groups. The following lemma gives the classification of A;-groups.

LEmMA 1.1. (L. Redei) Let G be a minimal nonabelian p-group. Then
G = (z,y) and one of the following holds
(1) a?" =y =22 =1, [r,y] =2, [2,2] =[y,2] =1, mneN, m>n>
1; where in case p = 2 we must have m > 1;
(2) " = yp" =1, [Zay] = Ip7n717 m,n € N,m 2 2, n 2 1;
(3) a* =1, a®> = b2, [a,b] = a®, G = Qs.

In this paper we find the complete structure for the automorphism groups
of metacyclic minimal nonabelian 2-groups. This, together with [6,7], gives
the complete answer to the Question 15 from [5] (respectively Question 20
from [4]) in the case of metacyclic groups. In Section 2 we generalize
the results from [13] and we specify a method of finding relations in an
automorphism group, that we will use in the next Sections. In the first part
of Section 3 we state some results from [13], that we will use in the next part
of the note, but also we specify the exact statements. Unfortunately we must
point out that in Section 3 of [13] in Case A the expression " Ck (G’)” should
be replaced by ”Qy,—(K).” In the end of Section 3 we state the relations in
the automorphism group of a split metacyclic 2-group. In this way we remove
some inaccuracies from Theorem 3.7 in [8] (see Example 1 in [13]). In Section
4 we find the complete structure of the automorphism group of a metacyclic
minimal nonabelian 2-group. These relations were not considered in [8].

If L is a subgroup of a group G, then Caut (L) denotes the group of
those automorphisms of G that centralize L and Nyt (L) denotes the group
of those automorphisms of G that normalize L. If M and N are normal
subgroups of a group G, then Auty (G) = Caue(c)(G/N) denotes the group of
all automorphisms of G normalizing N and centralizing G/N. Also Auty (G)
denotes Auty(G) N Cauta(M). If L is a subgroup of a p-group G and [ € N
then we set (L) = (g € L | g” =1) and Uy(L) = (g” | g € L).

In [15] the authors investigated the automorphism group of a semidirect
product G = H x K. They defined the following subgroups

A={0c AutG | [K,0]=1and H? = H},

B={0c AwtG|[H,0]=1and [K,0] C H},

C={0ecAutG|[K,0] =1and [H,0] C K},

D={0cAutG|[H,0 =1and K? = K}.
By definition, we have BD = B x D £ Cautg(K) and AC = C x A £
Cautc(H).



METACYCLIC MINIMAL NONABELIAN p-GROUP 155

2. CROSSED HOMOMORPHISMS AND AUTOMORPHISMS

We call an ordered triple (Q, N, #) data if N is an abelian group, @ is a
group and 0 : Q — Aut N is a homomorphism. If € is a homomorphism of @
into Aut IV, then @ acts on N when we define, for each z € Q and a € N, a*
is the image of @ under 2. If N is a normal subgroup of G, then the action of
G/N on Z(N) is given by a9V = aldN)’" = 9. Given data (Q, N, 0) a crossed
homomorphism is a function A : @ — N such that (xy)* = (2*)¥y* for all
2,y € Q. We denote the set of such crossed homomorphisms by Z1(Q, N).
It forms a group under the operation ¢*+*2 = ¢*g*2; if @ is trivial, then
2}(Q, N) = Hom(Q, N).

We recall a known result ([11], Satz 1,17.1) needed in the sequel:

LEMMA 2.1. Let N be a normal subgroup of G. Then there is a
natural isomorphism from ZY(G/N,Z(N)) to AutY(G) sending each crossed
homomorphism f : G/N — Z(N) to the automorphism p¢ : x + z(xN)? of
G.

Lemmas 2.2-2.3 are more general versions of Lemma 2.5 and Theorem 2.6
(see also [13]).

LEMMA 2.2. Let N be an normal subgroup of G. Let M be a normal
subgroup of G such that M < Z(G). Assume that that L = {\ €
ZYG/N,Z(N)) | (G/N)* € M} and A = Nawc(M) N Nawwa(N). Then

(1) A< Aut(G) and L < Z1(G/N, Z(N)).
(2) Ifa € A and X € L then the function p: G/N — Z(N) defined by
i gN — ((go‘le))‘)“ s a crossed homomorphism and p € L.

PROOF. The first part of (1) is obvious.
(2) Assume that « € A and X € L. First let Ng; = Nga, then g2 = g1h
for some h € N. Then

(g2N)* = (g5 N)M™ = ((gh)* NN = (g N)M)* = (g1 N)*

since N is normalized by a. So y is well defined.
Let g1 N,goN € G/N. We have

(1N - g2 N)* = (g1g2N)* = (((9192){1]\7?)0‘

= (g2 Ngg T N = (68T N (g5 NN
(g5 NN (g5 NN = ((91N)#)%=N - (go N~
It is evident that p € L since (G/N)* & M. O

LEMMA 2.3. Let G,N,M,L and A be as in Lemma 2.2. Assume that
E = {p e AutN(G)|[G, o] € M}. Then
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(1) E £ Aut G and there is a natural isomorphism from L to E sending
each crossed homomorphism f : G/N — M to the automorphism ¢y :
v z(zN) of G;

(2) ifa € A and p € E is determined by the crossed homomorphism X € L,
then o~ Ao is determined by the crossed homomorphism u € L defined
by s gN = ((g° N2,

(3) A normalizes E and AE < AutG.

PrROOF. (1) It is evident that £ < Aut G. By definitions of M, L, E and
Lemma 2.1 we get the second part of the statement.

(2)-(3) Assume that « € A and f € E. By (1) there exists
A € ZYG/N,Z(N)) such that h? = h(hN)* (h € G) and (RN)* € M
for all h € G. If h € G then

hoflﬁa _ ((hail)ﬂ)a _ (hoﬁl(hoﬁlN)A)a — h((thlN))‘)O‘

and ((h® 'N))® € M. Hence by Lemmas 2.1 and 2.2 a~'8a € E, so A
normalizes E. Now it is clear that AE < AutG. O

For the sake of completeness we recall some results from [13]. We will use
them in this note.

LEMMA 2.4 ([13]). Let N be an normal subgroup of G such that G/N is
cyclic of order n. Assume that g is an element of G with G = (N, g).

(1) If a € Z(N) and a9" ' TF9t1 = 1, then the function A : G/N —
Z(N), defined by (¢'N)> = a9 ' ++9+1 (i € N) and N> =1,
is a crossed homomorphism.

(2) If \ € ZY(G/N,Z(N)) then there exists a € Z(N) such that
ad" el =1 (PN =q¢ Hotetl (GeN) and N*=1.

LEMMA 2.5 ([13]). Let G,N,g be as in Lemma 2.4. Let M be a normal
subgroup of G such that M < Z(N) and for all a € M 9" ++otl = 1.
Assume that L = {\ € Z*(G/N,Z(N)) | (G/N)* € M} and A = Nausc(N)N
NAutg(M). Then

(1) A< Aut(G) and L < ZY(G/N,Z(N)); moreover L = M.
(2) Ifa € A and X € L then the function p: G/N — Z(N) defined by

1

p:hN = ((h N)M® is a crossed homomorphism and u € L.

THEOREM 2.6 ([13]). Let G,N,L,M,g and A be as in Lemma 2.5.
Assume that E = {p € Auth(G)|[G,¢] S M}. Then E £ AutG,
L= FE =M, Anormalizes E, AE < Aut G and ANE = {g71¢9¥ |p € ANE}.

We will need the following lemma:
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LEMMA 2.7. Let G be a group, g, h,z € G and [h,g] = z,[g,2] = 1 = [h, 2].
Assume that i,j € N and o € Aut G. Then
(1) he' ot = i
if g =g, h® = W9, 2% = z, then (h9" "+ +otl)e = piiy
if 9% = g,h™ = hl, 2% = 27, then (h9171+"'+9+1) = Qi
nga — gj,ha — h,Za — Zj, then (hgz—1+...+g+1) _ hl ]z(z 1)
if g% = gj’ h® = h, 2% = z, then (hgv,—1+...+g+1) — his 7(7 1)

i(i—l)

7
1(1 1)

By Lemmas 2.3, 2.4 and 2.7 we get

LEMMA 2.8. Let G,N,M,E, g be as in Theorem 2.6 and i,5 € N, i =
7! mod n. Assume that A € Z*(G/N,Z(N)), (gN)* = h for some h € M
and B € E is an automorphism determined by A. Assume also that o € Aut G,
[h,g] =z and [g,z] = 1. Then

(1) if g% = ¢/, h® = h, 2% = 29, then ((_g‘le) )* = hizi
in particular if z =1, then 8% = B

(2) if g¢* = g7 h® = h, 2% = z, then ((¢® N)M)® =hiz
in particular if z = 1, then & = B%

(3) if g™ = g,h™ = W7, then (g N)*)* = hiand B = B/,

jitiz n

i(i—1)
—-—.

)

3. A SPLIT METACYCLIC 2-GROUP

Let G = H x K be a split metacyclic 2-group, where H = (z) and K = (y)
and let A, B, C and D be the subgroups of Aut G defined in the introduction.
In this section we refer to the appropiate cases of the split metacyclic 2-
groups from [8], but occasionally we repeat some known results for readers’
convenience. In fact we consider only Case A.

Let G = Hx K = (z,y | 22" = ¢
mz23,n=1,1=<r<min{m—2n}.

It is convenient to consider G in the following three subcases (see [8])

142m~"

=1, 2v = 2 ), where

I msn, (II) nEm—-—r<m, (II) m—-r<n<m.

Moreover there exist two special cases. They are case (II), when m = 2r,
n=r=m-r22and G = (z,y |22 =y¥ =1, 2¥ = 212" and case (III),
when r =n>m—-n2>2and G = (z,y | 22" =9*" =1, a¥ = 22" "),
These are referred to as exceptional cases. We will also need the following
number theoretic result (see [8,13]), which is easily established by induction.

LEMMA 3.1. Let m,n and r be positive integers.
(1) Forallm >2,n>1, (142™)%" =1+2""" (mod 227+7-1)
and (1+2™)%"" =1+ 2m+""1 (mod 27+").
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(2) Form=22r=>1andm=n+rlet S=14u+---+u? "1 where
u=1 (mod 2"). Then S =2" +2™"1 (mod 2™) ifu # 1 (mod 2"*1)
and S =27 (mod 2™) if u=1 (mod 2"*1).

Using Lemma 3.1 the following lemmas are easily established.

LEMMA 3.2. . .
(1) Cu(K) = (z*), (2) Cx(H) = (y*),
(3) G' =[H,K] = (z*"""), (4) G isnil2 <=>2r <m.

LEMMA 3.3. Qu—r(K),[H, Qm—r(K)] are given in the three cases as
follows:

(1) Qe (K) = (2" ") S 2(G), [H. Qe (K)] = 1
() Qe (K) = () = (@), [H, Qo ()] = (@) = &' < 2(G);
(L) Qe (K) = (2" £ Cr (@), [H, Qe (K)] = (22") £ Z(G).

As in [14] when p was odd or by considering matrices of maps from [8]
one could find the effect of an automorphism ¢ on the generators of G.
LEMMA 3.4. Let G,x,y be as above.

(1) Assume that n # r. Then a map ¢ : G — G is an automorphism if
and only if =12 € Oy (H) Q- (K),  y#y~' € Qu(H)Cic (H);
(2) Assume that n = r. Then a map ¢ : G — G is an automorphism if
and only if either = 1z? € U1(H)U1(Qm—r(K)),y¥y~ ' € Q,(H) or
r—1
e 'a? € U1(H)Qm—r(K)\O1(H)O1(Qn—r(K)), y?y " € Qu(H)y* .

By Theorem 2.6 and the definitions of A, B and D we get the following lemma.

LEMMA 3.5. Let G, A, B, D be as above. Then
(1) B~ Autf(@),
(2) AD = A x D normalizes B,
(3) BnD=1.
For the proofs of Theorem 3.6 and Lemma 3.7 see [13].

THEOREM 3.6. Let G be as above.
(1) Aut G = Cant¢(H)Caut g(K) if and only if r # n;
(2) Cantc(H) = BD;
(3) Caunta(K) = AC if and only if m < n.

We set M := [H, Qp—r (K)|Qp—r (K), N := G’'K and

E = {p € Autd(G) | [H,¢] € M} C Auth(G).

LEMMA 3.7. Let G, M be as above and n # r.
(1) M is abelian and normal in G.

(2) Ifa € M then a®  'Hototl =,
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LEMMA 3.8. Let G,A,D,E be as above cmd n #r. Then

(1) E £ Aut G, (2)

(3) AD = A x D normalizes E; (4) Eﬂ A [H Qm—r(K)];

(5) CAutG(K) = AE, ( ) D Auth(H)(K)

PRrROOF. In the proof of Lemma 3.9 in [13] we put Q,,_,(K) instead of
Ck(G@). O

We define ¢ € Aut G by setting ¢ = xy, when m —r 2 n # r, and
¢ =2y ", whenm —r <n#r, y° =y. We also set F := (¢c) £ F

THEOREM 3.9. Let G, E, A, F be as above and n # r. Then
(1) F2Q,_(K), AF = AE and ANF =1,
(2) AutG = BDAF and | Aut G| = |B||D||A||F].

PROOF. In the proof of Theorem 3.10 in [13] we put Q,,_,(K) instead of
Cr(G"). a

By Theorem 3.9 and Lemma 3.4 it is obvious that

THEOREM 3.10. Let G, A, B, D, F,T be as above. Then

(1) A2 AutH 2 Cy x Cym-2 and B = Qu(H) = Comintm.ny;

(2) D = Ck(H) = Cyn—r except if n > 1 =1 when D = AutK = Cy X
anfz,‘

3) If n#r, then F = Qpy(K) 2 Comin{m—r.mn3;

(4) Assume that n = r. Then T = Qp_r(K) = Cominm—rny except if
r=2when T = Cy x Csy.

We define automorphisms of G on generators as follows

et =gl M =20, Yt =yt =y
>
b b xy, nzm
=z, y = gm—n ;
x Yy, n<m
c _ xy, m-—=r i n, c __
xr = on—m-+r s Yy =1y.
xy Yy, m—r<n

Now we assume that n # r and r 2 2. In this case we define

R .
By Theorem 3.6, 3.9 and Lemma 3.8 it is clear that AutG = FABD and
each automorphism ¢ of G can be presented uniquely as ¢ = afvJ, where
a € F,f e A~e€B,de€D. Itis clear that A = (aj,a2), B =(b), D=
(d) and AD is abelian. It is evident that G = HK = KH, so if g € G, then
g = kh for some k € K,h € H. In the proof of Lemma 3.11 (2) we will use
this reverse notation of elements of G.
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We define i, j, k, s,t,u, w, z are such that

i =0in (I), 5" = 1+ 2™ " mod 2™ in (II), 5' = 1 + 2" mod 2™ in (III),
j=0in (I), 5 =1 —2™""" mod 2™ in (II),
5/ =1—2""! mod 2™ in (III),
k=1+2"+2""1in (I), k =1+ 2" in (IN)&(III),
u=1-2""""in (I), u=1-2""in (II), u =1 — 2" in (III),
(1—-2""YHu"! mod 2" in (I),

= (1 —2*"""""1y~! mod 2™ in (II),

=(1-2""Yu™' mod 2™ in (III),
s=u"' mod 2" in (I), s =u~' mod 2™ in (IT)&(IIT),
(1+2")% =u mod 2",
z=—2n=mAr L on=lin (1), z = —2m~" 4 2™~ "+ in (1),

z=—2" 42" in (III).

LEMMA 3.11. Let a1,as,b,c,d be as above. Assume thatn #r andr 2> 2.
Then
(1) ¢ =c lal, ¢ = c5a%1, cd =2
(2) b2 = bil, b22 = bS’bd’ — bk,'
(3) ¢ = cfaytb*dv.

PROOF. (1) Let N = 'K and M = [H,Qp_p(K)]2n_r(K). Then
ar,a2,d € Nawa(N) N Nawa(M), ¢ € Awtd(G) and h == 2712 € M.
By Lemmas 2.1, 2.4, 3.7 and 3.3 we get ¢¢ = g(gN)* (g € G), (#'N)* =
p*''HFeHl (j € N). By Lemma 2.8 (3) we get the last relation. Now we
use Lemma 2.8 (1) to get the first two relations: in (I) we have [h,z] =

[vy2" """ 2] = 1; in (A1) since [h,2] = [y,2] = 22" ", we obtain
((Iale)/\) e AU N S
(@ NPy =y

n (W) since [h,a] = [y*" """, 2] = 272", by Lemma 2.8 (1) we obtain

((xalle)/\)al _ $2’Ly—2"*’"+7', ((xazN))\)zn*l —_ x—2"+1y5~2"”"+".

(2) Note that z® = z and y® = yz'*t2""" in (I), y® = y2®" " in (II),
yP =y T (III) Let Q = (z). Then aj,a2,d € Nauc(Q),b €
Aut 8( andh:zylbeQ By Lemmas 2.1, 2.4, 3.7 and 3.3 we get
9" = 9(9Q) (g € G), (@) = W' "++ (i € N). By Lemma 2.8 (3)
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we obtain the first two relations. Now we use Lemma 2.8 (2) to get the last
relation: in (I) since [h,y] = [21+2" ", y] = 22" "(+2"7") we obtain

—1 m—r s m—r m—ryor—1 or
((de)/\)d _ (1,1+2 )1+2 . 1,2 (142 )2 (2"+1)
— (2 (12 2m ),
Y

in (II) We get [h; y] = [x27"77‘7y] — 17 in (III) since [h; y] = [1‘27"77”,_22"17”7?, y]
_ x2m—7 (2m—n+2 m—nf'r) we Obtain

((de))\)d—l _ ($277L77L+227n7n—7~)1+27'1‘2771,77'(2771.771.+227n7n77')(27'+1)27'71

_ (1'27"77L+227n7n77')1+27'

(3) The direct computations with the help of Lemma 3.1 give the relation.
O

THEOREM 3.12. Let G be as above and m =2 3, n =2 1, 1 < r <
min{m — 2,n}, n #r and r = 2. Then Aut G can be given by the following
presentation, where the relations with commuting generators are omitted:
Aut G = (aj,as,b,c,d]a;? = ap2" " = pmn i o T g2ttt o
1,c™ =clab, ¢ =cPad,cd =2 bt =bL, b2 =b5 bd ' = bk P =
c®aptb*dv).

4. METACYCLIC MINIMAL NONABELIAN 2-GROUPS

In this section we will deal with groups G = (z,y | 22" =4?" =1, 2¥ =
2277 where myn €N, m = 2,n > 1. So G = H x K is a split metacyclic
2-group, where H = (z) and K = (y).

First assume that n =2 m = 3. We define automorphisms of G on
generators as follows

rTo =T o, TO=T, Y =Y =Y
b _ b_ ) TY, Zm .
z’ =z, = gm—n ;
Yy, n<m
P m>n c
r = gn—m-+1 < , Y =Y
Yy, mz=n
M =P =g, yh =y gl =y

By Theorems 3.6, 3.9 and Lemma 3.8 it is clear that Aut G = FABD and
each automorphism ¢ of G can be presented uniquely as ¢ = afvd, where
a€ F,fe€A~e€B,deD. Itis clear that A = (aj,a2), B =(b), D=
(d1,d2) and AD is abelian. It is evident that G = HK = KH, so if g € G,
then g = kh for some k € K;h € H. In the proof of Lemma 4.1(2) we will
use also this reverse notation of elements of G.



162 I. MALINOWSKA

LEMMA 4.1. Letaq,a0,b,c,di,ds be as above. Assume thatm = 3, n = 3.
Then

(1) ¢ =clagh, ¢ =c% ¢t =c7! ¢d2 =5, wherei =0 whenm >n
and i = 2™73 when m < n;

(2) b2 = bil, b2z = b5,bd1 — b*lvbd271 — b5}.

(3) if n—m > 1, then c® = c®ax'b=2" """ dy", where s,t,w are such that
s =5 =(1—2"""H)~1 mod 2™, 5% =1 — 2"+ mod 2";

(4) if m =n, then c® = c_1a1a22mfab_2+2m*1d1;

(5) if m —n > 1, then c® = c®axtb=2" "dY, where s,t,w are such that
s=5=(1-2m"")"1 mod 2™, 5 =1—2""" mod 2";

(6) if m=n+1, then c® = clajan2" T2+ g,

PRrOOF. (1) Let N = 'K and M = [H,Qp_(K)]n_r(K). Then
ar, A € Nawwg(N) N Nawa(M) (k=1,2) , c € AwtN(G) and h =z~ 1z¢ €
M. By Lemmas 2.1, 2.4, 3.7 and 3.3 we get ¢° = g(gN)* (g € G), (' N)* =
hx'"'H-Fe+1 (i € N). For the first two relations see the proof of Lemma 3.11
(1) with r = 1. By Lemma 2.8 (3) we obtain the last two relation.

(2) Note that 2 = 2 and y®» = y2'™2" " when n = m, ¢P
yr?" " when m > n. Let Q = (z). Then ay,dx € Nawa(Q) (k =
1,2), b € Autg(G) and y~'y® € Q. By Lemmas 2.1, 2.4, 3.7 and 3.3
we get ¢* = g(9Q)* (9 € G), (4'Q* = W T (i € N). By
Lemma 2.8 (3) we obtain the first two relations. Now we will use Lemma
2.8 (2) to get the last two relations: if m > n then [y?" ",y] = 1,
so we get the last two relations; if m < n, then [z'T2" |y = 22"
and we get ((ydlle)A)d1 = (g1T2"TH2" 12" TR -DE@TISD) = g1 g
((deN)A)d,;l _ (x1+2’"*1)5x2’"*110 _ (x1+2’"*1)5.

(3)-(6) The direct computations with the help of Lemma 3.1 give the
relations. o

In the next theorems the relations with commuting generators are
omitted.

THEOREM 4.2. Let G be as above and m,n = 3. Then Aut G can be given
by the following presentation: AutG = (aj,ag,b,c,dy,dy|a;? = a2" " =
I B L Lem = clagf, ¢ = %, ¢l =
¢ lcd2 =c5 b =b~! b2 =bd bl =b~! bd2 ' =b% P =aq), where i
is given in Lemma 4.1 and « is the appropriate relation in (3)-(4) of Lemma

4.1.

If m =2 and n =1, then G = Aut G is dihedral of order 8.
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Now assume that m > n = 2. We define automorphisms of G on
generators as follows
m—2
=7t =20 Y=y =y 2=, P =2 Ty

“=zy, Y=y at=uz, Y=y
THEOREM 4.3. Let G be as above and m > n = 2. Then AutG can be
given by the following presentation:

(1) if m > 3, then Aut G = (aj,a,b,c,d|a;? = 22" T =bli=ct=q2 =
Le =clag?" ™’ ¢d=c 1 bm = b1, bd = b1, b¢ = bayt), where
5t =1 —2m"2 mod 2™;

(2) if m = 3, then AutG = (aj,ag,b,c,d|a;? = as? = bt = ¢t = d? =
e =c lag, cd=c7 1, b =b~ 1 bd =b~! P = clajayd).

Now assume that m = 3, n = 1. We define automorphisms of G on
generators as follows

al __ —1 ag 5 al __ az __ .
ro=x , < =y =Y

b _ b_  2m . c _ c _
r=T, Yy =z Yy, T =2y, Y =Y.

THEOREM 4.4. Let G be as above and m = 3,n = 1. Then AutG can

be given by the following presentation: AutG = (aj,ag,b,c/| a2 = a227"72 =
b2 =2 =1,c" =cay?" , ® =cay?" ).
Now assume that m = n = 2. We define automorphisms of G on

generators as follows

a —1

r =2 b b

s Y=y =,y =y
e =wxy?, Y=y at=w, yl=yoh

THEOREM 4.5. Let G be as above and m = n = 2. Then AutG can be
given by the following presentation: AutG = (a,b,c,d|a? =b* =c? =d? =
1,b* =b~1, b® =bd).
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