WEIGHTED VARIABLE EXPONENT AMALGAM SPACES $W(L^{p(x)},L^q_w)$

İSMAIL AYDIN AND A. TURAN GÜRKANLI Sinop University and Ondokuz Mayıs University, Turkey

ABSTRACT. In the present paper a new family of Wiener amalgam spaces $W(L^{p(x)}, L^q_w)$ is defined, with local component which is a variable exponent Lebesgue space $L^{p(x)}(\mathbb{R}^n)$ and the global component is a weighted Lebesgue space $L^q_w(\mathbb{R}^n)$. We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Hölder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space $W(L^{p(x)}, L^q_w)$ into itself.

1. INTRODUCTION

A number of authors worked on amalgam spaces or some special cases of these spaces. The first appearance of amalgam spaces can be traced to N. Wiener ([22]). But the first systematic study of these spaces was undertaken by F. Holland ([17,18]). The *amalgam* of L^p and l^q on the real line is the space (L^p, l^q) (\mathbb{R}) (or shortly (L^p, l^q)) consisting of functions f which are locally in L^p and have l^q behavior at infinity in the sense that the norms over [n, n + 1] form an l^q -sequence. For $1 \leq p, q \leq \infty$ the norm

$$\left\|f\right\|_{p,q} = \left[\sum_{n=-\infty}^{\infty} \left[\int_{n}^{n+1} |f(x)|^{p} dx\right]^{\frac{q}{p}}\right]^{\frac{1}{q}} < \infty$$

makes (L^p, l^q) into a Banach space. If p = q then (L^p, l^q) reduces to L^p . A generalization of Wiener's definition was given by H. G. Feichtinger in [9],

²⁰¹⁰ Mathematics Subject Classification. 42B25,42B35.

 $Key\ words\ and\ phrases.$ Variable exponent Lebesgue space, Hardy-Littlewood maximal function, Wiener amalgam space.

¹⁶⁵

describing certain Banach spaces of functions (or measures, distributions) on locally compact groups by global behaviour of certain local properties of their elements. C. Heil in [16] gave a good summary of results concerning amalgam spaces with global components being weighted $L^q(\mathbb{R})$ spaces. For a historical background of amalgams see [15].

Let $p : \mathbb{R}^n \to [1, \infty)$ be a measurable function (called the *variable exponent* on \mathbb{R}^n). We put

$$p_* = \operatorname{ess inf}_{x \in \mathbb{R}^n} p(x), \qquad p^* = \operatorname{ess sup}_{x \in \mathbb{R}^n} p(x).$$

The variable exponent Lebesgue space (or generalized Lebesgue space) $L^{p(x)}(\mathbb{R}^n)$ is defined to be the space of measurable functions (equivalence classes) f such that

$$\rho_p(\lambda f) = \int_{\mathbb{R}^n} |\lambda f(x)|^{p(x)} \, dx < \infty$$

for some $\lambda = \lambda(f) > 0$. The function ρ_p is called *modular* of the space $L^{p(x)}(\mathbb{R}^n)$. Then

$$||f||_{L^{p(x)}} = \inf \{\lambda > 0 : \rho_p(f/\lambda) \le 1\}$$

defines a norm (Luxemburg norm). This makes $L^{p(x)}(\mathbb{R}^n)$ a Banach space. If p(x) = p is a constant function, then the variable exponent Lebesgue space $L^{p(x)}(\mathbb{R}^n)$ coincides with the classical Lebesgue space $L^p(\mathbb{R}^n)$, see [19]. Also there are recent many interesting and important papers appeared in variable exponent Lebesgue spaces (see [3–5,7,8]). In this paper we will assume that $p^* < \infty$.

The space $L^1_{loc}(\mathbb{R}^n)$ consists of all (classes of) measurable functions f on \mathbb{R}^n such that $f\chi_K \in L^1(\mathbb{R}^n)$ for any compact subset $K \subset \mathbb{R}^n$, where χ_K is the characteristic function of K. It is a topological vector space with the family of seminorms $f \mapsto \|f\chi_K\|_{L^1}$. A Banach function space (shortly BF-space) on \mathbb{R}^n is a Banach space $(B, \|.\|_B)$ of measurable functions which is continuously embedded into $L^1_{loc}(\mathbb{R}^n)$, that is for any compact subset $K \subset \mathbb{R}^n$ there exists some constant $C_K > 0$ such that $\|f\chi_K\|_{L^1} \leq C_K \|f\|_B$ for all $f \in B$ and two functions equal almost everywhere are identified as usual. We denote it by $B \hookrightarrow L^1_{loc}(\mathbb{R}^n)$. Obviously $L^{p(x)}(\mathbb{R}^n) \hookrightarrow L^1_{loc}(\mathbb{R}^n)$ and the space $L^{p(x)}(\mathbb{R}^n)$ is a solid space, that is , if $f \in L^{p(x)}(\mathbb{R}^n)$ and $\|g\|_{L^{p(x)}} \leq \|f\|_{L^{p(x)}}$ by [1, Lemma 1].

A positive, measurable and locally integrable function $\vartheta : \mathbb{R}^n \to (0, \infty)$ is called a *weight function*. We say that a weight function ϑ is submultiplicative if

$$\vartheta(x+y) \le \vartheta(x)\vartheta(y)$$

for any $x, y \in \mathbb{R}^n$. A weight function w is *moderate* with respect to a submultiplicative function ϑ (or ϑ -moderate) if

$$w(x+y) \le w(x)\vartheta(y)$$

for any $x, y \in \mathbb{R}^n$. If the weight w is moderate than 1/w is also moderate. We say that $w_1 \prec w_2$ if there exists a constant C > 0 such that $Cw_1(x) \leq w_2(x)$ for all $x \in \mathbb{R}^n$. Two weight functions are called *equivalent* and written $w_1 \approx w_2$, if $w_1 \prec w_2$ and $w_2 \prec w_1$. The space $L^q_w(\mathbb{R}^n)$ (weighted $L^q(\mathbb{R}^n)$) is the space of all complex-valued measurable functions on \mathbb{R}^n for which $fw \in L^q(\mathbb{R}^n)$. Obviously $\left(L^q_w(\mathbb{R}^n), \|.\|_{L^q_w}\right)$ is a Banach space with the norm

$$\|f\|_{L^q_w} = \|fw\|_{L^q} = \left\{ \int_{\mathbb{R}^n} |f(x)w(x)|^q \, dx \right\}^{\frac{1}{q}}, \quad 1 \le q < \infty$$

or

$$\|f\|_{L^\infty_w} = \|fw\|_{L^\infty} = \mathop{ess\,\rm{sup}}_{x\in\mathbb{R}^n} |f(x)|\,w(x), \quad q = \infty.$$

Also the dual of the space $L_w^q(\mathbb{R}^n)$ is the space $L_{w^{-1}}^s(\mathbb{R}^n)$, where $1 \leq q < \infty$, $\frac{1}{q} + \frac{1}{s} = 1$ (see [12, 14, 16]).

Given a discrete family $X = (x_i)_{i \in I}$ in \mathbb{R}^n and a weighted space $L_w^q(\mathbb{R}^n)$, the associated weighted sequence space over X is the appropriate weighted ℓ^q space ℓ_w^q , the discrete w being given by $w(i) = w(x_i)$ for $i \in I$ (see [11, Lemma 3.5]).

2. The Wiener Amalgam Space $W(L^{p(x)}, L^q_w)$

Let $C_b(\mathbb{R}^n)$ be the the regular Banach algebra (with respect to pointwise multiplication) of complex-valued bounded, continuous functions on \mathbb{R}^n . Also let $C_0(\mathbb{R}^n)$, $C_c(\mathbb{R}^n)$ be the spaces of complex-valued continuous function \mathbb{R}^n vanishing at infinity and the space of complex-valued continuous functions with compact support defined on \mathbb{R}^n endowed with its natural inductive limit topology respectively. It is known that $(C_0, \|.\|_{\infty}) \hookrightarrow (C_b, \|.\|_{\infty})$ and the dual space of $C_c(\mathbb{R}^n)$ (with respect to its natural inductive limit topology) is $M(\mathbb{R}^n)$, the space of regular Borel measures. For every $h \in C_c(\mathbb{R}^n)$ we define the semi-norm q_h on $M(\mathbb{R}^n)$ by $q_h(h') = h'(h)$. The locally convex topology on $M(\mathbb{R}^n)$ defined by the family $(q_h)_{h \in C_c(\mathbb{R}^n)}$ of seminorms is called the topology $\sigma(M(\mathbb{R}^n), C_c(\mathbb{R}^n))$ or weak*-topology, also called vague topology. We define

$$L_{loc}^{p(x)}(\mathbb{R}^n) = \left\{ \sigma \in M(\mathbb{R}^n) : \phi \sigma \in L^{p(x)}(\mathbb{R}^n) \text{ for all } \phi \in C_c(\mathbb{R}^n) \right\}.$$

 $L_{loc}^{p(x)}(\mathbb{R}^{n})$ is a topological vector space with respect to the family of seminorms given by $\|\sigma\|_{\phi} = \|\phi\sigma\|_{L^{p(x)}}, \phi \in C_{c}(\mathbb{R}^{n}).$

It is known by [1, Lemma 1] that $L^{p(x)}(\mathbb{R}^n)$ is continuously embedded into $L^1_{loc}(\mathbb{R}^n)$. Hence it is easily shown that $L^{p(x)}_{loc}(\mathbb{R}^n)$ is continuously embedded into $L^1_{loc}(\mathbb{R}^n)$. It is also obvious that $L^1_{loc}(\mathbb{R}^n)$ is continuously embedded into $M(\mathbb{R}^n)$ with the weak*-topology. Therefore $L^{p(x)}_{loc}(\mathbb{R}^n)$ is continuously embedded into $M(\mathbb{R}^n)$.

Since the general hypotheses for the Wiener amalgam space denoted by $W\left(L^{p(x)}\left(\mathbb{R}^{n}\right), L_{w}^{q}\left(\mathbb{R}^{n}\right)\right)$ (shortly $W\left(L^{p(x)}, L_{w}^{q}\right)$) are satisfied, it is defined as follows as in [9].

Let fix an open set $Q \subset \mathbb{R}^n$ with compact closure. The Wiener amalgam space $W\left(L^{p(x)}, L^q_w\right)$ consists of all elements $f \in L^{p(x)}_{loc}(\mathbb{R}^n)$ such that $F_f(z) =$ $\|f\|_{L^{p(x)}(z+Q)}$ belongs to $L^q_w(\mathbb{R}^n)$; the norm of $W\left(L^{p(x)}, L^q_w\right)$ is

$$||f||_{W(L^{p(x)},L^q_w)} = ||F_f||_{L^q_w}$$

In this definition $\|f\|_{L^{p(x)}(z+Q)}$ denotes the restriction norm of f to z+Q, that is

 $\|f\|_{L^{p(x)}(z+Q)}$

$$= \inf \left\{ \left\| g \right\|_{L^{p(x)}} \colon \begin{array}{l} g \in L^{p(x)}\left(\mathbb{R}^{n}\right), g \text{ coincides with } f \text{ on } z + Q, \text{ i.e.,} \\ hf = hg \text{ for all } h \in C_{C}\left(\mathbb{R}^{n}\right) \text{ with } \operatorname{supp}\left(h\right) \subset z + Q \right\}.$$

By the solidity of the BF-space the assumptions imply

$$\|f\|_{L^{p(x)}(z+Q)} = \|f\chi_{z+Q}\|_{L^{p(x)}}$$

The following theorem, based on [9, Theorem 1], describes the basic properties of $W(L^{p(x)}, L^q_w)$.

Theorem 2.1.

- i) $W\left(L^{p(x)}, L_w^q\right)$ is a Banach space with norm $\|.\|_{W\left(L^{p(x)}, L_w^q\right)}$.
- ii) $W(L^{p(x)}, L^q_w)$ is continuously embedded into $L^{p(x)}_{loc}(\mathbb{R}^n)$.

iii) The space

$$\Lambda_{0} = \left\{ f \in L^{p(x)}\left(\mathbb{R}^{n}\right) : supp\left(f\right) \text{ is compact} \right\}$$

is continuously embedded into $W(L^{p(x)}, L^q_w)$.

iv) $W(L^{p(x)}, L^q_w)$ does not depend on the particular choice of Q, i.e. different choices of Q define the same space with equivalent norms.

By iii) and [1, Lemma 4] it is easy to see that $C_c(\mathbb{R}^n)$ is continuously embedded into $W(L^{p(x)}, L^q_w)$.

By using the techniques in [13], we prove the following proposition.

PROPOSITION 2.2. $W(L^{p(x)}, L^q_w)$ is a solid BF-space on \mathbb{R}^n .

PROOF. Let $K \subset \mathbb{R}^n$ be a compact subset. Since $C_0(\mathbb{R}^n)$ is a regular Banach algebra with respect to pointwise multiplication one may choose a function $h_0 \in C_c(\mathbb{R}^n)$ with $0 \leq h_0(x) \leq 1$ and $h_0(x) = 1$ for all $x \in K$. Let $\operatorname{supp}(h_0) = K_0$. Then $\chi_K(x) \leq h_0(x)$ and hence $\chi_K(x) |f(x)| \leq h_0(x) |f(x)|$ for all $x \in \mathbb{R}^n$. Since $L^{p(x)}(\mathbb{R}^n) \hookrightarrow L^1_{loc}(\mathbb{R}^n)$, there exists $D_{K_0} > 0$ such that

(2.1)
$$\int_{K_0} |h_0(x)f(x)| \, dx \le D_{K_0} \, \|h_0 f\|_{L^{p(x)}}$$

Since $K \subset K_0$

(2.2)
$$\int_{K} |f(x)| \, dx \leq \int_{K_0} |h_0(x)f(x)| \, dx.$$

On the other hand by Theorem 2.1 ii), $W(L^{p(x)}, L^q_w) \hookrightarrow L^{p(x)}_{loc}(\mathbb{R}^n)$. Hence for this $h_0 \in C_c(\mathbb{R}^n)$ there exists a constant number $D_{h_0} > 0$ such that

(2.3)
$$p_{h_0}(f) = \|h_0 f\|_{L^{p(x)}} \le D_{h_0} \|f\|_{W(L^{p(x)}, L^q_w)}$$

for all $f \in W(L^{p(x)}, L^q_w)$. Combining (2.1), (2.2) and (2.3) we obtain

$$\int_{K} |f(x)| dx \leq \int_{K_{0}} |h_{0}(x)f(x)| dx \leq D_{K_{0}} ||h_{0}f||_{L^{p(x)}} \\
\leq D_{K_{0}} D_{h_{0}} ||f||_{W(L^{p(x)}, L^{q}_{w})} = C_{K} ||f||_{W(L^{p(x)}, L^{q}_{w})}.$$

It is easy to show that $W(L^{p(x)}, L^q_w)$ is solid.

PROPOSITION 2.3. Let w_1 , w_2 and w_3 be weight functions. Suppose that there exist constants $C_1, C_2 > 0$ such that

$$\forall h \in L^{p_1(x)}(\mathbb{R}^n), \forall k \in L^{p_2(x)}(\mathbb{R}^n), \quad \|hk\|_{L^{p_3(x)}} \le C_1 \|h\|_{L^{p_1(x)}} \|k\|_{L^{p_2(x)}}$$

and

$$\forall u \in L_{w_1}^{q_1}\left(\mathbb{R}^n\right), \forall v \in L_{w_2}^{q_2}\left(\mathbb{R}^n\right), \quad \|uv\|_{L_{w_3}^{q_3}} \le C_2 \|u\|_{L_{w_1}^{q_1}} \|v\|_{L_{w_2}^{q_2}}.$$

Then there exists C > 0 such that for all $f \in W(L^{p_1(x)}, L^{q_1}_{w_1})$ and $g \in W(L^{p_2(x)}, L^{q_2}_{w_2})$ we have

$$\|fg\|_{W\left(L^{p_3(x)}, L^{q_3}_{w_3}\right)} \le C \,\|f\|_{W\left(L^{p_1(x)}, L^{q_1}_{w_1}\right)} \,\|g\|_{W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right)}.$$

In other words

$$W\left(L^{p_1(x)}, L^{q_1}_{w_1}\right) \cdot W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right) \subset W\left(L^{p_3(x)}, L^{q_3}_{w_3}\right).$$

İ. AYDIN AND A. TURAN GÜRKANLI

PROOF. Let $f \in W(L^{p_1(x)}, L^{q_1}_{w_1})$ and $g \in W(L^{p_2(x)}, L^{q_2}_{w_2})$. Then $\|fg\|_{W(L^{p_3(x)}, L^{q_3}_{w_3})} = \|\|fg\chi_{z+Q}\|_{L^{p_3(x)}}\|_{L^{q_3}_{w_3}}$ $(2.4) = \|\|(f\chi_{z+Q})(g\chi_{z+Q})\|_{L^{p_3(x)}}\|_{L^{q_3}_{w_3}}$ $\leq C_1 \|\|f\chi_{z+Q}\|_{L^{p_1(x)}} \|g\chi_{z+Q}\|_{L^{p_2(x)}}\|_{L^{q_3}_{w_3}}$

If we put

$$F_f(z) = \|f\chi_{z+Q}\|_{L^{p_1(x)}}$$
 and $F_g(z) = \|g\chi_{z+Q}\|_{L^{p_2(x)}}$,

by (2.4) we obtain

$$\begin{split} \|fg\|_{W\left(L^{p_{3}(x)},L^{q_{3}}_{w_{3}}\right)} &\leq C_{1} \|F_{f}F_{g}\|_{L^{q_{3}}_{w_{3}}} \leq C_{1}C_{2} \|F_{f}\|_{L^{q_{1}}_{w_{1}}} \|F_{g}\|_{L^{q_{2}}_{w_{2}}} \\ &= C_{1}C_{2} \|f\|_{W\left(L^{p_{1}(x)},L^{q_{1}}_{w_{1}}\right)} \|g\|_{W\left(L^{p_{2}(x)},L^{q_{2}}_{w_{2}}\right)} \\ &= C \|f\|_{W\left(L^{p_{1}(x)},L^{q_{1}}_{w_{1}}\right)} \|g\|_{W\left(L^{p_{2}(x)},L^{q_{2}}_{w_{2}}\right)} \,. \end{split}$$

COROLLARY 2.4. Define k(x) by $\frac{1}{p(x)} + \frac{1}{r(x)} = \frac{1}{k(x)} \le 1$ and suppose $k^* < \infty, \frac{1}{q} + \frac{1}{s} = 1$. Then there exists a constant C > 0 such that

$$\|fg\|_{W(L^{k(x)},L^{1})} \leq C \,\|f\|_{W(L^{p(x)},L^{q}_{w})} \,\|g\|_{W(L^{r(x)},L^{s}_{w^{-1}})}$$

for all $f \in W\left(L^{p(x)}, L^q_w\right)$ and $g \in W\left(L^{r(x)}, L^s_{w^{-1}}\right)$. Thus

$$W\left(L^{p(x)}, L^{q}_{w}\right) W\left(L^{r(x)}, L^{s}_{w^{-1}}\right) \subset W\left(L^{k(x)}, L^{1}\right).$$

PROOF. Let $f \in W(L^{p(x)}, L^q_w)$ and $g \in W(L^{r(x)}, L^s_{w^{-1}})$. Then $f\chi_{z+Q} \in L^{p(x)}(\mathbb{R}^n)$ and $g\chi_{z+Q} \in L^{r(x)}(\mathbb{R}^n)$. Thus there exists C(z) > 0 such that

(2.5) $\|fg\chi_{z+Q}\|_{L^{k(x)}} \le C(z) \|f\chi_{z+Q}\|_{L^{p(x)}} \|g\chi_{z+Q}\|_{L^{r(x)}}$

by [20, Lemma 2.18]. Also it is known by [20, Lemma 2.18] that $C(z) \leq 2k^* = C < \infty$. Since $L^1(\mathbb{R}^n)$ is solid, then by (2.5)

(2.6)
$$\|fg\|_{W(L^{k(x)},L^{1})} \leq 2k^{*} \|\|f\chi_{z+Q}\|_{L^{p(x)}} \|g\chi_{z+Q}\|_{L^{r(x)}} \|_{L^{1}}$$
$$= C \|\|f\chi_{z+Q}\|_{L^{p(x)}} \|g\chi_{z+Q}\|_{L^{r(x)}} \|_{L^{1}}.$$

Finally since $\|f\chi_{z+Q}\|_{L^{p(x)}} \in L^q_w(\mathbb{R}^n)$, $\|g\chi_{z+Q}\|_{L^{r(x)}} \in L^s_{w^{-1}}(\mathbb{R}^n)$, by the Hölder inequality and (2.6) we obtain

$$\|fg\|_{W(L^{k(x)},L^{1})} \leq C \|f\|_{W(L^{p(x)},L^{q}_{w})} \|g\|_{W(L^{r(x)},L^{s}_{w^{-1}})}.$$

PROPOSITION 2.5. a) If $p_1(x) \le p_2(x)$, $q_2 \le q_1$ and $w_1 \prec w_2$, then $W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right) \subset W\left(L^{p_1(x)}, L^{q_1}_{w_1}\right)$. b) If $p_1(x) \le p_2(x)$, $q_2 \le q_1$ and $w_1 \prec w_2$, then

$$W\left(L^{p_1(x)} \cap L^{p_2(x)}, L^{q_2}_{w_2}\right) \subset W\left(L^{p_1(x)}, L^{q_1}_{w_1}\right).$$

c) If $w_1 \prec w_2$, then

$$L_{w_{2}}^{p^{*}}(\mathbb{R}^{n}) \subset W\left(L^{p(x)}, L_{w_{1}}^{p^{*}}\right) \text{ and } W\left(L^{p(x)}, L_{w_{2}}^{p_{*}}\right) \subset L_{w_{1}}^{p_{*}}(\mathbb{R}^{n})$$

PROOF. a) Let $f \in W(L^{p_2(x)}, L^{q_2}_w)$ be given. Since $p_1(x) \leq p_2(x)$, then $L^{p_2(x)}(z+Q) \hookrightarrow L^{p_1(x)}(z+Q)$ and

(2.7)
$$\|f\chi_{z+Q}\|_{L^{p_1(x)}} \leq (\mu(z+Q)+1) \|f\chi_{z+Q}\|_{L^{p_2(x)}} \\ = (\mu(Q)+1) \|f\chi_{z+Q}\|_{L^{p_2(x)}}$$

for all $z \in \mathbb{R}^n$ by [19, Theorem 2.8], where μ is the Lebesgue measure. Hence by (2.7) and the solidity of $L^{q_2}_{w_2}(\mathbb{R}^n)$ we have

$$W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right) \subset W\left(L^{p_1(x)}, L^{q_2}_{w_2}\right).$$

It is known by [11, Proposition 3.7], that

$$W\left(L^{p_1(x)}, L^{q_2}_{w_2}\right) \subset W\left(L^{p_1(x)}, L^{q_1}_{w_1}\right)$$

if and only if $\ell_{w_2}^{q_2} \subset \ell_{w_1}^{q_1}$, where $\ell_{w_2}^{q_2}$ and $\ell_{w_1}^{q_1}$ are the associated sequence spaces of $L_{w_2}^{q_2}(\mathbb{R}^n)$ and $L_{w_1}^{q_1}(\mathbb{R}^n)$ respectively. Since $q_2 \leq q_1$ and $w_1 \prec w_2$, then $\ell_{w_2}^{q_2} \subset \ell_{w_1}^{q_1}([13])$. This completes the proof.

b) The proof of this part is easy by a).

c) By using a) and [16, Proposition 11.5.2], we have

$$L_{w_{2}}^{p^{*}}(\mathbb{R}^{n}) = W\left(L^{p^{*}}, L_{w_{2}}^{p^{*}}\right) \subset W\left(L^{p(x)}, L_{w_{2}}^{p^{*}}\right).$$

Since $w_1 \prec w_2$, then $\ell_{w_2}^{p^*} \subset \ell_{w_1}^{p^*}$ ([12]). Hence

$$L_{w_2}^{p^*}\left(\mathbb{R}^n\right) \subset W\left(L^{p(x)}, L_{w_1}^{p^*}\right).$$

Similarly we can prove

$$W\left(L^{p(x)}, L^{p_*}_{w_2}\right) \subset L^{p_*}_{w_1}\left(\mathbb{R}^n\right).$$

Π

The following lemma follows directly from the closed graph theorem.

LEMMA 2.6. If $p_1^*, p_2^* < \infty$, then $L^{p_1(x)}(\mathbb{R}^n) \subset L^{p_2(x)}(\mathbb{R}^n)$ if and only if there exists a constant C > 0 such that $\|f\|_{L^{p_2(x)}} \leq C \|f\|_{L^{p_1(x)}}$ for all $f \in L^{p_1(x)}(\mathbb{R}^n)$.

PROPOSITION 2.7. Let B be any solid space. If $q_2 \leq q_1$ and $w_1 \prec w_2$, then we have

$$W(B, L_{w_1}^{q_1} \cap L_{w_2}^{q_2}) = W(B, L_{w_2}^{q_2}).$$

PROOF. It is easy to see that the associated sequence space of $L_{w_1}^{q_1}(\mathbb{R}^n) \cap L_{w_2}^{q_2}(\mathbb{R}^n)$ is $\ell_{w_1}^{q_1} \cap \ell_{w_2}^{q_2}$. Since $q_2 \leq q_1$ and $w_1 \prec w_2$, thus the associated sequence space of $L_{w_1}^{q_1}(\mathbb{R}^n) \cap L_{w_2}^{q_2}(\mathbb{R}^n)$ is $\ell_{w_2}^{q_2}$. Then by [11, Proposition 3.7]

$$W\left(B, L_{w_1}^{q_1} \cap L_{w_2}^{q_2}\right) = W\left(B, L_{w_2}^{q_2}\right).$$

COROLLARY 2.8. a) If $p_1^*, p_2^* < \infty$, $L^{p_1(x)}(\mathbb{R}^n) \subset L^{p_2(x)}(\mathbb{R}^n)$, $q_2 \leq q_1$, $q_4 \leq q_3, q_4 \leq q_2, w_1 \prec w_2, w_3 \prec w_4$ and $w_2 \prec w_4$, then

$$W\left(L^{p_1(x)}, L^{q_3}_{w_3} \cap L^{q_4}_{w_4}\right) = W\left(L^{p_1(x)}, L^{q_4}_{w_4}\right) \subset W\left(L^{p_2(x)}, L^{q_1}_{w_1} \cap L^{q_2}_{w_2}\right)$$
$$= W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right).$$

b) If
$$p_1(x) \le p_2(x)$$
, $q_1 \le q_2$ and $w_2 \prec w_1$, then
 $W\left(L^{p_1(x)} \cap L^{p_2(x)}, L^{q_1}_{w_1}\right) \subset W\left(L^{p_2(x)}, L^{q_2}_{w_2}\right)$.

A general interpolation theorem in Wiener Amalgam space has been given by H. Feichtinger (see [10, Theorem 2.2]). We will give a similar theorem for $W(L^{p(x)}, L^q_w)$ next:

PROPOSITION 2.9. If $p_0(x)$ and $p_1(x)$ are variable exponents with $1 < p_{j,*} \le p_j^* < \infty$, j = 0, 1. Then, for $\theta \in (0, 1)$, we have

$$\begin{bmatrix} W\left(L^{p_{0}(x)}, L^{q_{0}}_{w_{0}}\right), W\left(L^{p_{1}(x)}, L^{q_{1}}_{w_{1}}\right) \end{bmatrix}_{[\theta]} = W\left(\left[L^{p_{0}(x)}, L^{p_{1}(x)}\right]_{[\theta]}, L^{q_{\theta}}_{w}\right)$$
$$= W\left(L^{p_{\theta}(x)}, L^{q_{\theta}}_{w}\right)$$

where $\frac{1}{p_{\theta}(x)} = \frac{1-\theta}{p_{0}(x)} + \frac{\theta}{p_{1}(x)}, \ \frac{1}{q_{\theta}} = \frac{1-\theta}{q_{0}} + \frac{\theta}{q_{1}}, \ w = w_{0}^{1-\theta}w_{1}^{\theta}.$

Proof. By [10, Theorem 2.2] the interpolation space

 $\left[W\left(L^{p_{0}(x)}, L^{q_{0}}_{w_{0}}\right), W\left(L^{p_{1}(x)}, L^{q_{1}}_{w_{1}}\right)\right]_{[\theta]}$

for $(W(L^{p_0(x)}, L^{q_0}_{w_0}), W(L^{p_1(x)}, L^{q_1}_{w_1}))$ is $W([L^{p_0(x)}, L^{p_1(x)}]_{[\theta]}, [L^{q_0}_{w_0}, L^{q_1}_{w_1}]_{[\theta]})$. We know that $[L^{q_0}_{w_0}, L^{q_1}_{w_1}]_{[\theta]} = L^{q_\theta}_w$, [2] and by [6, Corollary A.2] that $[L^{p_0(x)}, L^{p_1(x)}]_{[\theta]} = L^{p_\theta(x)}$.

3. The Hardy-Littlewood maximal function on $W\left(L^{p(x)}, L^{q}_{w}\right)(\mathbb{R}^{n})$

We use the notation $B_r(x)$ to denote the open ball centered at x of radius r. For a locally integrable function f on \mathbb{R} , we define the (centered) Hardy-Littlewood maximal function Mf of f by

(3.1)
$$Mf(x) = \sup_{r>0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} |f(y)| \, dy.$$

where the supremum is taken over all balls $B_r(x)$ and $\mu(B_r(x))$ denotes the Lebesgue measure of $B_r(x)$.

Although the local Hardy-Littlewood maximal function has been shown to be a bounded mapping on $L^{p(x)}$ over a bounded domain, it is not bounded on many of the amalgam spaces. We have the following result.

PROPOSITION 3.1. Let $p : \mathbb{R} \to [1, \infty), 1 \le q \le \infty$ and w is a weight function. If $\frac{1}{w} \in L^s(\mathbb{R})$ and $\frac{1}{q} + \frac{1}{s} = 1$ then the Hardy-Littlewood maximal function M is not bounded on $W(L^{p(x)}(\mathbb{R}), L^q_w(\mathbb{R}))$.

PROOF. Since $\frac{1}{w} \in L^{s}(\mathbb{R})$ and $\frac{1}{q} + \frac{1}{s} = 1$ then $L_{w}^{q}(\mathbb{R}) \subset L^{1}(\mathbb{R})$. Hence

(3.2)
$$W\left(L^{p(x)}\left(\mathbb{R}\right), L^{q}_{w}\left(\mathbb{R}\right)\right) \subset W\left(L^{p(x)}\left(\mathbb{R}\right), L^{1}\left(\mathbb{R}\right)\right) \subset L^{1}\left(\mathbb{R}\right).$$

Take the indicator function $\chi_{[-1,1]}$. It obvious by Theorem 2.1 iii) that $\chi_{[-1,1]} \in W(L^{p(x)}(\mathbb{R}), L^q_w(\mathbb{R}))$. By [21, Theorem 1] the Hardy-Littlewood maximal function $f \to M(f)$ is not bounded on $L^1(\mathbb{R})$. Also if $f \in L^1(\mathbb{R})$ is not identically zero then M(f) is never integrable on \mathbb{R} . This implies that the Hardy-Littlewood maximal function $M(\chi_{[-1,1]})$ is not in $L^1(\mathbb{R})$. Hence $M(\chi_{[-1,1]}) \notin W(L^{p(x)}(\mathbb{R}), L^q_w(\mathbb{R}))$. This completes the proof.

ACKNOWLEDGEMENTS.

The authors would like to thank to H. G. Feichtinger for his various comments on earlier versions of this paper.

References

- [1] I. Aydın and A. T. Gürkanlı, On some properties of the spaces $A_w^{p(x)}(\mathbb{R}^n)$, Proc. Jangjeon Math. Soc. **12** (2009), 141–155.
- [2] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- [3] D. Cruz Uribe and A. Fiorenza, L log L results for the maximal operator in variable L^p spaces, Trans. Amer. Math. Soc. 361, (2009), 2631–2647.
- [4] D. Cruz Uribe, A. Fiorenza, J. M. Martell and C. Perez Moreno, *The boundedness of classical operators on variable L^p spaces*, Ann. Acad. Sci. Fenn. Math. **31** (2006), 239–264.
- [5] L. Diening, Maximal function on generalized Lebesgue spaces L^{p(.)}, Math. Inequal. Appl. 7 (2004), 245–253.
- [6] L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, In FSDONA04 Proc. (Milovy, Czech Republic, 2004), 38–58.
- [7] L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), 1731–1768.
- [8] D. Edmunds, J. Lang, and A. Nekvinda, On $L^{p(x)}$ norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. **455** (1999), 219–225.
- H. G. Feichtinger, Banach convolution algebras of Wiener type, in Proc. Conf. functions, series, operators (Budapest, 1980), Colloq. Math. Soc. János Bolyai, North-Holland, 1983, 509–524.

- [10] H. G. Feichtinger, Banach spaces of distributions of Wiener's type and interpolation, in Proc. Conf. Functional analysis and approximation (Oberwolfach, 1980), Birkhäuser-Verlag, Basel-Boston, 1981, 153–165.
- [11] H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307– 340.
- [12] H. G. Feichtinger and A. T. Gürkanli, On a family of weighted convolution algebras, Internat. J. Math. Math. Sci. 13 (1990), 517–525.
- [13] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of Wiener type spaces, Internat. J. Math. Math. Sci. 19 (1996), 57–66.
- [14] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of weighted spaces, Math. Slovaca 46 (1996), 71–82.
- [15] J. J. Fournier and J. Stewart, Amalgams of L^p and ℓ^q , Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1–21.
- [16] C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi, 2003, 183–216.
- [17] F. Holland, Square-summable positive-definite functions on the real line, Linear Operators Approx. II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 247– 257.
- [18] F. Holland, Harmonic analysis on amalgams of L^p and ℓ^q , J. London Math. Soc. (2) **10** (1975), 295–305.
- [19] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. **41(116)** (1991), 592–618.
- [20] S. G. Samko, Convolution type operators in $L^{p(x)}$, Integral Transform. Spec. Funct. 7 (1998), 123–144.
- [21] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
- $\left[22\right]$ N. Wiener, Generalized harmonic analysis and Tauberian theorems, The M.I.T. Press, 1966.

İ. Aydin
Department of Mathematics
Faculty of Arts and Sciences
Sinop University
57000, Sinop
Turkey
E-mail: iaydin@sinop.edu.tr

A. Turan Gürkanli Department of Mathematics Faculty of Arts and Sciences Ondokuz Mayıs University 55139, Kurupelit, Samsun Turkey *E-mail:* gurkanli@omu.edu.tr *Received:* 26.2.2010.

 $Revised: \ \texttt{21.7.2010.} \quad \& \ \texttt{7.10.2010.}$