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Abstract. In the present paper a new family of Wiener amalgam
spaces W (Lp(x), L

q
w) is defined, with local component which is a variable

exponent Lebesgue space Lp(x) (Rn) and the global component is a
weighted Lebesgue space L

q
w (Rn) . We proceed to show that these Wiener

amalgam spaces are Banach function spaces. We also present new Hölder-
type inequalities and embeddings for these spaces. At the end of this
paper we show that under some conditions the Hardy-Littlewood maximal
function is not mapping the space W (Lp(x), L

q
w) into itself.

1. Introduction

A number of authors worked on amalgam spaces or some special cases of
these spaces. The first appearance of amalgam spaces can be traced to N.
Wiener ([22]). But the first systematic study of these spaces was undertaken
by F. Holland ([17, 18]). The amalgam of Lp and lq on the real line is the
space (Lp, lq) (R) (or shortly (Lp, lq) ) consisting of functions f which are
locally in Lp and have lq behavior at infinity in the sense that the norms
over [n, n+ 1] form an lq -sequence. For 1 ≤ p, q ≤ ∞ the norm

‖f‖p,q =







∞
∑

n=−∞





n+1
∫

n

|f (x)|
p
dx





q

p







1
q

< ∞

makes (Lp, lq) into a Banach space. If p = q then (Lp, lq) reduces to Lp. A
generalization of Wiener’s definition was given by H. G. Feichtinger in [9],
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describing certain Banach spaces of functions (or measures, distributions) on
locally compact groups by global behaviour of certain local properties of their
elements. C. Heil in [16] gave a good summary of results concerning amalgam
spaces with global components being weighted Lq (R) spaces. For a historical
background of amalgams see [15].

Let p : Rn → [1,∞) be a measurable function (called the variable exponent
on R

n). We put

p∗ = ess inf
x∈Rn

p(x), p∗ = ess sup
x∈Rn

p(x).

The variable exponent Lebesgue space (or generalized Lebesgue space)Lp(x)(Rn)
is defined to be the space of measurable functions (equivalence classes) f such
that

ρp(λf) =

∫

Rn

|λf(x)|
p(x)

dx < ∞

for some λ = λ (f) > 0. The function ρp is called modular of the space

Lp(x)(Rn). Then

‖f‖Lp(x) = inf {λ > 0 : ρp (f/λ) ≤ 1}

defines a norm (Luxemburg norm). This makes Lp(x)(Rn) a Banach space. If
p(x) = p is a constant function, then the variable exponent Lebesgue space
Lp(x)(Rn) coincides with the classical Lebesgue space Lp(Rn), see [19]. Also
there are recent many interesting and important papers appeared in variable
exponent Lebesgue spaces (see [3–5, 7, 8]). In this paper we will assume that
p∗ < ∞.

The space L1
loc (R

n) consists of all (classes of ) measurable functions f on
R

n such that fχK ∈ L1 (Rn) for any compact subset K ⊂ R
n, where χK is the

characteristic function of K. It is a topological vector space with the family
of seminorms f 7→ ‖fχK‖L1 . A Banach function space (shortly BF-space) on
R

n is a Banach space (B, ‖.‖B) of measurable functions which is continuously
embedded into L1

loc (R
n), that is for any compact subset K ⊂ R

n there exists
some constant CK > 0 such that ‖fχK‖L1 ≤ CK ‖f‖B for all f ∈ B and two
functions equal almost everywhere are identified as usual. We denote it by
B →֒ L1

loc (R
n) . Obviously Lp(x) (Rn) →֒ L1

loc (R
n) and the space Lp(x) (Rn)

is a solid space, that is , if f ∈ Lp(x)(Rn) is given and g ∈ L1
loc (R

n) satisfies

|g(x)| ≤ |f(x)| a.e., then g ∈ Lp(x)(Rn) and ‖g‖Lp(x) ≤ ‖f‖Lp(x) by [1, Lemma
1].

A positive, measurable and locally integrable function ϑ : Rn → (0,∞) is
called a weight function. We say that a weight function ϑ is submultiplicative
if

ϑ(x + y) ≤ ϑ(x)ϑ(y).
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for any x, y ∈ R
n. A weight function w is moderate with respect to a

submultiplicative function ϑ (or ϑ-moderate) if

w(x + y) ≤ w(x)ϑ(y)

for any x, y ∈ R
n. If the weight w is moderate than 1/w is also moderate.

We say that w1 ≺ w2 if there exists a constant C > 0 such that Cw1(x) ≤
w2(x) for all x ∈ R

n. Two weight functions are called equivalent and written
w1 ≈ w2, if w1 ≺ w2 and w2 ≺ w1. The space Lq

w (Rn) (weighted Lq (Rn)) is
the space of all complex-valued measurable functions on R

n for which fw ∈
Lq (Rn). Obviously

(

Lq
w (Rn) , ‖.‖Lq

w

)

is a Banach space with the norm

‖f‖Lq
w
= ‖fw‖Lq =







∫

Rn

|f(x)w(x)|
q
dx







1
q

, 1 ≤ q < ∞,

or

‖f‖L∞

w
= ‖fw‖L∞ = ess sup

x∈Rn

|f(x)|w(x), q = ∞.

Also the dual of the space Lq
w (Rn) is the space Ls

w−1 (Rn) , where 1 ≤ q < ∞,
1
q
+ 1

s
= 1 (see [12, 14, 16]).

Given a discrete family X = (xi)i∈I in R
n and a weighted space Lq

w (Rn) ,
the associated weighted sequence space over X is the appropriate weighted ℓq -
space ℓqw, the discrete w being given by w(i) = w(xi) for i ∈ I (see [11, Lemma
3.5]).

2. The Wiener Amalgam Space W
(

Lp(x), Lq
w

)

Let Cb (R
n) be the the regular Banach algebra (with respect to pointwise

multiplication) of complex-valued bounded, continuous functions on R
n. Also

let C0 (R
n) , Cc (R

n) be the spaces of complex-valued continuous function R
n

vanishing at infinity and the space of complex-valued continuous functions
with compact support defined on R

n endowed with its natural inductive limit
topology respectively. It is known that (C0, ‖.‖∞) →֒ (Cb, ‖.‖∞) and the
dual space of Cc (R

n) (with respect to its natural inductive limit topology) is
M (Rn) , the space of regular Borel measures. For every h ∈ Cc (R

n) we define
the semi-norm qh on M (Rn) by qh (h

p) = hp (h) . The locally convex topology
on M (Rn) defined by the family (qh)h∈Cc(Rn) of seminorms is called the

topology σ (M (Rn) , Cc (R
n)) or weak∗-topology, also called vague topology.

We define

L
p(x)
loc (Rn) =

{

σ ∈ M (Rn) : φσ ∈ Lp(x)(Rn) for all φ ∈ Cc (R
n)
}

.

L
p(x)
loc (Rn) is a topological vector space with respect to the family of seminorms

given by ‖σ‖φ = ‖φσ‖Lp(x) , φ ∈ Cc (R
n).
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It is known by [1, Lemma 1] that Lp(x) (Rn) is continuously embedded into

L1
loc(R

n). Hence it is easily shown that L
p(x)
loc (Rn) is continuously embedded

into L1
loc(R

n). It is also obvious that L1
loc(R

n) is continuously embedded

into M (Rn) with the weak∗-topology. Therefore L
p(x)
loc (Rn) is continuously

embedded into M (Rn).
Since the general hypotheses for the Wiener amalgam space denoted by

W
(

Lp(x) (Rn) , Lq
w (Rn)

)

(shortly W
(

Lp(x), Lq
w

)

) are satisfied, it is defined as
follows as in [9].

Let fix an open set Q ⊂ R
n with compact closure. The Wiener amalgam

space W
(

Lp(x), Lq
w

)

consists of all elements f ∈ L
p(x)
loc (Rn) such that Ff (z) =

‖f‖Lp(x)(z+Q) belongs to Lq
w (Rn); the norm of W

(

Lp(x), Lq
w

)

is

‖f‖
W(Lp(x),L

q
w) = ‖Ff‖Lq

w
.

In this definition ‖f‖Lp(x)(z+Q) denotes the restriction norm of f to z + Q,

that is

‖f‖Lp(x)(z+Q)

= inf

{

‖g‖Lp(x) :
g ∈ Lp(x) (Rn) , g coincides with f on z +Q, i.e.,

hf = hg for all h ∈ CC (Rn) with supp (h) ⊂ z +Q

}

.

By the solidity of the BF-space the assumptions imply

‖f‖Lp(x)(z+Q) = ‖fχz+Q‖Lp(x) .

The following theorem, based on [9, Theorem 1], describes the basic
properties of W

(

Lp(x), Lq
w

)

.

Theorem 2.1.

i) W
(

Lp(x), Lq
w

)

is a Banach space with norm ‖.‖
W(Lp(x),L

q
w).

ii) W
(

Lp(x), Lq
w

)

is continuously embedded into L
p(x)
loc (Rn).

iii) The space

Λ0 =
{

f ∈ Lp(x) (Rn) : supp (f) is compact
}

is continuously embedded into W
(

Lp(x), Lq
w

)

.

iv) W
(

Lp(x), Lq
w

)

does not depend on the particular choice of Q, i.e.
different choices of Q define the same space with equivalent norms.

By iii) and [1, Lemma 4] it is easy to see that Cc (R
n) is continuously

embedded into W
(

Lp(x), Lq
w

)

.
By using the techniques in [13], we prove the following proposition.

Proposition 2.2. W
(

Lp(x), Lq
w

)

is a solid BF-space on R
n.
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Proof. Let K ⊂ R
n be a compact subset. Since C0 (R

n) is a regular
Banach algebra with respect to pointwise multiplication one may choose a
function h0 ∈ Cc (R

n) with 0 ≤ h0(x) ≤ 1 and h0(x) = 1 for all x ∈ K. Let
supp(h0) = K0. Then χK(x) ≤ h0(x) and hence χK(x) |f(x)| ≤ h0(x) |f(x)|
for all x ∈ R

n. Since Lp(x) (Rn) →֒ L1
loc (R

n), there exists DK0 > 0 such that

(2.1)

∫

K0

|h0(x)f(x)| dx ≤ DK0 ‖h0f‖Lp(x) .

Since K ⊂ K0

(2.2)

∫

K

|f(x)| dx ≤

∫

K0

|h0(x)f(x)| dx.

On the other hand by Theorem 2.1 ii), W
(

Lp(x), Lq
w

)

→֒ L
p(x)
loc (Rn). Hence

for this h0 ∈ Cc (R
n) there exists a constant number Dh0 > 0 such that

(2.3) ph0 (f) = ‖h0f‖Lp(x) ≤ Dh0 ‖f‖W(Lp(x),L
q
w)

for all f ∈ W
(

Lp(x), Lq
w

)

. Combining (2.1), (2.2) and (2.3) we obtain

∫

K

|f(x)| dx ≤

∫

K0

|h0(x)f(x)| dx ≤ DK0 ‖h0f‖Lp(x)

≤ DK0Dh0 ‖f‖W(Lp(x),L
q
w) = CK ‖f‖

W(Lp(x),L
q
w) .

It is easy to show that W
(

Lp(x), Lq
w

)

is solid.

Proposition 2.3. Let w1, w2 and w3 be weight functions. Suppose that
there exist constants C1, C2 > 0 such that

∀h ∈ Lp1(x) (Rn) , ∀k ∈ Lp2(x) (Rn) , ‖hk‖Lp3(x) ≤ C1 ‖h‖Lp1(x) ‖k‖Lp2(x)

and

∀u ∈ Lq1
w1

(Rn) , ∀v ∈ Lq2
w2

(Rn) , ‖uv‖Lq3
w3

≤ C2 ‖u‖Lq1
w1

‖v‖Lq2
w2

.

Then there exists C > 0 such that for all f ∈ W
(

Lp1(x), Lq1
w1

)

and g ∈

W
(

Lp2(x), Lq2
w2

)

we have

‖fg‖
W(Lp3(x),L

q3
w3)

≤ C ‖f‖
W(Lp1(x),L

q1
w1)

‖g‖
W(Lp2(x),L

q2
w2)

.

In other words

W
(

Lp1(x), Lq1
w1

)

.W
(

Lp2(x), Lq2
w2

)

⊂ W
(

Lp3(x), Lq3
w3

)

.
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Proof. Let f ∈ W
(

Lp1(x), Lq1
w1

)

and g ∈ W
(

Lp2(x), Lq2
w2

)

. Then

(2.4)

‖fg‖
W(Lp3(x),L

q3
w3)

=
∥

∥‖fgχz+Q‖Lp3(x)

∥

∥

L
q3
w3

=
∥

∥‖(fχz+Q) (gχz+Q)‖Lp3(x)

∥

∥

L
q3
w3

≤ C1

∥

∥‖fχz+Q‖Lp1(x) ‖gχz+Q‖Lp2(x)

∥

∥

L
q3
w3

.

If we put

Ff (z) = ‖fχz+Q‖Lp1(x) and Fg (z) = ‖gχz+Q‖Lp2(x) ,

by (2.4) we obtain

‖fg‖
W(Lp3(x),L

q3
w3)

≤ C1 ‖FfFg‖Lq3
w3

≤ C1C2 ‖Ff‖Lq1
w1

‖Fg‖Lq2
w2

= C1C2 ‖f‖W(Lp1(x),L
q1
w1)

‖g‖
W(Lp2(x),L

q2
w2)

= C ‖f‖
W(Lp1(x),L

q1
w1)

‖g‖
W(Lp2(x),L

q2
w2)

.

Corollary 2.4. Define k (x) by 1
p(x) + 1

r(x) = 1
k(x) ≤ 1 and suppose

k∗ < ∞, 1
q
+ 1

s
= 1. Then there exists a constant C > 0 such that

‖fg‖
W(Lk(x),L1) ≤ C ‖f‖

W(Lp(x),L
q
w) ‖g‖W(Lr(x),Ls

w−1)

for all f ∈ W
(

Lp(x), Lq
w

)

and g ∈ W
(

Lr(x), Ls
w−1

)

. Thus

W
(

Lp(x), Lq
w

)

W
(

Lr(x), Ls
w−1

)

⊂ W
(

Lk(x), L1
)

.

Proof. Let f ∈ W
(

Lp(x), Lq
w

)

and g ∈ W
(

Lr(x), Ls
w−1

)

. Then fχz+Q ∈

Lp(x) (Rn) and gχz+Q ∈ Lr(x) (Rn). Thus there exists C(z) > 0 such that

(2.5) ‖fgχz+Q‖Lk(x) ≤ C(z) ‖fχz+Q‖Lp(x) ‖gχz+Q‖Lr(x)

by [20, Lemma 2.18]. Also it is known by [20, Lemma 2.18] that C(z) ≤ 2k∗ =
C < ∞. Since L1 (Rn) is solid, then by (2.5)

(2.6)
‖fg‖

W(Lk(x),L1)
≤ 2k∗

∥

∥‖fχz+Q‖Lp(x) ‖gχz+Q‖Lr(x)

∥

∥

L1

= C
∥

∥‖fχz+Q‖Lp(x) ‖gχz+Q‖Lr(x)

∥

∥

L1 .

Finally since ‖fχz+Q‖Lp(x) ∈ Lq
w (Rn), ‖gχz+Q‖Lr(x) ∈ Ls

w−1 (Rn), by the
Hölder inequality and (2.6) we obtain

‖fg‖
W(Lk(x),L1) ≤ C ‖f‖

W(Lp(x),L
q
w) ‖g‖W(Lr(x),Ls

w−1)
.

Proposition 2.5. a) If p1(x) ≤ p2(x), q2 ≤ q1 and w1 ≺ w2, then

W
(

Lp2(x), Lq2
w2

)

⊂ W
(

Lp1(x), Lq1
w1

)

.
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b) If p1(x) ≤ p2(x), q2 ≤ q1 and w1 ≺ w2, then

W
(

Lp1(x) ∩ Lp2(x), Lq2
w2

)

⊂ W
(

Lp1(x), Lq1
w1

)

.

c) If w1 ≺ w2, then

Lp∗

w2
(Rn) ⊂ W

(

Lp(x), Lp∗

w1

)

and W
(

Lp(x), Lp∗

w2

)

⊂ Lp∗

w1
(Rn) .

Proof. a) Let f ∈ W
(

Lp2(x), Lq2
w

)

be given. Since p1(x) ≤ p2(x), then

Lp2(x) (z +Q) →֒ Lp1(x) (z +Q) and

(2.7)
‖fχz+Q‖Lp1(x) ≤ (µ (z +Q) + 1) ‖fχz+Q‖Lp2(x)

= (µ (Q) + 1) ‖fχz+Q‖Lp2(x)

for all z ∈ R
n by [19, Theorem 2.8], where µ is the Lebesgue measure. Hence

by (2.7) and the solidity of Lq2
w2

(Rn) we have

W
(

Lp2(x), Lq2
w2

)

⊂ W
(

Lp1(x), Lq2
w2

)

.

It is known by [11, Proposition 3.7], that

W
(

Lp1(x), Lq2
w2

)

⊂ W
(

Lp1(x), Lq1
w1

)

if and only if ℓq2w2
⊂ ℓq1w1

, where ℓq2w2
and ℓq1w1

are the associated sequence spaces
of Lq2

w2
(Rn) and Lq1

w1
(Rn) respectively. Since q2 ≤ q1 and w1 ≺ w2, then

ℓq2w2
⊂ ℓq1w1

([13]). This completes the proof.
b) The proof of this part is easy by a).
c) By using a) and [16, Proposition 11.5.2], we have

Lp∗

w2
(Rn) = W

(

Lp∗

, Lp∗

w2

)

⊂ W
(

Lp(x), Lp∗

w2

)

.

Since w1 ≺ w2, then ℓp
∗

w2
⊂ ℓp

∗

w1
([12]). Hence

Lp∗

w2
(Rn) ⊂ W

(

Lp(x), Lp∗

w1

)

.

Similarly we can prove

W
(

Lp(x), Lp∗

w2

)

⊂ Lp∗

w1
(Rn) .

The following lemma follows directly from the closed graph theorem.

Lemma 2.6. If p∗1, p
∗

2 < ∞, then Lp1(x) (Rn) ⊂ Lp2(x) (Rn) if and only
if there exists a constant C > 0 such that ‖f‖Lp2(x) ≤ C ‖f‖Lp1(x) for all

f ∈ Lp1(x) (Rn).

Proposition 2.7. Let B be any solid space. If q2 ≤ q1 and w1 ≺ w2,
then we have

W
(

B,Lq1
w1

∩ Lq2
w2

)

= W
(

B,Lq2
w2

)

.
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Proof. It is easy to see that the associated sequence space of Lq1
w1

(Rn)∩
Lq2
w2

(Rn) is ℓq1w1
∩ℓq2w2

. Since q2 ≤ q1 and w1 ≺ w2, thus the associated sequence
space of Lq1

w1
(Rn) ∩ Lq2

w2
(Rn) is ℓq2w2

. Then by [11, Proposition 3.7]

W
(

B,Lq1
w1

∩ Lq2
w2

)

= W
(

B,Lq2
w2

)

.

Corollary 2.8. a) If p∗1, p
∗

2 < ∞, Lp1(x) (Rn) ⊂ Lp2(x) (Rn), q2 ≤ q1,
q4 ≤ q3, q4 ≤ q2, w1 ≺ w2, w3 ≺ w4 and w2 ≺ w4, then

W
(

Lp1(x), Lq3
w3

∩ Lq4
w4

)

= W
(

Lp1(x), Lq4
w4

)

⊂ W
(

Lp2(x), Lq1
w1

∩ Lq2
w2

)

= W
(

Lp2(x), Lq2
w2

)

.

b) If p1(x) ≤ p2(x), q1 ≤ q2 and w2 ≺ w1, then

W
(

Lp1(x) ∩ Lp2(x), Lq1
w1

)

⊂ W
(

Lp2(x), Lq2
w2

)

.

A general interpolation theorem in Wiener Amalgam space has been given
by H. Feichtinger (see [10, Theorem 2.2]). We will give a similar theorem for
W

(

Lp(x), Lq
w

)

next:

Proposition 2.9. If p0 (x) and p1 (x) are variable exponents with 1 <
pj,∗ ≤ p∗j < ∞, j = 0, 1. Then, for θ ∈ (0, 1) , we have

[

W
(

Lp0(x), Lq0
w0

)

,W
(

Lp1(x), Lq1
w1

)]

[θ]
= W

(

[

Lp0(x), Lp1(x)
]

[θ]
, Lqθ

w

)

= W
(

Lpθ(x), Lqθ
w

)

where 1
pθ(x)

= 1−θ
p0(x)

+ θ
p1(x)

, 1
qθ

= 1−θ
q0

+ θ
q1
, w = w1−θ

0 wθ
1 .

Proof. By [10, Theorem 2.2] the interpolation space
[

W
(

Lp0(x), Lq0
w0

)

,W
(

Lp1(x), Lq1
w1

)]

[θ]

for
(

W
(

Lp0(x), Lq0
w0

)

,W
(

Lp1(x), Lq1
w1

))

isW
(

[

Lp0(x), Lp1(x)
]

[θ]
,
[

Lq0
w0

, Lq1
w1

]

[θ]

)

.

We know that
[

Lq0
w0

, Lq1
w1

]

[θ]
= Lqθ

w , [2] and by [6, Corollary A.2] that
[

Lp0(x), Lp1(x)
]

[θ]
= Lpθ(x).

3. The Hardy-Littlewood maximal function on W
(

Lp(x), Lq
w

)

(Rn)

We use the notation Br(x) to denote the open ball centered at x of radius
r. For a locally integrable function f on R, we define the (centered) Hardy-
Littlewood maximal function Mf of f by

(3.1) Mf(x) = sup
r>0

1

µ (Br(x))

∫

Br(x)

|f(y)| dy.
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where the supremum is taken over all balls Br(x) and µ (Br(x)) denotes the
Lebesgue measure of Br(x).

Although the local Hardy-Littlewood maximal function has been shown
to be a bounded mapping on Lp(x) over a bounded domain, it is not bounded
on many of the amalgam spaces. We have the following result.

Proposition 3.1. Let p : R → [1,∞), 1 ≤ q ≤ ∞ and w is a weight
function. If 1

w
∈ Ls (R) and 1

q
+ 1

s
= 1 then the Hardy-Littlewood maximal

function M is not bounded on W
(

Lp(x) (R) , Lq
w (R)

)

.

Proof. Since 1
w
∈ Ls (R) and 1

q
+ 1

s
= 1 then Lq

w (R) ⊂ L1 (R) . Hence

(3.2) W
(

Lp(x) (R) , Lq
w (R)

)

⊂ W
(

Lp(x) (R) , L1 (R)
)

⊂ L1 (R) .

Take the indicator function χ[−1,1]. It obvious by Theorem 2.1 iii) that

χ[−1,1] ∈ W
(

Lp(x) (R) , Lq
w (R)

)

. By [21, Theorem 1] the Hardy-Littlewood

maximal function f → M (f) is not bounded on L1 (R) . Also if f ∈ L1 (R)
is not identically zero then M (f) is never integrable on R. This implies that
the Hardy-Littlewood maximal function M

(

χ[−1,1]

)

is not in L1 (R) . Hence

M
(

χ[−1,1]

)

/∈ W
(

Lp(x) (R) , Lq
w (R)

)

. This completes the proof.
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[11] H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group

representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307–
340.

[12] H. G. Feichtinger and A. T. Gürkanli, On a family of weighted convolution algebras,
Internat. J. Math. Math. Sci. 13 (1990), 517–525.

[13] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of Wiener type spaces,
Internat. J. Math. Math. Sci. 19 (1996), 57–66.

[14] R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of weighted spaces, Math.
Slovaca 46 (1996), 71–82.

[15] J. J. Fournier and J. Stewart, Amalgams of Lpand ℓq, Bull. Amer. Math. Soc. (N.S.)
13 (1985), 1–21.

[16] C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and their
applications (Chennai, January 2002), Allied Publishers, New Delhi, 2003, 183–216.

[17] F. Holland, Square-summable positive-definite functions on the real line, Linear
Operators Approx. II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 247–
257.

[18] F. Holland, Harmonic analysis on amalgams of Lpand ℓq, J. London Math. Soc. (2)
10 (1975), 295–305.

[19] O. Kovacik and J. Rakosnik, On spaces Lp(x) and W k,p(x), Czechoslovak Math. J.
41(116) (1991), 592–618.

[20] S. G. Samko, Convolution type operators in Lp(x), Integral Transform. Spec. Funct.
7 (1998), 123–144.

[21] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton
University Press, Princeton, 1970.

[22] N. Wiener, Generalized harmonic analysis and Tauberian theorems, The M.I.T. Press,
1966.

İ. Aydin
Department of Mathematics
Faculty of Arts and Sciences
Sinop University
57000, Sinop
Turkey
E-mail : iaydin@sinop.edu.tr

A. Turan Gürkanli
Department of Mathematics
Faculty of Arts and Sciences
Ondokuz Mayıs University
55139, Kurupelit, Samsun
Turkey
E-mail : gurkanli@omu.edu.tr

Received : 26.2.2010.
Revised : 21.7.2010. & 7.10.2010.


