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ON DETERMINANTS OF RECTANGULAR MATRICES

WHICH HAVE LAPLACE’S EXPANSION ALONG ROWS

Mirko Radić and Rene Sušanj
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Abstract. Let A be any given m×n (m ≤ n) matrix over some field
and let detA be the determinant of A calculated by Definition 1 given in
[1]. Let det∗A denote determinant of A calculated by any other definition
which possess Laplace’s expansion along rows. Then there exists constant
α such that det∗A = αdetA.

1. Introduction

In [1] we have the following definition of determinant of a rectangular
matrix. Let A be a m× n matrix with m ≤ n. Then

(1.1) detA =
∑

1≤j1<···<jm≤n

(−1)1+···+m+j1+···+jm

∣

∣

∣

∣

∣

∣

a1j1 . . . a1jm
. . . . . . . . . .

amj1 . . . amjm

∣

∣

∣

∣

∣

∣

.

We show that this determinant possesses Laplace’s expansion along rows,
that is, for each 1 ≤ i ≤ m it is valid

(1.2) detA =

n
∑

j=1

(−1)i+jaijA
i
j ,

where Ai
j is the minor of the element aij .

The general Laplace’s expansion along rows and many other interesting
properties of this determinant are also established. Very interesting properties
refer to its geometrical interpretation (see references from [2] to [5]).
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2. On determinants of rectangular matrices which possess

Laplace’s expansion along rows

We denote by Mm×n the set of all m× n real matrices with m ≤ n. For
brevity we shall often write (aij)m×n instead of





a11 . . . a1n
. . . . . . . . .

am1 . . . amn



 .

Theorem 2.1. Let Fm,n denote the set of all functionals defined on the
set Mm×n such that the following is valid:

(i1) Every functional fm,n from the set Fm,n is linear with respect to the
rows. If m = 1, then for every functional f1,n from the set F1,n there
are real numbers α1

1,n, . . . , α
n
1,n such that

(2.1) f1,n(a1, . . . , an) = α1
1,na1 + · · ·+ αn

1,nan

for every (a1, . . . , an) ∈ M1×n.
(i2) For every real matrix A = (aij)(m+1)×(n+1) and positive integer i (1 ≤

i ≤ m+ 1)

(2.2) fm+1,n+1(A) =
n+1
∑

j=1

(−1)i+jaijfm,n(A
i
j),

where Ai
j denotes the minor of aij.

Then there are real numbers α1, α2, . . . , αn−m+1 such that

fm,n = αn−m+1 detm,n,

that is, fm,n(X) = αn−m+1 detm,n(X), for every matrix X ∈ Mm×n. In
other words, detm,n are (up to factor proportionality) only functionals with
the properties (i1) and (i2).

Proof. By induction on m, first let m = 1 and let f1,n be a functional
given by (2.1). Let A = (aij)2×(n+1) be the matrix

A =

(

0 . . . 1 . . . 0 . . . 0
0 . . . 0 . . . 1 . . . 0

)

,

where a1r = a2s = 1 (1 ≤ r < s ≤ n+1), and the all other aij (i 6= r and j 6=
s) are equal zero. If by (2.2) we expand the matrix A along first row (i = 1)
we get

(2.3)
f2,n+1(A) = (−1)1+rf1,n(0, . . . , 1, 0, . . . , 0)

= (−1)1+rαs−1
1,n ,
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where in the matrix (0, . . . , 0, 1, 0, . . . , 0) we have as−1 = 1. But if we expand
along the second row (i = 2) we get

(2.4)
f2,n+1(A) = (−1)2+sf1,n(0, . . . , 0, 1, 0, . . . , 0)

= (−1)2+sαr
1,n,

where in the matrix (0, . . . , 0, 1, 0, . . . , 0) we have ar = 1.
Comparing (2.3) with (2.4) we have

αr
1,n = (−1)r+s+1αs−1

1,n , 1 ≤ r < s ≤ n+ 1.

Taking r = 1 and denoting α1
1,n by αn we have the following notation

(−1)2+sαs−1
1,n = αn, s = 3, 4, . . . , n+ 1

from which it follows

α2
1,n = −αn, α

3
1,n = +αn, α

4
1,n = −αn

and so on (alternatively).
Thus, the expansion for f1,n can be written as

(2.5)
f1,n(a1, . . . , an) = αn

(

a1 − a2 + · · ·+ (−1)1+nan
)

= αndet1,n(a1, . . . , an).

Now, since f1,n = αndet1,n, we suppose that

fm,n = αn−m+1detm,n

for some positive integer m. Then for m+ 1 we can write

fm+1,n+1(A) =

n+1
∑

j=1

(−1)1+ja1jfm,n(A
1
j )

=
n+1
∑

j=1

(−1)1+ja1jαn−m+1detm,n(A
1
j )

= αn−m+1detm+1,n+1(A)

or, since (n+ 1)− (m+ 1) + 1 = n−m+ 1,

(2.6) fm+1,n+1 = αn−m+1detm+1,n+1.

The induction on m is complete and Theorem 2.1 is proved

We now show how other determinants of rectangular matrices which have
Laplace’s expansion along rows can be defined. Namely, we have the following
theorem.
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Theorem 2.2. Let A ∈ Mm×n be given and let s be any given integer
such that m < s ≤ n. Let det∗A be defined as

(2.7) det∗A =
∑

1≤j1<···<js≤n

(−1)1+···+m+j1+···+js

∣

∣

∣

∣

∣

∣

a1j1 . . . a1js
. . . . . . . . . .

amj1 . . . amjs

∣

∣

∣

∣

∣

∣

,

where the right-hand side refers to the determinant calculated by (1.1). Then
det∗ has Laplace’s expansion along rows.

Proof. The proof is going in exactly the same way as the proof that
detA has Laplace’s expansion along rows.

Here let us remark that s = m in the determinant given by (1.1), and
that in the determinant given by (2.7) we take s > m.

In this connection, notice that

(2.8) det∗A = αm
n,s detA,

where αm
n,s is an integer given by

(2.9) αm
n,s =











0, n−m even, s−m odd

(−1)[
m+1

2 ]+[ s+1

2 ]

(

[

n−m
2

]

[

s−m
2

]

)

, in all other cases
.

Here [x] denotes the largest integer which does not exceed x.
To prove that holds (2.9) we first prove the following lemma.

Lemma 2.3. Let n and s be any given positive integer such that 1 ≤ s ≤ n.
Then
(2.10)

∑

1≤j1<···<js≤n

(−1)j1+···+js =











0, n even and s odd

(−1)[
s+1

2 ]

(

[

n
2

]

[

s
2

]

)

, in all other cases
.

Proof. Let by i be denoted the number of all odd integers in the set
{j1, . . . , js}. Then

(−1)j1+···+js = (−1)i.

Since between integers 1, . . . , n there are
[

n+1
2

]

odd and
[

n
2

]

even, it is clear
that

(
[

n
2

]

s− i

)(
[

n+1
2

]

i

)

is the number of all s-tuples j1, . . . , js, (1 ≤ j1 < · · · < js ≤ n) such that
there are i odd and s− i even integers. Thus it holds

∑

1≤j1<···<js≤n

(−1)j1+···+js =

s
∑

i=0

(−1)i
(
[

n
2

]

s− i

)(
[

n+1
2

]

i

)

.
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It is easy to see that the right-hand side of the above relation is the
coefficient of xs in the polynomial

f(x) = (1− x)[
n+1

2 ](1 + x)[
n

2 ].

This polynomial can also be written as

f(x) =

{

(1− x2)[
n

2 ], n even

(1− x2)[
n

2 ](1− x), n odd

or, using binomial formula,

f(x) =



























[n2 ]
∑

i=0

(−1)i
(
[

n
2

]

i

)

x2i, n even,

[n2 ]
∑

i=0

(

(−1)i
(
[

n
2

]

i

)

x2i + (−1)i+1

(
[

n
2

]

i

)

x2i+1

)

, n odd.

From the above relations it can be seen that for the coefficient of xs, depending
on n, the following holds.

If n is even then coefficient of xs is given by
{

0, s odd,

(−1)
s

2

([n2 ]
s

2

)

, s even,

but if n is odd, then the coefficient of xs is given by






(−1)
s+1

2

( [n2 ]
s−1

2

)

, s odd,

(−1)
s

2

([n2 ]
s

2

)

, s even.

Hence, since for even s we have
[

s+1
2

]

= s
2 =

[

s
2

]

, and for odd s we have
s+1
2 =

[

s+1
2

]

and s−1
2 =

[

s
2

]

, it is clear that holds (2.10).
Now it is not difficult to show that (2.8) and (2.9) hold for every 1×n real

matrix and m ≤ s ≤ n. Also, it is not difficult to show that (2.8) and (2.9)
hold for every real m× n matrix and m ≤ s ≤ n.

Here is an example. Let A ∈ M2×6 and let s = 4. Then det∗A = −2 detA,
since

α2
6,4 = (−1)1+2

(

2

1

)

= −2.
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