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HYPERSPACES

ALEJANDRO ILLANES

Universidad Nacional Auténoma de México, Mexico

ABSTRACT. Given a metric continuum X, let 2% denote the hyper-
space of nonempty closed subsets of X. We prove that 2% is n-mutually
aposyndetic for each n > 1. That is, given n distinct elements of 2%, there
are n disjoint subcontinua of 2%, each containing one of the elements in
its interior.

1. INTRODUCTION

A continuum is a compact connected metric space with more than one
point. A continuum X is said to be mutually aposyndetic provided that
for every p,q € X, with p # ¢, there exist disjoint subcontinua M and
N of X such that p € intx(M) and ¢ € intx(N); and X is said to be
n-mutually aposyndetic provided that given n distinct points, there are n
disjoint subcontinua of X, each containing one of the points in its interior.
So, mutual aposyndesis means 2-mutual aposyndesis.

For the continuum X, we consider its hyperspaces:

2X = {A C X : Ais closed and nonemtpy},

Cm(X) = {4 € 2% : A has at most m components},

C(X)=C1(X), and

Fn(X) ={A € 2% : A has at most m points}.
The hyperspace 2X is endowed with the Hausdorff metric H.

The concept of n-mutual aposyndesis was introduced by L. E. Rogers in

[9] where he proved that the topological product of three continua is always
n-mutually aposyndetic, for each n. Aposyndesis in hyperspaces has been
studied by several authors; for recent results see [1-3,7,8]. Answering a
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question by H. Hosokawa ([2, p. 136]), J. M. Martinez-Montejano ([8, Theorem
3.1]) has recently proved that the hyperspace 2% is mutally aposyndetic. In
this paper we improve this result by proving the following theorem.

THEOREM. For each continuum X and each positive integer n, the
hyperspace 2% is n-mutually aposyndetic.

Generalizing the main result of [6], recently, A. Illanes and J. M. Martinez-
Montejano ([4]) have shown that for each n > 2 and m > 3, F,(X) is n-
mutually aposyndetic. H. Hosokawa ([2, Theorem 2.4]) has proved that, for
each m > 2, the hyperspace C),(X) is mutually aposyndetic, the following
question arises naturally:

QUESTION 1.1. Let X be a continuumn > 3 and m > 2, is the hyperspace
Cn(X) n-mutually aposyndetic?

2. MAIN RESULT

Given a continuum X, with metric d, ¢ > 0, p € X and A C X, let
B(e,p) be the e-ball around p in X, N(e,A) = |[J{B(g,a) : a € A} and
V(e,A) = {z € X : there exists a € A such that d(z,a) < e}. Given
A,B € 2% such that A C B, an order arc from A to B is a continuous
function « : [0,1] — 2% such that a(0) = A, a(1) = B and, if 0 < s <t < 1,
then a(s) € a(t). It is well known (see [5, Theorem 15.3]) that, if A, B € 2%
and A C B, then there exists an order arc from A to B if and only if each
component of B intersects A.

THEOREM 2.1. For each continuum X and each positive integer n, the
hyperspace 2% is n-mutually aposyndetic.

PROOF. Let d be the metric for X. Let Ay,..., A, be n different elements
of 2%, where n > 1. Let 6 : 2% — [0,00) be the diameter map. We suppose
that 6(X) = 1. For each t € [0,1], let N'(t) = 6~1(t) N C(X). By [5, Exercise
19.18], N (t) is a subcontinuum of 2%. Let € > 0 be such that H(4;, A;) > 4e
for all ¢ # j.

For each A € 2X and t € [0,1], let D(A,t) = J{B € N(t) : AN B # (}.
Clearly, D(A,t) € 2%, A C D(A,t) and each component of D(A,t) intersects
A. Thus, in the case that A # D(A,t), there exist order arcs from A to
D(A,t). Let £(A,t) = J{Ima C 2% : a is an order arc in 2% from A to
D(At)}, if A # D(A,t), and E(A,t) = {A}, if A = D(A,t). By [4, 11.5
p. 91}, £(A,t) is a subcontinuum of 2% containing A and D(A,t). Since
D(A,t) C N(t+n,A) for each n > 0, H(A, B) < t for each element B €
E(A,T).

Given i,j € {1,...,n}, with i # j, we define a positive number s(, j) in
the following way:
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(a) if A; — A; has at least two points, let s(i,j) > 0 be such that
A; — N(4s(i,7), A;) has at least two points and 4s(4,5) < d(4; —
N(s(i, 1), A2).

(b) if A;—A; is a one-point set, let s(4, j) > 0 be such that N (2s(¢, j), A; —

(c) it Aj C A;, by (a) and (b) the number s(j,4) has been defined. Thus,
we can define s(i, j) = s(J, ).

Fix r > 0 such that » < min({s(4,J) : 4,5 € {1,...,n} and i # j} U{e}).
For each i € {1,...,n}, let m; = max{k € {1,...,n} : there exist elements
i1,...,0 in {1,...,n} such that 4, C A;; € A;, € ... € A;, }. Note that
m,; is well defined. Note also that if A; C A;, then m; > m;. For each
positive integer k, let My = {i € {1,...,n} : m; = k}. Then i € My if
and only if A; is a maximal element of {A;,..., A,}, with respect to the
inclusion; ¢ € My if and only if A; is a maximal element of the set {A; :
je{l,...,n} — Mi}; i € Ms if and only if A; is a maximal element of
the set {A; : j € {1,...,n} — (M1 U Mz)}; and so on. Notice also that
®:Mn+1 :Mn+2:....

For each i € {1,...,n}, we choose a positive number ¢; as follows. For
each ¢ € My, choose a number v; € (0,1) in such a way that all the elements
of {v; : i € My} are different. If My # 0, for each ¢ € My, choose a number
v; € (5,6) in such a way that all the elements of {v; : i € My} are different.
In general, if k > 1 and My, # 0, for each i € Mgy choose a number
vi € (5* + ...+ 5,58 + ...+ 5+ 1) in such a way that all the elements of
{vi + © € Mgy} are different. Notice that, if A; C Aj, since m; < my,
5v; < v;. Notice also that v; < 5™ for each i € {1,...,n}, and all the numbers
{v1,...,vn} are different. For each i € {1,...,n}, define t; = rg& <r.

For each i € {1,...,n}, let B; = {A € 2% : H(A, A;) < t;}. For each
A€ B, let F(A) ={D(A,t;)UB: B € N(t;)}. Note that F(A) is the image
of N(t;) under the map B — D(A,t;)UB, so, F(A) is a subcontinuum of 2.
Fix a point p € A, let B € N(¢;) be such that p € B. Then B C D(A,t;).
Thus, D(A,t;) = D(A,t;) UB € F(A). Define also R;(t;) = U{E(A,t;) :
A € B;}. Then R;(t;) is a closed subset of 2% such that A; € intyx (B;) C
intox (R;(ti)) C Rilts).

Define

M; =Ri(t:) U((J{F(A): A€ B}).
Notice that A; € intox (M)
CLAIM 1. M; is a subcontinuum of 2% .

In order to prove Claim 1, we check that M; is connected. Let A € M;
and let C be the component of M; containing A. Let By = | J{E: E € B;}. It
is easy to see that Ey € B;. Let Dy = D(Ep,t;). We show that Dg € clyx (C) =
C. Take n > 0. Fix points x1, ...,z € Dg such that H({zx1,...,zr}, Do) < 7.
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Then there exist points ey, ..., ex € Fy and elements By, ..., By € N(¢;) such
that x1,e1 € By,...,xk, e, € Bg.

In the case that A € R;(t;), there exists E € B; such that A € £(E,t;).
Since £(E,t;) is connected and D(E,t;) € £(E,t;), we may assume that A =
D(E,t;). In the case that A € F(E) for some E € B;, since F(FE) is connected
and D(E,t;) € F(E), we may assume that A = D(E,t;). Therefore, in any
case, we may assume that A = D(FE, ;) for some E € B;.

Note that the sets EU{e1}, EU{e1,ea},..., EU{e1,...,er} belong to B;.
Since AUB; = D(E,t;) UB; € F(E) C M; and F(FE) is connected, we have
that AUB; € C. Since EU{e1} C AUB; C D(EU{e1},t;) and each component
of AUB; intersects EU{e;} and each component of D(EU{e;},t;) intersects
AU By, in the case that EU{e1} # D(EU{e1},t;), we have that there exists
an order arc o from E U {e1} to D(E U {e1},t;) such that AUB; € Ima C
E(EU{e1},t;) C Ri(t;) € M;. Thus, Ima C C. Hence, D(EU{e1},t;) € C.
In the case that EU {e;} = D(EU{e1},t;), D(EU{e1},t;) = AU By, thus,
D(EU{e1},t;) € C. In both cases, D(EU{e1 },t;) € C. Since D(EU{e1},t;)U
By € F(EU{e1}) C M,;, we have D(E U {e1},t;) U By € C. Proceeding as
before, we can conclude that D(EU{eq, ea},t;) € C. Repeating this procedure,
we obtain that D(E U {e1,...,ex},t;) € C.

Notice that {e1,...,ex} C D(EU{es,...,ex},t;) C D(Ey,t;) = Dy. This
implies that H(D(FE U {e1,...,ex},t;), Do) < n. This completes the proof
that Dy € clyx (C) = C. Therefore, M, is connected and Claim 1 is proved.

CLAIM 2. The sets My, ..., M, are pairwise disjoint.

We prove Claim 2. Let i,5 € {1,...,n} be such that ¢ # j. Suppose that
there exists an element A € M; N M. We consider four cases.

Case 1. Ae Rz(tz) ﬂRj(tj).

In this case, there exist E; € B; and E; € B; such that A € £(E;,t;) N
E(Ej,tj). Thus, H(A,EIL) <t;<r<eand H(A,E]) < e. Since H(E“Az) <
¢ and H(E;, A;) <e, we have H(A;, A;) < 4e. Contrary to the choice of «.
Hence, Case 1 is impossible.

CASE 2. A; — A; has at least two points.

Notice that A € M, implies that there exists an element E; € B; such
that E; C A. By definition s(i,5) > 0 is such that A; — N(4s(4, ), 4i) is
nondegenerate and 4s(i,j) < §(A; — N(4s(i,j), A;)). Fix points p,q € A; —
N(4s(i, ), A;) such that d(p, q) > 4s(i, j) > max{4t;,4¢;}. Since H(E;, A;) <
tj, there exist points w,v € Ej; such that d(u,p) < t; < r < s(i,j) and
d(v,q) <t; <s(i,j). Thus, u,v ¢ N(3s(i,7), 4;). Since A € M,, there exists
E; € B; such that either E; C A C D(E;,t;) or A = D(FE;,t;) U B for some
B e N(tz) Since t; < 1 < S(’L,j) and H(D(E“tz),Az) < H(D(E“tl),Ez) +
H(E;, A;) < 2t;, we have D(E;,t;) C N(2s(7,7),4;) and u,v ¢ D(E;,t;).
Since u,v € A, we conclude that A ¢ D(E;,t;), so A= D(E;,t;)UB for some
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B € N(t;). Thus, u,v € B. Hence, d(u,v) < §(B) = t;. This implies that
d(p,q) < d(p,u) + d(u,v) + d(v,q) < 3s(4,J), which is a contradiction with
the choice of p and q. We have proved that this case is impossible.

Similarly, it can be proven that the following case is also impossible.

CASE 3. A; — A; has at least two points.

CASE 4. A; — A; is a one-point set.

Let p € A; — Ai, by definition s(¢,j) > 0 is such that N(2s(s, 5), {p}) N
N(2s(i,5),A;) = 0. Since A € M;, there exists E; € B; such that either
E; C A C D(E;,t;) or A = D(E;,t;) U B; for some B; € N(t;). Since
t; <r <s(i,j)and H(D(FE;,t;), A;) < 2t;, we have D(E;, t;) C N(2s(i,7), Ai)
and N(2s(t,7),{p}) N D(E;,t;) = 0. Since A € M, there exists an element
E; € Bj such that E; C A C D(Ej,t;)UCj, for some C; € N(t;) (even in
the case that A € R;(t;)). Let u € E; be such that d(p,u) < t; < s(i, 7).
Then N (s(z,7), {u}) € N(2s(i,5),{p}) and N(s(i,5),{u})N D(E;,t;) =0. In
particular, u € A — D(E;,t;). This implies that A = D(E;,t;) U B; for some
B; € N(t;), u € B; and D(E;,t;) N B; = 0. We consider two subcases.

Case 4.1. A; — A; is a one-point set.

Proceeding as above, we have that A is of the form A = D(E;,t;)UB; for
some E; € Bj, Bj € N(t;). Notice that u was choosen in E;. Let R € N (t;)
be such that v € R. Then R C D(E;,t;) C A = D(E;,t;) UB; and R C
N(s(i,7),{u}). This implies that R C B;. Hence, t; = 6(R) < 6(B;) = t;.
Since t; # t;, we conclude that ¢; < ¢;. Similarly, ¢; < t;. This contradiction
shows that this subcase is impossible.

CAsE 4.2. A; C Aj.

In this case, A; C A;, so m; < m; and 5t; < t;. Since E; € Bj,
and H(Ej,D(Ej,tj)) < tj, we have D(Ej,tj) C N(Qtj,Aj) = N(Qtj,Ai) U
N(2tj,{p}). We also have D(E;,t;) C N(2t;,A;) and B; C N(t;,{u}) C
N(t; +t;,{p}). Given a point x € B; C A C D(E};,t;) UC} such that = ¢ Cj,
we have that x € D(Ej,t;) C N(2t;, A;) U N(2t;,{p}). Since N(2t;, A;) N
N(ti+t;,{p}) C N(2s(¢,7), Ai)NN(2s(i, j), {p}) = 0 and B; C N(t;+t;,{p}),
we obtain that = € N(2t;,{p}). We have shown that B, C V(2t;,{p}) U C;.
Since B; is connected and the sets V(2¢;, {p}) and C; are closed, we obtain
that ¢; = §(B;) < 5t;, a contradiction. This completes the proof that this
subcase is also impossible.

Since we have considered all the possible cases, the proof of Claim 2 is
complete. O
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