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Generalized product of fuzzy subgroups and t-level
subgroups

H.Aktaş∗ and N. Çağman†

Abstract. Ray (Fuzzy Sets and Systems 105(1999)181-183) stud-
ied some results of the product of two fuzzy subsets and fuzzy subgroups.
In this paper, Ray’s results will be generalized. Furthermore, we define
a t-level subset and t-level subgroups, and then we study some of their
properties.

Key words: fuzzy subgroup, level subset, level subgroup, t-fuzzy
subgroup, product of fuzzy subset

AMS subject classifications: 03E72, 08A72, 20N25

Received September 9, 2005 Accepted July 19, 2006

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [11]. Since its inception, the
theory of fuzzy sets has developed in many directions and is finding applications in
a wide variety of fields. In [8] Rosenfeld used this concept to develop the theory
of fuzzy groups. In fact, many basic properties in group theory are found to be
carried over to fuzzy groups. Anthony and Sherwood [1] redefined fuzzy subgroups
in terms of a t-norm which replaced the minimum operation and they characterized
basic properties of t-fuzzy subgroups in [1, 2]. Sherwood [10] defined products of
fuzzy subgroups using t-norms and gave some properties of these products.

In this work, we first generalize the results of the product of two fuzzy subsets
and fuzzy subgroups which were done by Ray in [7]. We also define a t-level subset
and t-level subgroups, and then we study some of their properties.

2. Preliminaries

We record here some basic concepts and clarify notions used in the sequel.
Definition 1 [see [8]]. A fuzzy subset A of a group G is said to be a fuzzy

subgroup of G if for all x, y in G
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1. A(xy) ≥ min(A(x), A(y)) and

2. A(x−1) ≥ A(x),

where the product of x and y is denoted by xy and the inverse of x by x−1. It
is well known and easy to see that a fuzzy subgroup G satisfies A(x) ≤ A(e) and
A(x−1) = A(x) for all x ∈ G, where e is the identity element of G.

Definition 2 [see [9]]. A triangular norm (briefly a t-norm) is a function
T : [0, 1] × [0, 1] → [0, 1] satisfying, for each p, q, r, s in [0, 1],

1. T (p, 1) = p,

2. T (p, q) ≤ T (r, s) if p ≤ r and q ≤ s,

3. T (p, q) = T (q, p),

4. T (p, T (q, r)) = T (T (p, q), r)).

Definition 3 [see [1]]. Let S be a groupoid and T a t-norm. A function
B : S → [0, 1] is a subgroupoid of S iff for every x, y in S, B(xy) ≥ T (B(x), B(y)).
If S is a group, a t-fuzzy subgroupoid B is a t-fuzzy subgroup of S iff for each x ∈ S,
B(x−1) ≥ B(x).

Definition 4 [see [6]]. For each i = 1, 2, . . . , n, let Gi be a t-fuzzy subgroup
in a group Xi. Let T be a T -norm. The T -product of Gi (i = 1, 2, . . . , n) is the
function G1 × G2 × · · · × Gn : X1 × X2 × · · · × Xn → [0, 1] defined by

(G1 × G2 × · · · × Gn)(x1, x2, . . . , xn) = T (G1(x1), G2(x2), . . . , Gn(xn)).

Definition 5 [see [7]]. For each i = 1, 2, . . . , n, let Gi be a fuzzy subgroup
under a minimum operation in a group Xi. The membership function of the product
G = G1 × G2 × · · · × Gn in X = X1 × X2 × · · · × Xn is defined by

(G1 × G2 × · · · × Gn)(x1, x2, . . . , xn) = min(G1(x1), G2(x2), . . . , Gn(xn)).

Definition 6 [see [4]]. Let A be a fuzzy subset of a set S and let t ∈ [0, 1]. The
set At = {x ∈ S : A(x) ≥ t} is called a level subset of A.

Definition 7 [see [5]]. A fuzzy subgroup A of a group G is called fuzzy normal
if for all x, y in G it fulfils the following condition:

A(xy) = A(yx).

Definition 8 [see [5]]. A fuzzy subgroup A of a group G is said to be conjugate
to a fuzzy subgroup B of G if there exists x in G such that for all g in G

A(g) = B(x−1gx).
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3. Product of fuzzy subgroup and level subgroups

Here we state and prove some results which are generalizid results given in [7].
Theorem 1. Let A1, A2, . . . , An be fuzzy subsets of the sets G1, G2, . . . , Gn,

respectively, and let t ∈ [0, 1]. Then (A1 ×A2 × · · ·×An)t = A1t ×A2t × · · · ×Ant .
Proof. For the element (a1, a2, . . . , an) ∈ (A1 ×A2 × · · · ×An)t, using Defini-

tion 6 we can write (A1×A2×· · ·×An)(a1, a2, . . . , an) = min(A1(a1), A2(a2), . . . ,
An(an)) ≥ t. This gives us A1(a1) ≥ t, A2(a2) ≥ t, . . . , An(an) ≥ t and a1 ∈
A1t , a2 ∈ A2t , . . . , an ∈ Ant . Thus (a1, a2, . . . , an) ∈ A1t × A2t × · · · × Ant . Let
(a1, a2, . . . , an) ∈ A1t ×A2t ×· · ·×Ant . Then ai ∈ Ait , for i = 1, 2, . . . , n, A1(a1) ≥
t, A2(a2) ≥ t, . . . , An(an) ≥ t. That is, min(A1(a1), A2(a2), . . . , An(an)) ≥ t. This
gives us (a1, a2, . . . , an) ∈ (A1×A2×· · ·×An)t. Finally we get (A1×A2×· · ·×An)t

= A1t × A2t × · · · × Ant . ✷

Theorem 2. Let A1, A2,. . . , An be fuzzy subgroups of the groups G1, G2,. . . , Gn,
respectively. If A1, A2, . . . , An are fuzzy normal, then A1 × A2 × · · · × An is fuzzy
normal.

Proof. Firstly, we must show that A1 × A2 × · · · × An is a fuzzy subgroup of
G1 × G2 × · · · × Gn. For all elements (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ G1 × G2 ×
· · · × Gn. We get

(A1 × A2 × · · · × An)((x1, x2, . . . , xn)(y1, y2, . . . , yn))
= (A1 × A2 × · · · × An)(x1y1, x2y2, . . . , xnyn)
= min(A1(x1y1), A2(x2y2), . . . , An(xnyn))
≥ min(min(A1(x1), A1(y1)), min(A2(x2), A2(y2)), . . . , min(An(xn), An(yn)))
= min(min(A1(x1), A2(x2), . . . , An(xn)), min(A1(y1), A2(y2), . . . , An(yn)))
= min((A1 × A2 × · · · × An)(x1, x2, . . . , xn), (A1 × A2 × · · · × An)(y1, y2, . . . , yn)).

Also,

(A1 × A2 × · · · × An)((x1, x2, . . . , xn)−1)
= (A1 × A2 × · · · × An)(x−1

1 , x−1
2 , . . . , x−1

n )
= min(A1(x−1

1 ), A2(x−1
2 ), . . . , An(x−1

n ))
= min(A1(x1), A2(x2), . . . , An(xn))
= (A1 × A2 × · · · × An)(x1, x2, . . . , xn).

Thus A1×A2×· · ·×An is a fuzzy subgroup of G1×G2×· · ·×Gn. Now, let us show
that A1 × A2 × · · · × An is a fuzzy normal. For (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈
G1 × G2 × · · · × Gn,

(A1 × A2 × · · · × An)((x1, x2, . . . , xn)(y1, y2, . . . , yn))
= min(A1(x1y1), A2(x2y2), . . . , An(xnyn))
= min(A1(y1x1), A2(y2x2), . . . , An(ynxn))
= (A1 × A2 × · · · × An)((y1, y2, . . . , yn)(x1, x2, . . . , xn)).

Thus A1 × A2 × · · · × An is fuzzy normal. ✷
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Theorem 3. Let fuzzy subgroups A1, A2, . . . , An of groups G1, G2, . . . , Gn con-
jugate to fuzzy subgroups B1, B2, . . . , Bn of groups G1, G2, . . . , Gn, respectively.
Then the fuzzy subgroup A1 × A2 × · · · × An of the group G1 × G2 × · · · × Gn is
conjugate to the fuzzy subgroup B1 × B2 × · · · × Bn of G1 × G2 × · · · × Gn.

Proof. By Definition 8, if a fuzzy subgroup of Gi conjugates to a fuzzy
subgroup Bi of Gi, then there exists xi in Gi such that for all gi in Gi, Ai(gi) =
Bi(x−1

i gixi), for i = 1, 2, . . . , n. Thus we have

(A1 × A2 × · · · × An)(g1, g2, . . . , gn)
= min(A1(g1), A2(g2), . . . , An(gn))
= min(B1(x−1

1 g1x1), B2(x−1
2 g2x2), . . . , Bn(x−1

n gnxn))
= (B1 × B2 × · · · × Bn)(x−1

1 g1x1, x
−1
2 g2x2, . . . , x−1

n gnxn).

✷

Theorem 4. Let A1, A2, . . . , An be fuzzy subsets of the groups G1, G2, . . . , Gn,
respectively. Suppose that e1, e2, . . . , en are identity elements of G1, G2, . . . , Gn,
respectively. If A1 ×A2 × · · · ×An is a fuzzy subgroup of G1 ×G2 × · · · ×Gn, then
for at least one i = 1, 2, . . . , n, the following statement must hold

(A1 × · · · × Ai−1 × Ai+1 × · · · × An)(e1, . . . , ei−1, ei+1, . . . , en) ≥ Ai(xi) (1)

for all xi ∈ Gi.
Proof. Let A1 × A2 × · · · × An be a fuzzy subgroup of G1 × G2 × · · · × Gn.

By contraposition, suppose that, for non of i = 1, 2, . . . , n, the statement (1) holds.
Then we can find a1, a2, . . . , an in G1, G2, . . . , Gn, respectively, such that

Ai > (A1 × · · · × Ai−1 × Ai+1 × · · · × An)(e1, . . . , ei−1, ei+1, . . . , en).

We have

(A1 × A2 × · · · × An)(a1, a2, . . . , an)
= min(A1(a1), A2(a2), . . . , An(an))
> mini((A1 × · · · × Ai−1 × Ai+1 × · · · × An)(e1, . . . , ei−1, ei+1, . . . , en))
= mini(min(A1(e1), . . . , Ai−1(ei−1), Ai+1(ei+1) . . . , An(en)))
= min(A1(e1), A2(e2), . . . , An(en))
= (A1 × A2 × · · · × An)(e1, e2, . . . , en).

Thus A1 ×A2 × · · · ×An is not a fuzzy subgroup of G1 ×G2 × · · · ×Gn. Hence for
at least one i = 1, 2, . . . , n, the inequality

Ai > (A1 × · · · × Ai−1 × Ai+1 × · · · × An)(e1, . . . , ei−1, ei+1, . . . , en)

is satisfied for all xi in Gi. ✷

Theorem 5. Let A1, A2 . . . , An be fuzzy subsets of the groups G1, G2 . . . , Gn,
respectively, such that

Ai(xi) ≤ (A1 × · · · × Ai−1 × Ai+1 × · · · × An)(e1, . . . , ei−1, ei+1, . . . , en)) (2)
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for all xi in Gi, ei being the identity element of Gi. If A1 × A2 × · · · × An is a
subgroup of G1 × G2 × · · · × Gn, then Ai is a fuzzy subgroup of Gi.

Proof. Let A1,×A2 × · · ·×An be a fuzzy subgroup of G1 ×G2 × · · ·×Gn and
xi, yi in Gi. Then (e1, . . . , ei−1, xi, ei+1, . . . , en), e1, . . . , ei−1, yi, ei+1, . . . , en) ∈
G1 × G2 × · · · × Gn. Now, using (2), we get

Ai(xiyi) = min(Ai(xiyi), (A1 × · · · × Ai−1 × Ai+1 × · · · × An)
(e1, . . . , ei−1, ei+1, . . . , en)(e1, . . . , ei−1, ei+1, . . . , en))

= (A1 × · · · × Ai × · · · × An)((e1, . . . , xi, . . . , en)(e1, . . . , yi, . . . , en))
≥ min((A1 × · · · × Ai × · · · × An)(e1, . . . , xi, . . . , en),

(A1 × · · · × Ai × · · · × An)(e1, . . . , yi, . . . , en))
= min(min(Ai(xi), (A1 × · · · × Ai−1 × Ai+1 × · · · × An)

(e1, . . . , ei−1, ei+1, . . . , en)),
min(Ai(yi), (A1 × · · · × Ai−1 × Ai+1 × · · · × An)
(e1, . . . , ei−1, ei+1, . . . , en)))

= min(Ai(xi), Ai(yi)).

Also,

Ai(x−1
i ) = min(Ai(x−1

i ), (A1 × · · · × Ai−1 × Ai+1 × · · · × An)
(e−1

1 , . . . , e−1
i−1, e

−1
i+1, . . . , e−1

n ))

= (A1 × · · · × Ai × · · · × An)(e−1
1 , . . . , x−1

i , . . . , e−1
n )

= A1 × · · · × Ai × · · · × An)(e1, . . . , xi, . . . , en)−1

≥ A1 × · · · × Ai × · · · × An)(e1, . . . , xi, . . . , en)
= min(Ai(xi), (A1 × · · · × Ai−1 × Ai+1 × · · · × An)

(e1, . . . , ei−1, ei+1, . . . , en))
= Ai(xi).

Hence Ai is a fuzzy subgroup of G. This completes the proof. ✷

Theorem 6. Let A1, A2, . . . , An be fuzzy subsets of the groups G1, G2, . . . , Gn,
respectively, such that (A1×· · ·×Ai−1×Ai+1×· · ·×An)(x1, . . . , xi−1, xi+1, . . . , xn)
≤ Ai(ei) for all (x1, . . . , xi−1, xi+1, . . . , xn) ∈ G1 × · · · × Gi−1 × Gi+1 × · · · × Gn,
ei being the identity element of Gi. If A1 × A2 × · · · × An is a fuzzy subgroup of
G1 × G2 × · · · × Gn, then A1 × · · · × Ai−1 × Ai+1 × · · · × An is a fuzzy subgroup of
G1 × · · · × Gi−1 × Gi+1 × · · · × Gn.

The proof of Theorem 6 is proved similar to the proof of Theorem 5.
Remark 1. The theorems in this section are generalizations of results of Ray

[7].

4. t-level subgroups

In this section, we introduce a definition of a t-level subset of a fuzzy subset and
then we give some of its important algebraic results.
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Definition 9. Let A be a fuzzy subset of a set G, T a t-norm and r ∈ [0, 1].
Then we define a t-level subset of a fuzzy subset A as

AT
r = {x ∈ G : T (A(x), r) ≥ r}.

Theorem 7. Let G be a group and A a t-fuzzy subgroup of G, then the t-level
subset AT

r , for r ∈ [0, 1], r ≤ T (A(e), r), is a subgroup of G, where e is the identity
of G.

Proof. AT
r = {x ∈ G : T (A(x), r) ≥ r} is clearly nonempty. Let x, y ∈ AT

r ,
then T (A(x), r) ≥ r and T (A(y), r) ≥ r. Since A is a t-fuzzy subgroup of G,
A(xy) ≥ T (A(x), A(y)) is satisfied. This means

T (A(xy), r) ≥ T (T (A(x), A(y)), r) = T (A(x), T (A(y), r)) ≥ T (A(x), r) ≥ r.

Hence xy ∈ AT
r . Again x ∈ AT

r implies T (A(x), r) ≥ r. Since A is a t-fuzzy
subgroup, A(x−1) = A(x) and hence T (A(x−1), r) = T (A(x), r) ≥ r. This means
that x−1 ∈ AT

r . Therefore AT
r is a subgroup of G. ✷

Theorem 8. Let G be a group and A a fuzzy subgroup of G, then the t-level
subset AT

r , for r ∈ [0, 1], r ≤ T (A(e), r), is a subgroup of G, where e is the identity
of G.

Proof. AT
r = {x ∈ G : T (A(x), r) ≥ r} is clearly nonempty. Let x, y ∈ AT

r ,
then T (A(x), r) ≥ r and T (A(y), r) ≥ r. Since A is a subgroup of G, A(xy) ≥
min(A(x), A(y)) is satisfied. This means that T (A(xy), r) ≥ T (min(A(x), A(y), r),
where there are two cases: min(A(x), A(y)) = A(x) or min(A(x), A(y)) = A(y).
Since x, y ∈ AT

r , also in two cases T (min(A(x), A(y)), r) ≥ r. Therefore T (A(xy), r)
≥ r. Thus we get xy ∈ AT

r . It is easily seen that, as above, x−1 ∈ AT
r . Hence AT

r

is a subgroup of G. ✷

Theorem 9. Let G be a group and A be a fuzzy subset of G such that AT
r is a

subgroup of G for all r ∈ [0, 1], r ≤ T (A(x), r), then A is a t-fuzzy subgroup of G.
Proof. Let x, y ∈ G and let T (A(x), r1) = r1 and T (A(y), r2) = r2. Then x ∈

AT
r1

, y ∈ AT
r2

. Let us assume r1 < r2. Then there follows T (A(x), r1) < T (A(y), r2)
and AT

r2
⊆ AT

r1
. So y ∈ AT

r1
. Thus x, y ∈ AT

r1
and since AT

r1
is a subgroup of G, by

hypothesis, xy ∈ AT
r1

. Therefore

T (A(xy), r1) ≥ r1 = T (A(x), r1) ≥ T (A(x), T (A(y), r1)) = T (T (A(x), A(y)), r1).

Thus we get T (A(xy), r1) ≥ T (T (A(x), A(y)), r1). As a T -norm is monotone with
respect to each variable and symmetric, we have A(xy) ≥ T (A(x), A(y)). Next, let
x ∈ G and T (A(x), r) = r. Then x ∈ AT

r . Since AT
r is a subgroup, x−1 ∈ AT

r .
Therefore T (A(x−1), r) ≥ r and hence T (A(x−1), r) ≥ T (A(x), r). So we have
A(x−1) ≥ A(x). Thus A is a t-fuzzy subgroup of G. ✷

Theorem 10. Let A and B be t-level subsets of the sets G and H, respectively,
and let r ∈ [0, 1]. Then A × B is also a t-level subset of G × H.

Proof. Since any t-norm T is associative, using Definition 4 and Definition 9,
we can write the following statements

T (A × B)(a, b), r) = T (T (A(a), B(b)), r) = T (A(a), T (B(b), r)) ≥ T (A(a), r) ≥ r.



Generalized product of fuzzy subgroups and t-level subgroups 127

This completes the proof. ✷

Now, we introduce the following definition.
Definition 10. Let G be a group and A a t-fuzzy subgroup of G. The subgroups

AT
r , r ∈ [0, 1] and r ≤ T (A(e), r) are called t-level subgroup of A.
Theorem 11. Let G and H be two groups, A and B a t-fuzzy subgroup of G

and H, respectively. Then the t-level subset (A × B)T
r , for r ∈ [0, 1], is a subgroup

of G × H, where eG and eH are identities of G and H, respectively.
Proof. (A × B)T

r = {(x, y) ∈ G × H : T ((A × B)(x, y), r) ≥ r}. Since

T ((A × B)(eG, eH), r) = T (T (A(eG), B(eH), r)) = T (A(eG), T (B(eH), r))
≥ T (A(eG), r) ≥ r,

(A×B)T
r is nonempty. Let (x1, y1), (x2, y2) ∈ (A×B)T

r , then T (A×B)(x1, y1), r)≥ r
and T (A × B)(x2, y2), r) ≥ r. Since A × B is a t-fuzzy group of G × H , we get
(A × B)((x1, y1)(x2, y2)) = (A × B)(x1x2, y1y2) = T (A(x1x2), B(y1y2)). Using A
and B are t-fuzzy subgroup, we get

T (A × B)(x1x2, y1y2) ≥ T (T (A(x1x2), B(y1y2)), r)
= T (A(x1x2), T (B(y1y2), r))
≥ T (A(x1x2), r) ≥ r.

Hence (x1, y1)), (x2, y2)) ∈ (A × B)T
r . Again (x, y) ∈ (A × B)T

r implies

T ((A × B)(x, y)−1, r) = T ((A × B)(x−1, y−1), r)
= T (T (A(x−1), B(y−1)), r)
= T (A(x−1), T (B(y−1)), r)
≥ T (A(x−1), r) ≥ r.

This means that (x, y)−1 ∈ (A×B)T
r . Therefore (A×B)T

r is a subgroup of G×H .
✷

Theorem 12. Let G be a group and AT
r a t-level subgroup of G. If A is a

normal t-fuzzy subgroup, then AT
r is a normal subgroup of G.

Proof. By Theorem 7 AT
r is a t-level subgroup of G. Now let us show that

AT
r is normal. For all a ∈ G and x ∈ AT

r , T (A(axa−1), r) = T (A(a−1ax), r) =
T (A(x), r) ≥ r. Thus axa−1 ∈ AT

r . Hence AT
r is a normal subgroup. ✷

Theorem 13. Let A, B be fuzzy subsets of the sets G and H, respectively, T be
a t-norm and r ∈ [0, 1]. Then AT

r × BT
r = (A × B)T

r .
Proof. Let (a, b) be an element of AT

r × BT
r . Then a ∈ AT

r and b ∈ BT
r .

By Definition 9, we can write T (A(a), r) ≥ r and T (B(b), r) ≥ r. Using De-
finition 2 and Definition 4 we get T ((A × B)(a, b), r) = T (T (A(a), B(b)), r) =
T (A(a), T (B(b), r)) ≥ T (A(a), r) ≥ r. Thus we have (a, b) ∈ (A × B)T

r . Now,
let (a, b) ∈ (A × B)T

r , This is required following statements T ((A × B)(a, b), r) =
T (T (A(a), B(b)), r) = T (A(a), T (B(b), r)) ≥ r = T (1, r). Thus the inequalities
T (B(b), r) ≥ r and T (A(a), r) ≥ r is satisfied. Hence (a, b) is in AT

r × BT
r . This

completes the proof. ✷
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Theorem 14. Let A1, A2, . . . , An be fuzzy subgroups under a minimum opera-
tion in groups G1, G2, . . . , Gn, respectively, and let r ∈ [0, 1]. Then

(A1 × A2 × · · · × An)T
r = AT

1r × AT
2r × · · ·AT

nr .

Proof. Let (a1, a2, . . . , an) be an element of (A1×A2×· · ·×An)T
r . Then using

Definition 6 andDefinition 9 we can write T (min((A1×A2×· · ·×An)(a1, a2, . . . , an), r)
= T (min(A1(a1), A2(a2), . . . , An(an)), r). For all i = 1, 2, . . . , n, min(A1(a1), . . . ,
Ai(ai), . . . , An(an)) = Ai(ai). This gives us

T (min(A1(a1), . . . , Ai(ai), . . . , An(an)), r) = T (Ai(ai), r) ≥ r.

Thus we have ai ∈ AT
ir . That is (a1, a2, . . . , an) ∈ AT

1r ×AT
2r × · · · ×AT

nr. Similarly,
let (a1, a2, . . . , an) be an element of AT

1r×AT
2r×· · ·AT

nr. Then for all i = 1, 2, . . . , n,
ai ∈ AT

ir. That is, T (Ai(ai), r) ≥ r. Since min(A1(a1), . . . , Ai(ai), . . . , An(an)) =
Ai(ai) and T (Ai(ai), r) ≥ r, we get

T ((A1 × A2× · · · × An)(a1, a2, . . . , an), r)
= T (min(A1(a1), . . . , Ai(ai), . . . , An(an)), r) = T (Ai(ai), r) ≥ r.

Thus (a1, a2, . . . , an) ∈ (A1 ×A2 × · · ·×An)T
r . Finally, this completes the proof. ✷
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