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Some common fixed point theorems in fuzzy
metric spaces

Mohd Imdad∗ and Javid Ali†

Abstract. Some common fixed point theorems in complete fuzzy
metric spaces (in sense of Song [17] and Vasuki-Veeramani [19]) are
proved which generalize earlier results due to Vasuki [18], Chugh and
Kumar [3] and others. We also introduce the concept of R-weak com-
mutativity of type (P ) in fuzzy metric spaces. Some related results and
illustrative examples are also discussed.
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1. Introduction

It proved a turning point in the development of mathematics when the notion of
fuzzy set was introduced by Zadeh [20] which laid the foundation of fuzzy mathemat-
ics. Consequently the last three decades were very productive for fuzzy mathematics
and the recent literature has observed the fuzzification in almost every direction of
mathematics such as arithmetic, topology, graph theory, probability theory, logic
etc. Fuzzy set theory has applications in applied sciences such as neural network
theory, stability theory, mathematical programming, modeling theory, engineering
sciences, medical sciences (medical genetics, nervous system), image processing,
control theory, communication etc. No wonder that fuzzy fixed point theory has
become an area of interest for specialists in fixed point theory, or fuzzy mathematics
has offered new possibilities for fixed point theorists.

Deng [4], Erceg [5], Kaleva and Seikkala [11] and Kramosil and Michalek [12]
have introduced the concept of fuzzy metric spaces in various ways. George and
Veeramani [8] modified the concept of fuzzy metric spaces introduced by Kramosil
and Michalek [12] and defined Hausdorff topology of metric spaces which is later
proved to be metrizable. They also showed that every metric induces a fuzzy metric
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and by now there exists considerable literature on this topic. To mention a few, we
cite [2,4,5,8-12,17,19].

Recently, Chugh and Kumar [3] proved a Pant [13, Theorem 1] type theorem for
two pairs of R-weakly commuting mappings satisfying a Boyd and Wong [1] type
contraction condition which in turn, generalizes a fixed point theorem of Vasuki
[18, Theorem 2].

In fact Chugh and Kumar [3] proved the following.
Theorem A. Let A,B, S and T be mappings from a complete fuzzy metric space

(X,M, 	) into itself satisfying A(X) ⊂ T (X), B(X) ⊂ S(X) and M(Ax,By, t)
≥ r(M(Sx, T y, t)) for all x, y ∈ X, where r : [0, 1] → [0, 1] is a continuous function
such that r(s) > s for each 0 < s < 1. Suppose that one of A,B, S and T is
continuous, pairs (A,S) and (B, T ) are R-weakly commuting on X. Then A,B, S
and T have a unique common fixed point in X.

Note that Theorem A for a pair of R-weakly commuting mappings was proved
by Vasuki [18] provided one of the mapping is continuous.

The purpose of this paper is to improve the main theorem of Vasuki [18] along
with Theorem A (due to Chugh and Kumar [3]) besides adopting R-weak commu-
tativity of type (Af ), type (Ag) to fuzzy setting and to introduce R-weak commu-
tativity of type (P ) which are to be used to prove our results in this paper.

Our improvement in this paper is four-fold:

(i) to relax the continuity requirement of maps completely,

(ii) to minimize the commutativity requirement of the maps to the point of coin-
cidence,

(iii) to weaken the completeness requirement of the space to four alternative con-
ditions,

(iv) to employ a more general contraction condition in proving our results.

2. Preliminaries

In what follows we collect relevant definitions, results and examples for our future
use.

Definition 2.1.(cf. [20]) A fuzzy set A in X is a function with domain X and
values in [0, 1].

Definition 2.2.(cf. [16]) A binary operation 	 : [0, 1] × [0, 1] → [0, 1] is a con-
tinuous t-norm if {[0, 1], 	} is an abelian topological monoid with unit 1 such that
a 	 b ≤ c 	 d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2.3.(cf. [12]) The triplet (X,M, 	) is a fuzzy metric space if X is an
arbitrary set, 	 is a continuous t-norm, M is a fuzzy set in X2 × [0,∞) satisfying
the following conditions:

(i) M(x, y, 0) = 0,

(ii) M(x, y, t) = 1 for all t > 0 iff x = y,

(iii) M(x, y, t) = M(y, x, t) 
= 0 for t 
= 0,
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(iv) M(x, y, t) 	 M(y, z, s) ≤ M(x, z, t+ s),

(v) M(x, y, .) : [0,∞) → [0, 1] is left continuous for all x, y, z ∈ X and s, t > 0.

Example 2.1.(cf. [8]) Every metric space induces a fuzzy metric space. Let

(X, d) be a metric space. Define a 	 b = ab and M(x, y, t) =
ktn

ktn +md(x, y)
,

k,m, n, t ∈ �+. Then (X,M, 	) is a fuzzy metric space. If we put k = m = n = 1,
we get

M(x, y, t) =
t

t+ d(x, y)
.

The fuzzy metric induced by a metric d is referred to as a standard fuzzy metric.
Definition 2.4.(cf. [10]) A sequence {xn} in a fuzzy metric space (X,M, 	) is

convergent to x ∈ X if

lim
n→∞M(xn, x, t) = 1 for each t > 0.

Recently, Song [17] and Vasuki and Veeramani [19] again critically reviewed
the existing definitions of Cauchy sequence in a fuzzy metric space. Vasuki and
Veeramani [19] suggested that the definition of Cauchy sequence due to Grabiec
[10] is weaker than that contained in [17, 19] and called it a G-Cauchy sequence.

Definition 2.5.(cf. [10]) A sequence {xn} in a fuzzy metric space (X,M, 	) is
called Cauchy if lim

n→∞M(xn+p, xn, t) = 1 for every t > 0 and each p > 0. (X,M, 	)
is complete if every Cauchy sequence in X converges in X.

Definition 2.6. A pair of self-mappings (f, g) of a fuzzy metric space (X,M, 	)
is said to be

(i) weakly commuting (cf.[18]) if M(fgx, gfx, t) ≥ M(fx, gx, t),

(ii) R-weakly commuting (cf.[18]) if there exists some R > 0 such that

M(fgx, gfx, t) ≥ M(fx, gx, t/R),

(iii) R-weakly commuting mappings of type (Af ) if there exists some R > 0 such
that M(fgx, ggx, t) ≥ M(fx, gx, t/R),

(iv) R-weakly commuting mappings of type (Ag) if there exists some R > 0 such
that M(gfx, ffx, t) ≥ M(fx, gx, t/R),

(v) R-weakly commuting mappings of type (P ) if there exists some R > 0 such
that M(ffx, ggx, t) ≥ M(fx, gx, t/R),
for all x ∈ X and t > 0.

Notice that Definition 2.6 (iii) and Definition 2.6 (iv) are inspired by Pathak et
al. [15] whereas Definition 2.6 (v) seems to be unreported.

Example 2.2 (cf. [18]) Let X = �, the set of real numbers. Define a 	 b = ab
and

M(x, y, t) =




(
e

|x−y|
t

)−1

, for all x, y ∈ X and t > 0

0, for all x, y ∈ Xand t = 0.
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Then it is well known (cf. [18]) that (X,M, 	) is a fuzzy metric space. Define
fx = 2x−1 and gx = x2. Then by a straightforward calculation, one can show that

M(fgx, gfx, t) =
(
e

2|x−1|2
t

)−1

= M(fx, gx, t/2)

which shows that the pair (f, g) is R-weakly commuting for R=2. Note that the pair
(f, g) is not weakly commuting due to a strict increasing property of the exponential
function.

However, various kinds of above mentioned ‘R-weak commutativity’ notions are
independent of one another and none implies the other. The earlier example can
be utilized to demonstrate this inter-independence.

To demonstrate the independence of ‘R-weak commutativity’ with ‘R-weak com-
mutativity’ of type (Af ) notice that

M(fgx, ggx, t) =
(
e

|x4−2x2+1|
t

)−1

=
(
e

R(x−1)2

t
(x+1)2

R

)−1

<

(
e

R|x−1|2
t

)−1

= M(fx, gx, t/R) when x > 1

which shows that ‘R-weak commutativity’ does not imply ‘R-weak commutativity’
of type (Af ).

Secondly, in order to demonstrate the independence of ‘R-weak commutativity’
with ‘R-weak commutativity’ of type (P ) note that

M(ffx, ggx, t) =
(
e

|x4−4x+3|
t

)−1

=
(
e

R(x−1)2

t
(x2+2x+3)

R

)−1

<

(
e

R|x−1|2
t

)−1

= M(fx, gx, t/R) for x > 1.

Finally, for a change the pair (f, g) is R-weakly commuting of type (Ag) as

M(gfx, ffx, t) =
(
e

|(2x−1)2−4x+3|
t

)−1

=
(
e

4|x−1|2
t

)−1

= M(fx, gx, t/4)

which shows that (f, g) is R-weakly commuting of type (Ag) for R=4. This situation
may also be utilized to interpret that an R-weakly commuting pair of type (Ag)
need not be R-weakly commuting pair of type (Af ) or type (P ). It is not difficult
to find examples to establish the independence of one of these definitions from the
others which shows that there exist situations to suit a definition but not the others.

3. Results

Now, let (X,M, 	) be a complete fuzzy metric space and let A,B, S and T be
self-mappings of X satisfying the following conditions:

A(X) ⊂ T (X) and B(X) ⊂ S(X), (3.1)
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M(Ax,By, t) ≥ φ(min{M(Sx, T y, t),M(Sx,Ax, t),M(By, Ty, t)}) (3.2)

for all x, y ∈ X, where φ : [0, 1] → [0, 1] is a continuous function such that φ(s) > s
for each 0 < s < 1. Then for any arbitrary point x0 ∈ X, by (3.1), we choose
a point x1 ∈ X such that Ax0 = Tx1 and for this point x1, there exists a point
x2 ∈ X such that Sx2 = Bx1 and so on. Continuing in this way, we can construct
a sequence {yn} in X such that

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1 for n = 0, 1, 2 . . . (3.3)

Firstly, we prove the following lemma.
Lemma 3.1. Let A,B, S and T be self-mappings of a fuzzy metric space

(X,M, 	) satisfying the conditions (3.1) and (3.2). Then the sequence {yn} de-
fined by (3.3) is a Cauchy sequence in X.

Proof. For t > 0,

M(y2n, y2n+1, t) = M(Ax2n, Bx2n+1, t)
≥ φ(min{M(Sx2n, Tx2n+1, t),M(Sx2n, Ax2n, t),M(Tx2n+1, Bx2n+1, t)})
= φ(min{M(y2n−1, y2n, t),M(y2n−1, y2n, t),M(y2n, y2n+1, t)})

>




M(y2n−1, y2n, t), if M(y2n−1, y2n, t) < M(y2n, y2n+1, t)
(3.4)

M(y2n, y2n+1, t), if M(y2n−1, y2n, t) ≥ M(y2n, y2n+1, t),

as φ(s) > s for 0 < s < 1. Thus {M(y2n, y2n+1, t), n ≥ 0} is an increasing sequence
of positive real numbers in [0, 1] and therefore tends to a limit l ≤ 1. We assert
that l = 1 . If not, l < 1 which on letting n → ∞ in (3.4) one gets l ≥ φ(l) > l a
contradiction yielding thereby l = 1. Therefore for every n ∈ N , using analogous
arguments one can show that {M(y2n+1, y2n+2, t), n ≥ 0} is a sequence of positive
real numbers in [0, 1] which tends to a limit l = 1. Therefore for every n ∈ N

M(yn, yn+1, t) > M(yn−1, yn, t) and lim
n→∞M(yn, yn+1, t) = 1.

Now for any positive integer p

M(yn, yn+p, t) ≥ M(yn, yn+1, t/p) 	 . . . 	 M(yn+p−1, yn+p, t/p).

Since lim
n→∞M(yn, yn+1, t) = 1 for t > 0, it follows that

lim
n→∞M(yn, yn+p, t) ≥ 1 	 1 	 . . . 	 1 = 1

which shows that {yn} is a Cauchy sequence in X . ✷

Now we prove our main result as follows:
Theorem 3.1. Let A,B, S and T be four self-mappings of a fuzzy metric space

(X,M, 	) satisfying the condition

M(Ax,By, t) ≥ φ(min{M(Sx, T y, t),M(Sx,Ax, t),M(By, Ty, t)})
for all x, y ∈ X and t > 0 where φ : [0, 1] → [0, 1] is a continuous function with
φ(s) > s whenever 0 < s < 1. If A(X) ⊂ T (X) and B(X) ⊂ S(X) and one of
A(X), B(X), S(X) and T (X) is a complete subspace of X, then
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(i) A and S have a point of coincidence,

(ii) B and T have a point of coincidence.

Moreover, if the pairs (A,S) and (B, T ) are coincidentally commuting, then
A,B, S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . Then following arguments of Fisher
[7], one can construct sequences {xn} and {yn} in X such that

y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1.

Then due to Lemma 3.1, {yn} is a Cauchy sequence in X .
Now suppose that S(X) is a complete subspace of X , then the subsequence

y2n+1 = Sx2n+2 must get a limit in S(X). Call it to be u and v ∈ S−1u. Then Sv =
u. As {yn} is a Cauchy sequence containing a convergent subsequence {y2n+1},
therefore the sequence {yn} also converges implying thereby the convergence of
{y2n} being a subsequence of the convergent sequence {yn}. On setting x = v and
y = x2n+1 in (3.2) one gets (for t > 0)

M(Av, y2n+1, t) = M(Av,Bx2n+1, t)
≥ φ(min{M(u, y2n, t),M(Av, u, t),M(y2n+1, y2n, t)})

which on letting n → ∞ reduces to
M(Av, u, t) ≥ φ(M(Av, u, t)) > M(Av, u, t)

a contradiction. Therefore Av = u = Sv, which shows that the pair (A,S) has a
point of coincidence.

As A(X) ⊂ T (X), Av = u implies that u ∈ T (X). Let w ∈ T−1u, then Tw = u.
Now using (3.2) again

M(y2n, Bw, t) = M(Ax2n, Bw, t)
≥ φ(min{M(y2n−1, Tw, t),M(y2n−1, y2n, t),M(u,Bw, t)})

which on letting n → ∞ reduces to

M(u,Bw, t) ≥ φ(M(u,Bw, t)) > M(u,Bw, t)

a contradiction. Therefore u = Bw. Thus we have shown u = Av = Sv = Bw = Tw
which amounts to say that both pairs have point of coincidence. If one assumes
T (X) to be complete, then an analogous argument establishes this claim.

The remaining two cases pertain essentially to the previous cases. Indeed if
A(X) is complete, then u ∈ A(X) ⊂ T (X) and if B(X) is complete, then u ∈
B(X) ⊂ S(X). Thus (i) and (ii) are completely established.

Since the pairs (A,S) and (B, T ) are coincidentally commuting at v and w
respectively, then

Au = A(Sv) = S(Av) = Su and

Bu = B(Tw) = T (Bw) = Tu.

If Au 
= u, then for t > 0
M(Au, u, t) = M(Au,Bw, t)

≥ φ(min{M(Su, Tw, t),M(Su,Au, t),M(Bw, Tw, t)}
= φ(min{M(Au, u, t), 1, 1}
= φ(M(Au, u, t)) > M(Au, u, t)



Some common fixed point theorems in fuzzy metric spaces 159

a contradiction. Therefore Au = u. Similarly, one can show that Bu = u. Thus
u is a common fixed point of A,B, S and T . The uniqueness of a common fixed
point follows easily. Also u remains the unique common fixed point of both pairs
separately. This completes the proof. ✷

Remark 3.1. If

min{M(Sx, T y, t),M(Ax, Sx, t),M(By, Ty, t)} = M(Sx, T y, t)

one obtains an improved version of Theorem A (due to Chugh and Kumar [3])
as Theorem 3.1 is proved without any continuity requirement besides confining the
commutativity to points of coincidence alone.

Remark 3.2. If

min{M(Sx, T y, t),M(Ax, Sx, t),M(By, Ty, t)} = M(Sx, T y, t),

by setting A = B and S = T , one obtains a substantially improved version of
[18, Theorem 2] due to Vasuki as our result is proved under tight commutativity
condition without any continuity requirement.

Theorem 3.2. Theorem 3.1 remains true if a ‘coincidentally commuting’ prop-
erty is replaced by any one ( retaining the rest of the hypotheses ) of the following:

(i) R-weakly commuting property,

(ii) R-weakly commuting property of type (Af ),

(iii) R-weakly commuting property of type (Ag),

(iv) R-weakly commuting property of type (P ),

(v) weakly commuting property.

Proof. Since all the conditions of Theorem 3.1 are satisfied, then the existence
of coincidence points for both the pairs is insured. Let x be an arbitrary point of
coincidence for the pair (A,S), then using R-weak commutativity one gets

M(ASx, SAx, t) ≥ M(Ax, Sx, t/R) = 1

which amounts to say that ASx = SAx. Thus the pair (A,S) is coincidentally com-
muting. Similarly (B, T ) commutes at all of its coincidence points. Now applying
Theorem 3.1, one concludes that A,B, S and T have a unique common fixed point.

In case (A,S) is an R-weakly commuting pair of type (Af ), then

M(ASx, S2x, t) ≥ M(Ax, Sx, t/R) = 1

which amounts to say that ASx = S2x. Now

M(ASx, SAx, t) ≥ M
(
ASx, S2x,

t

2

)
	 M

(
S2x, SAx,

t

2

)
= 1 	 1 = 1

yielding thereby ASx = SAx. Similarly, if pair is R-weakly commuting mappings
of type (Ag) or type (P ) or weakly commuting, then (A,S) also commutes at
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their points of coincidence. Similarly, one can show that the pair (B, T ) is also
coincidentally commuting. Now in view of Theorem 3.1, in all four cases A,B, S
and T have a unique common fixed point. This completes the proof. ✷

As an application of Theorem 3.1, we prove a common fixed point theorem for
four finite families of mappings which runs as follows:

Theorem 3.3. Let {A1, A2, . . . , Am}, {B1, B2, . . . , Bn}, {S1, S2, . . . , Sp} and
{T1, T2, . . . , Tq} be four finite families of self-mappings of a fuzzy metric space
(X,M, 	) such that A = A1A2 . . . Am, B = B1B2 . . . Bn, S = S1S2 . . . Sp and
T = T1T2 . . . Tq satisfy condition (3.2) with A(X) ⊂ T (X) and B(X) ⊂ S(X). If
one of A(X), B(X), S(X), or T (X) is a complete subspace of X, then

(i) A and S have a point of coincidence,

(ii) B and T have a point of coincidence.

Moreover, if AiAj = AjAi, BkBl = BlBk, SrSs = SsSr, TtTu = TuTt,
AiSr = SrAi and BkTt = TtBk for all i, j ∈ I1 = {1, 2, . . . ,m}, k, l ∈ I2 =
{1, 2, . . . , n}, r, s ∈ I3 = {1, 2, . . . , p} and t, u ∈ I4 = {1, 2, . . . , q}, then (for all
i ∈ I1, k ∈ I2, r ∈ I3 and t ∈ I4) Ai, Sr, Bk and Tt have a common fixed point.

Proof. The conclusions (i) and (ii) are immediate as A,S,B and T satisfy all
the conditions of Theorem 3.1. Now appealing to component wise commutativity of
various pairs, one can immediately prove that AS = SA and BT = TB and hence,
obviously both pairs (A,S) and (B, T ) are coincidentally commuting. Note that all
the conditions of Theorem 3.1 (for mappings A,S,B and T ) are satisfied ensuring
the existence of a unique common fixed point, say z. Now one needs to show that
z remains the fixed point of all the component maps. For this consider

A(Aiz) = ((A1A2 . . . Am)Ai)z = (A1A2 . . . Am−1)((AmAi)z)
= (A1 . . . Am−1)(AiAmz) = (A1 . . . Am−2)(Am−1Ai(Amz))
= (A1 . . . Am−2)(AiAm−1(Amz)) = . . .

= A1Ai(A2A3A4 . . . Amz) = AiA1(A2A3 . . . Amz) = Ai(Az) = Aiz.

Similarly, one can show that

A(Srz) = Sr(Az) = Srz, S(Srz) = Sr(Sz) = Srz,

S(Aiz) = Ai(Sz) = Aiz, B(Bkz) = Bk(Bz) = Bkz,

B(Ttz) = Tt(Bz) = Ttz, T (Ttz) = Tt(Tz) = Ttz

and T (Bkz) = Bk(Tz) = Bkz,

which show that (for all i, r, k and t) Aiz and Srz are other fixed points of the pair
(A,S) whereas Bkz and Ttz are other fixed points of the pair (B, T ). Now appealing
to the uniqueness of common fixed points of both pairs separately, we get

z = Aiz = Srz = Bkz = Ttz,

which shows that z is a common fixed point of Ai, Sr, Bk and Tt for all i, r, k and
t. ✷
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By setting A = A1 = A2 = . . . = Am, B = B1 = B2 = . . . = Bn, S = S1 = S2 =
. . . = Sp and T = T1 = T2 = . . . = Tq, one deduces the following for certain iterates
of maps, which runs as follows:

Corollary 3.1. Let A,B, S and T be four self-mappings of a fuzzy metric space
(X,M, 	) such that Am, Bn, Sp and T q satisfy the conditions (3.1) and (3.2). If
one of Am(X), Bn(X), Sp(X) or T q(X) is a complete subspace of X, then A,B, S
and T have a unique common fixed point provided (A,S) and (B, T ) commute.

The following example furnishes an instance where Corollary 3.1 is applicable
but Theorem A (due to Chugh and Kumar [3]) cannot be used due to the absence
of continuity requirement.

Example 3.1. Consider X = [0, 1] equipped with the natural metric d(x, y) =
|x− y|. Now for t ∈ [0,∞) define

M(x, y, t) =




0, if t = 0 and x, y ∈ X

t
t+|x−y| , if t > 0 and x, y ∈ X.

Clearly (X,M, 	) is a fuzzy metric on X where 	 is defined as a	b = ab. This fuzzy
metric space is also sometimes referred to as induced fuzzy metric space. It is well
known (cf. [8]) that this fuzzy metric space is complete if and only if X is complete.

Define A,B, S and T on [0, 1] as

Ax =




1, if x ∈ [0, 1] ∩Q

0, if x /∈ [0, 1] ∩Q,
Bx =




1, if x ∈ [0, 1] ∩Q

1
2 , if x /∈ [0, 1] ∩Q,

Sx =




1
2 , if 0 ≤ x < 1

1, if x = 1,
and Tx =




1
4 , if 0 ≤ x < 1

1, if x = 1.

Then A2(X) = {1} ⊂ { 1
4 , 1} = T 2(X) and B2(X) = {1} ⊂ { 1

2 , 1} = S2(X). Define
φ : [0, 1] → [0, 1] as φ(0) = 0, φ(1) = 1 and φ(s) =

√
s for 0 < s < 1. Then

1 = M(A2x,B2y, t)
≥ φ(min{M(S2x, T 2y, t),M(S2x,A2x, t),M(B2y, T 2y, t)})

for all t > 0. Also the various componentwise commutativity ensures the commuta-
tivity of both pairs (A,S) and (B, T ). Thus all the conditions of Corollary 3.1 are
satisfied and 1 is the common fixed point of A,B, S and T .

Here one needs to note that Theorem A (due to Chugh and Kumar [3]) cannot
be used in the context of this example because if we take x, y /∈ Q, then

t

t+ 1
2

= M(Ax,By, t) ≥ φ

(
min

{
t

t+ 1
4

,
t

t+ 1
2

,
t

t+ 1
4

})

which is not always true for t > 0 (e.g. t = 0.5). On the other hand, all the four
mappings are discontinuous, which is not in lieu of requirement of Theorem A (due
to Chugh and Kumar [3]).
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