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ON THE ZEROS OF POLYNOMIALS
AND RELATED ANALYTIC FUNCTIONS

Abdul Aziz and W. M. Shah, Srinagar, India

Abstract. Let P(z) be a polynomial of degree n with real or complex coefficients. In this paper we
obtain a ring shaped region containing all the zeros of P(z). Our results include, as special cases, several
known extensions of Enestrom-~Kakeya theorem on the zeros of a polynomial. We shall also obtain zero
free regions for certain class of analytic functions.

1. Introduction and statements of results

n .
If P(z) = Y a;2 is a polynomial of degree n such that
j=0

Gn 2 An_12...20a1 2ay >0,

then according to a famous result due to Enestrém and Kakeya [9, p. 136], the
polynomial P(z) does not vanish in |z| > 1.
Applaying this result to P(z), the following more general result is immediate.

n .
THEOREM A. IfP(z) = ) a2 is a polynomial of degree n such that
=0

1

la, 2" a1 2...2ta 2 a >0,

then all the zeros of P(z) lie in |z| < t.

In the literature [2, 5, 7, 8] there exist some extensions and generalizations of
Enestrdm-Kakeya theorem. Govil and Rahman [5] generalized this theorem to the
polynomial with complex coefficients.

While refining the result of Govil and Rahman [5], Govil and Jain [4] proved
the following result. '

n
THEOREMB. LetP(z) = 5. arzt # 0be a polynomial with complex coefficients
k=0
such that

Iargak—ﬂléasg, k=01,...,n
for some 3, and

lan| 2 lan—1] 2 ... 2 |a1| 2 |ao|.
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Then P(z)| has all its zeros in the ring shaped region given by
R; < |a| < Ra.

1 1 ¢t 1 1\2 M
= (- )+ (5 - ) )
) |an| Mx) + 4 la,,[ Ml) + |a,,l}

Ry= 7 [‘R%lbt(Mz ~ faof) + {4laol REM3 + REJb2 (M2 — laol)? |

Here

(ST

and

-

J

2M3
where
M = |a,,|R,
2 |ac] .
M, = |an|R3[R+ Rz — 2 |(cosoc + sin at)],
n
c= lan - an—ll»
b = a; — ao,
and
. 2sin ot A
R=cosa+sina + ] ZIaki.
Qan
k=0

As an extension of Theorem A, Dewan and Bikham [3] have recently proved
the following result.

n .
THEOREM C. Let P(z) = Y a;z/ be a polynomial of degree n such that for some
j=0
t>0and0 <k <n,
<

t"a, < t"-la,,_l <...< tkak P tk_lak_l Z ... 2ta; 2 ap.
Then P(z) has all its zeros in the circle
t 2a; 1

< L0220 s L —an))

K o { preria Y e (laol ao)}
The main aim of this paper is to prove the following more general result
(Theorem 1) which includes Theorem A, B and C as special cases. These theorems
and many other such results can be established from Theorem 1 by a fairly uniform

procedure. We shall also study the zeros of certain related analytic functions.
We start by proving the following:

n .
THEOREM 1. Let P(z) = 3 a;jZ # 0 be a polynomial of degree n. If for some
Jj=0
real numbert > 0

Il\/llal)g tagz™! + (tay — ao)Z” + ... + (tan — an_1)z| < My (1)
zZl=

and
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ll\/lla;g] —ap2" 4 (tag — an_1)2t 4 ...+ (ta) — ag)z| < Ma,

(2)

where R is any positive real number. Then all zeros of P(z) lie in the ring shaped
region

rn<ld<n (3)
where

. 2M?
1 =
{R4|tan — an_12(M; — |an|)? + 4|an|RZM3} 2 — |ta, — an_1|(M) — |a,|)R?

and

1 2
=5 [{R*|ta1 — ao|* (M — t|ag|)* + 4M3 R?t|aq

1
}2 — |ta1 —ao|(M2—t|a0|)R2].
(5)
Remark 1. 1t can be easily verified that
2M?
r =
—[t@n — @n1|(M1 — |an])R? + {R4|tay — an—1[2(M1 — |a,])? + 4[an|R2M} }
_ 1tan — an1|(My — |aa)R2 + {R¥[tan — an1 *(M: — |as])? + 4lan|RM3}

2[a, MR
_]ta,,——a,,_ll( 1 _L)_{_{[ta,,—an_dz( 1 _L)2+ M, }‘
2 la.] M, 4 lan] M lan|R2 S

(6)
If we take R = (1/¢) in (6), then we get

(AT

-l ) (et (- )y o

4 o My |an|

n .
Suppose now P(z) = _ a;z satisfies the conditions of Theorem B, than it can be
j=1

easily seen (for reference see [5]) that

la; = aj—1] < {(la] = |aj-1]) cos & + (laj| + |aj—1]) sin e},

so that for R = ¢ = 1, we get from (1),

ll\/llaﬁltaoz"“ + (ta1 —ap)" + ... + (tan — ap—1)7|
zl=

n
<D laj—aj1| + |aol
=1 ‘
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n n
< (laj| = laj-1|)cos @ + > (laj| + |aj—1]) sin o + |aol
=1 =1
n—1
= |an|(cos @ + sina) + 2sina Z laj| — lao|(cos & + sina — 1)
=0
n—1
< lan|(cos a + sina) +2sina Z |aj|
j=0

= |as|r = My, say

2sina 2}
where r = cos & + sina + > lajl.
laa| =

Also from (7) with t = 1, we have

]a,,—a,,_ll( 1 1 {]a,,—a,,_1|2( 1 142 Ml}
rn=—__""1 - )+ ——) +— .
! 2 la.] ~ M, ) 4 || M1> ||

Clearly r; > 1 and it follows by a similar argument as above that

(ST

1!\/|Ia§| — a4, (tag — an_ )+ ...+ (tag — ap)z|
z|l=

< a3 + 71 laj— g
j=1
|ao|

|ax|

Now, from (7) for t = 1, we get r; = R, and from (5) for R = R», t = 1 we get
r» = R3. Consequently, it follows by Theorem 1 that all the zeros of P(z) lie in
R3 < |z| € Ry, which is precisely the conclusion of Theorem B. Similarly, many
other such results, in particular Theorem 2 of [3] and Theorem 2 of [4] easily follows
from Theorem 1 by a fairly similar procedure.

Next, we use Theorem 1 to prove the following result, which includes Theorem
C as a special case and is also an extension of a result due to Mohammad [10].

< la,,lri'{rl +r— (cos a + sin a)} = M,, say.

n .
THEOREM 2. Let P(z) = Y a;@ be a polynomial of degree n. If for some t > 0
=0

}V|Ia§ ltaps" + (tay —ag)?" ' + ... + (ta, — ap—1)| € M3, (8)
zl=

where R is any positive real number, then all the zeros of P(z) lie in

M; 1
. sMax{—,—}.
|2 ' R

n .
Remark 2. If P(z) = ) a;o/ satisfies the conditions of Theorem C, then for
j=0
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R = (1/t), witha_; = 0, we have

n n

tay — ap—1
< Z % = M3, say.

Ma)l( Z(m" —a;_1)" 7k —
=7 |=o k=0 !
Since
1 tap — ag— ltay —ap_1] Ms
==t = .
R ; a ik Z an|t o =k |an|

It follows by Theorem 2 that all the zeros of P( ) lie in

\Z Ve i, ©

lz] < |a |tk

|a,,|
Now a simple calculation shows that

n A n
tak — ag—1| |tar — ax—1] |tak — ax—1|
D Y - ot I W A e
Z |anltn-—k Z Ianltn_k Z |an|trl—k

k=0 k=0 k=A+1

=l {(f—l ~an) + (o "“")}’

and therefore from (9), we precisely get the conclusion of Theorem C.
Again, if P(z) is a polynomial of degree n such that for some ¢ > 0

O0Sa<ta; <...<ay 2 ap > ... > "ay,

then from (8), we have

n n
Max‘Z(mk — ak_l)zn—k‘ < Z |tak — ak_llR"-k
=0

l=l=R k=0
N .
:Ztak—ak R*™ k4 Z (ak—; — tax)R*~ k
k=0 k=A+1
1 1y (o .
= E(Za,lR"_’1 —ay) + (t - E) (Z aR* — Z akR"_k) =M,
k=0 k=A+1 (10)

Using (10) in Theorem 2, we immediately get the following result, which is a
generalisation of Enestrém—Kakeya Theorem.

n .
COROLLARY 1. Let P(z) = ) a;a be a polynomial of degree n. If for some
j=0

t>0

A

0<ay<ta; <. a2 ay 2. 2 Ma,

- S
than all the zeros of P(z) lie in |z| < Max (Rl, %) where

A n
1 Iy 1
L ar —ay+ (- 1) (SRt - 3 R,
R]a,,|( ’l) R Ian] pa k k

k=A+1

R

If we take A = n in Corollary 1, we get
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COROLLARY 2. Let P( Y- a7 be a polynomial of degree n. If for some
=0
t>0

0<ag <ta; £... < "ay,

than all the zeros of P(z) lie in |z| < Max(Ry, ) where

1

1 k —k
e (- D@
! R+ R kz_;a,.

ForR = l, Corollary 2 reduces to Theorem A

‘We now turn to the study of zeros of certain related analytic functions

THEOREM 3. Let f(z) = Z aj? # 0be analyticin |z] <

R. Iffor some positive
real numbert < R

Maﬁ‘Z(aj_l — ta,-)zj_1\ <M, (11
z|= i1

than f(z) does not vanish in |z| < r, where
1

r = ——

2z | { (Mr—tlao))*|ao— ta | + 4tlac| 11 |

(ST

—(MR—t|aoa)|ao—m1|]. (12)
By a similar argument as in the proof of Theorem 2, it can be easily verified
that if #|ag| < MR, then from (12)

tlaol
2 YL 13
a (13)
and if t|ag| > MR, then f(z) does not vanish in
2l <R

(14)
By combining (13) and (14), the following corollary follows immediately
COROLLARY 3. If f(z) = 3°72 ajd/ # O be analytic in |z| <

Max‘ aj_1 — ta;)? l<M
M_RZ -1~ tap)d | <

then f(z) does not vanish in

R and

M
Finally, we present the following extension of Theorem 5 of [1]

| < Min{’|"°i R} (15)

THEOREM 4. Let f(z) = E a;? # 0 be analytic in |z| <

t. If for some finite
non-negative integer k

a<Lta <... StkakZIk“a;,H ...,
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then f(z) does not vanish in

t

ag 2 & .'
(2tkla—o‘ — 1) + mjglaj — lajl|tf

lz| <
If a; > 0 and k = 0, then Theorem 4 reduces to Theorem 5 of [1].

2. Lemmas

For the proofs of these theorems, we need the following lemmas. The first
lemma is due to Govil, Rahman and Schmeisser [6].

LEMMA 1. If f(z) is analytic in |z| € 1, f(0) = a where la| < 1, f'(0) = b,
/(@) < Lon 2] = 1, thenfor 1| < 1,

(1 — la)[ef? + [b] 2] + |al(1  |al)
& < T = laD P+ 6Tl + (1= Ja)”

The example

shows that the estimate is sharp.
From Lemma 1, one can easily deduce the following:

LEMMA 2. If f(z) is analyticin [z] < R, f(0) =0, f/(0) = band |f(z)| < M
for|z| = R, then
Mlz| Miz| + R?|b|

&I 22 3wl

for|z) < R.

3. Proofs of the theorems

Proof of Theorem 1. Consider the polynomial

F(z) = (t — 2)P(z) = —a,2"™ + (tan — @n_1)2" + . .. + tay. (16)
We have
G(z) = 2""'F(1/2) = —a, + (tan — an—1)z + ... + tag?™’,
so that
IG(2)| > |an| — |H(2)], (17)
where .

H(z) = (tan — @n_1)z + (tan_1 — @n_2)2* + ... + tapz™*'.
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Clearly, H(0) = 0 and H'(0) = ta, — a,—:. Since by (1) |H(z)| < M1, for |z| =R,
therefore, it follows by Lemma 2, that

Mijzl Milz| + R*tay — api|
R* M+ |tan— api]le]

|H(z)| < for [z] < R.

Using this in (17) we get
M |z|(Mi|z] + R?|ta, — an—1|)
R (M, + |tap — an—1] |2])
_ lan|R?M, + R*|tay — an_i1|(Jan] — My)lz| — M7|z|?
R2(M; + |tan — an—1l |2|)

1G(2)] > lan| -

>0,

if
M?|z)% + R?|ta, — an_1|(M) — |an)|z] — |a.|R*M; < 0.
This gives |G(z)| > 0, if

< {Rlta, — ap 1 P(M = |an])® + 4|an|R*M3}} — R2|ta, — an—1| (M1 — |ax))
2M2

=4, (by (4))

lz|

Consequently, all zeros of G(z) lie in |z| > rl As F(z) = 2"*'G(1/z) we conclude

that all the zeros of F(z) lie in |z| € ry. Since every zero of P(z) is also a zero of
F(z), it follows that all the zeros of P(z) lie in

lz| £ 1. (18)
Again, from (16), we have
|F(2)] > |tao| — |T(2)}, (19)
where

T(Z) = —a,.z"“ + (ta,, - a,,_l)z" + ...+ (ta1 —ag)z.
Clearly T(0) = 0 and T'(0) = ta; — ap. Since by (2), |T(z)] < M, for |z| = R,

therefore, it follows by Lemma 2, that
M;|z| Ma|z] + Rzltal — ag|

T(z)| <
IT()] < —5 M, + |tay — agllz| ’

for z]| < R.

So that from (19) we have
_ Ma|z|(M;z] + R*jta; — ao)
R (M, + |ta; — ao| |z])
_ taolR*Ma + R2jtas — aol(tlao| — My)lz| — M3z’
(M + Jtar — ao] [2)

{F(2)| > |taol

>0,

M2|z|% + R*|ta; — ao|(M2 — t]ao|)\z| — t|ao|R*M; < 0.
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Thus F(z) > 0, if

19—

1 5
lz] < ———{ R¥ta; — ao|*(My — t|ag|)® + 4t|a0]R"Mg}
L

— RJtay — ao|(Mz — tlao))|
=r,. (by (5))
Since every zero of P(z) is also a zero of F(z), we conclude that all zeros of P(z) lie
) |z| 2 ra. (20)
The desired result follows by combining (18) and (20).
Proof of Theorem 2. From (1) and (8) we get

ll\'/llaﬁ ltaoz™™! + (a1 — ap)z" + ... + (tan — an_1)z] < M3R = M,, say.

Replacing M; by M3R in (4) it follows from Theorem 1 that
_ 204}
{Itan — an—1[*(M3R — |an|)? + 4|an|MgR}% — [tan — an—1|(M3R — |a,|)
1)
Now, first we suppose that |a,| < M3R, then M3R — |a,] > 0. Since ta, —
an—1| € Ms, therefore, we have

[tan — an—1|(M3R — |a,}} € M3(M3R — |a,|).

r

Or, equivalently
lan|M3 + |ta, — an—1|(M3R — |an|) < M3R,

which on multiplication by 4M3|a,|, gives

AM2|an? + 4Mi)an| [1an — an1|(MsR — |an]) < 4las MIR.
Adding |ta, — an—1|*(M3R — |an|)? both sides, we get
{2M;)a,| + |tan — an—1|(M3R — |an|)}? < |tan — an—1)*(M3R — |a,|)* + 4|a,|M3R.
Or,
2Msan| < {|tan — an_|*(MsR — |ag|)? + 4]an|M3R}> — |tay — an_|(MsR — |aa)),

from which we conclude that
M;

Ian'.

(22)

%

Hence it follows by Theorem 1 that all the zeros of P(z) lie in the circle |z| <
(M3/|a)-
Next, we suppose that |a,| > M3R, then this clearly implies from (8),

ltapz™* + (ta1 — ag)z" + ...+ (tan — an_1)z| < |a,|  for|z| = R.
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Using Rouche’s theorem, it follows that the polynomial
G(z) = tapz™! + (tay — a0)" + ... + (tan — @n—1)z + an
does not vanish in |z| < R. This implies that the polynomial F(z) = z""'G(1/z)

does not vanish in |z| > % Since every zero of P(z) is also a zero of F(z), we
conclude that all zeros of P(z) lie in the circle

< & (23)
From (22) and (23) it follows that all the zeros of P(z) lie in
M; 1
< M 1 Dol
la| < Max{ o =}
This proves Theorem 2 completely.
Proof of Theorem 3. 1t is easy to observe that klirn a;t* = 0. Now, consider the

function

F2)=(z—1t)f(z) = —tap+z Z(af‘l - taj)z:"'1 = —tag + G(2), (24)
j=1

where
o0

G(z) =z Z(af—l —taj)d ™.

=1
Here G(0) = 0, G'(0) = ag — ta; and since

6@ <R[ (@1~ ta)d | <MR  forlg =R.
=1

Therefore, it follows by Lemma 2, that

MlZl(MlZl -+ lao — ta1|R)

G(z)] €
l ( )I MR+]ao—ta1||z|

for |z] < R.

Using this in (24), we get
M|z|(M|z] + |ao — ta1|R)
MR + |ag — tay] |z]
_ [taolMR + (tlas| — MR)lao — rar] 2] — M2]el?
MR + |ag — tai| |z|

[F(2)| 2 tao] -

>0,
if

MZ|Z|2 + (MR — t{ao|) lag — ta1} |z| — t|as|MR < 0.
This gives [F(z)| > 0, if

1 1
l2| < m[{(MR—t]aol)zlao—ta1|2+4t|a0]M3R}2 — (MR—1t)ao)) ;ao—ra1|] =r
(by (12))
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Therefore F(z) does not vanish in |z| < r, from which it follows that f(z) does not
vanish in |z| < r. This completes the proof of Theorem 3.

Proof of Theorem 4. 1t is clear that lim #a; = 0. Since
j—oo

[ e} o0
lao| = 'Z(aj_l - taj)ti_ll £ Max Z(aj_l —ta)? ' =M, say.
j=1

|2|=t =
Th |ao]
erefore — < 1, and hence

Min{tlji;—()', t}= ";’4—"'

Using this in (15), with R = ¢, it follows that f(z) does not vanish in

t|ao|
el < =7 (25)
Now, for |z| = ¢ we have
M = Max aj— — taj) I ai_1 — ta;|?/!

lz|=t J:ZI(j ! " ZI-’ 1 Il
Rt .
<Y ltla] = laja ¢~ 1+Z|t(aj lajl) — (@j—1 — la1 )¢~
Jj=1 j=1
k . .

=Y (tlal — a1 )F™" + Z (lgj-1 — tlajf)
j=1 j=kt1

+Z' = lajl) — (@j-1 — Iaj_1|)|tj_1
= 2| - laol+2| L R

< 2tk|ak| — lao| + ZE}aj - |a,-l'tj,
j=1

therefore, it follows from (25), that f(z) does not vanish in
t]a|
2tF|a| — |ao| + 2 7, |aj — |ajl|¥

This proves the Theorem 4 completely.

lz] <
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