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ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE VISCOUS

MICROPOLAR FLUID: A GLOBAL EXISTENCE THEOREM

Nermina Mujakovic, Rijeka, Croatia

Abstract. An initial-boundary value problem for one-dimensional flow of a compressible viscous
heat-conducting micropolar fluid is considered. It is assumed that the fluid is thermodinamicaly perfect
and politropic. A global-in-time existence theorem is proved. The proof is based on a local existence
theorem, obtained in the previous paper [4].

1. Statement of the problem and the main result

In this paper we consider an initial-boundary value problem for one-dimensional
flow of a compressible viscous heat-conducting micropolar fluid, being in thermod­
inamical sense perfect and politropic (see [4] and references therein).

Let p, v, 01 and e denotes respectively the mass density, velocity, microrotation
velocity and temperature in the Lagrangean description. Then the problem that we
consider has the formulation as follows:

op 20V _ 0
ot + p ox - ,

ov 0 (OV) 0ot = ox P ox - K ox(pe),

pow =A[P~(pOW) _ 01],ot ox ox

oe 2 OV 2(OV)2 2(001)2 2 0 ( oe)PEii = -Kp e ox + p ox + p ox + 01 + Dp ox P ox
(1.4)

in ]0, l[xR+,

v(O, t) = v(l, t) = 0,

01(0, t) = 01(1, t) = 0,
oe oe

ox (0, t) = ox (1, t) = 0,

for t E R+,

p(x, 0) = Po(x),

v(x, 0) = vo(x),

(1.5)

(1.6)

(1. 7)

(1.8)

(1.9)
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w(x,O) = WO(X),

fJ(X, 0) = fJO(X)
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( 1.10)

(1.11)

for x E]O, 1[. Here K, A and D are given positive constants; Po, yo, Wo and fJo are
given functions, satisfying the conditions

Po, fJo > 0 in [0,1]. (1.12)

Let T E R+; a generalised solution of the problem (1.1 )-( 1.11) in the domain
QT =]0, l[x]O, T[ is a function

(x, t) --+ (p, v, w, fJ)(x, t), (x, t) E QT, (1.13)

where

P E LOO(O, T;HI(]O, 1[)) nHI(QT), (1.14)

v, w, fJ E Loo (0, T;HI(]O, 1[)) n HI(QT) n L2(0, T;H2(]0, 1[)),
(1.15)

that satisfies the equations (1.1 )-( 1.4) a.e. in QT, the conditions (1.5)-( 1.11) in the
sense of traces and the conditions

infp > O.
QT

(1.16)

(1.17)

(1.18)

(1.19)

From embedding and interpolation theorems ([3]) one can conclude that from
(1.14) and (1.15) it follows:

p E C([O, T], L2(]0, 1[)) n Loo (0, T; C([O, 1])),

v, w, fJ E L2(0, T;C(I)([O, 1])) n C([O, T],HI(]O, 1[)),

v, w, fJ E C(QT)'

Specially, the condition (1.16) has a sense.
Assuming the conditions

Po, fJo E HI(]O, 1[), Yo, Wo E HJ(]O, 1[) (1.20)

and the inequalities (1.12), in the previous paper [4] we proved a uniqueness of a
generalised solution and the following local existence theorem: there exists To E R+,
such that in the domain QTo =]0, 1[x ]0, To [ there exists a generalised solution,
having the property

fJ > 0 in QTo' (1.21)

With the use of that theorem, in this paper we shall prove the following result.

THEOREM 1.1. Let the conditions (1.20) and (1.12) be fulfiled. Then for each
T E R+, in the domain QT there exists a generalised solution (1.13) of the problem
(1.1)-{ 1.11), having the property

fJ > 0 in QT'

In our proof we apply the method of the book [1], where the Theorem 1.1 was
proved for the classical fluid (w = 0); for this case see also [2].
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2. The proof of Theorem 1.1
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Because of the local existence result, Theorem 1.1 is an immediate consequence
of the following statement.

PROPOSITION 2.1. Let T E R+ and let a function

(x, t) --+ (p, v, w, e)(x, t), (x, t) E QT (2.1 )

satisfies the condition:

for eac!l T' E]0, T[. (2.1) is a generalised solution of the problem (l.1)--{ 1.11 )

in the domain QT' =]0, 1[x ]0, T'[ and the inequality e > 0 in QT' holds true.
Then (2.1) is a generalised solution of the same problem in the domain QT and

inequality e > 0 in QT holds true.

The above statement is a consequence of results below. In that what follows
we assume that the function (2.1) satisfies the condition of the Proposition 2.1. By
C E R+ we denote a generic constant, having possibly different values at different

places; we also use the notation Ilfll = IlfIIL'(]o,I[)' Because of the fact that equations
(1.2) and (1.3) don't contain the function w, some of our considerations are identical
to that of classical fluid. In these cases we omit proofs or details of proofs, making
reference to correspondent pages of the book [1].

LEMMA 2.1. It holds

v, wE Loo(O, T;L2(]0, ID),

e E Loo(O, T;L1(]0, ID),

(2.2)

(2.3)

Proof Multiplying the equations (1.2), (1.3) and (1.4) respectively by
V,A-lp~IW and p-l, integrating over ]0, 1[ and making use of (1.5)-(1.7), af­
ter addition of the obtained equalities we find that

I

Jt J (iv2 + 2~ w2 + e )dx = 0 on ]0, T[.
o

Integrating over ]O,t[, t E]O, T[ and making use of (1.9)-( 1.11), we obtain

(2.4 )

I

J (iv2 + 2~ w2 + e)dx = 411vol12 + 2~ IIwol12 + IleoIILI(]O,I[) on ]0, T[,
o (2.5)

or

IIvl12 + IIwll2 + IlellL'(]o,l[) ~ Con ]0, T[. (2.6)

From (2.6) there follow the statements (2.2) and (2.3). 0
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LEMA 2.2. ([1]' pp. 47-48, 50-52). Let t E]O, T[ and

Me(t) = max ee, t),
[0, I]

IIlp(t) = minp(·, t),
[0, I]

I

II (t) = J p(x, t) (~~ (x, t)f dx,
o

(2.7)

(2.8)

(2.9)

(2.10)

r

I2(t) = J h (-r)d-r.
o

Then there exist C E R+ and (for each f > 0) C, E R+, such that for each t EJO, T[
the inequalities

hold true.

LEMA 2.3. It holds

t

I/lp(t) ~ C(I + J Me (-r)d-r) -I
o

inf e > 0,
Qr

p E LOO(Qr).

(2.11 )

(2.12)

(2.13)

(2.14 )

Proof Let W = e-I andp > 1. Multiplying the equation (1.4) by2pp-l W2p+1
and integrating over JO, 1[ we obtain

I I

!!.. J W2Pdx= J [2Dpw2P-l JL (paW) -2p(2DPe (aW)2 +pw2 (aV _ Ke)2dt ax ax ax ax 2
o 0

+ w' W2+pW2 (OW )2) w2p-J + K'p PW2P-l]dxP ax 2
I

~J [2Dpw2P-l t.t (p~~)+¥pW2P-l]dx on ]0, T[.
o (2.15)

Integrating the first term on right-hand side by parts and making use of (1.7), we
find that

I I

!!.. J W2Pdx ~ J [-2Dp(2p - 1)W2p-2 (a~)2 +K'p PW2P-J]dx,
dt 0 0 a.t 2 (2.16)

or
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I 1

!!... J W2Pdx~pK2 J pW2p-1dx on]O T[dt '" 2 ' .
o 0
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(2.17)

The conclusions (2.13) and (2.14) follow now from (2.17) as in the case of classical
fluid ([1]' pp. 48-50). D

LEMMA 2.4. It holds

Me E L2(]0, T[), (2.18)

ill! e > 0, (2.19)
QT

e E L~(O, T;L2(]0, 1[)) nL2(0, T;H1(]0, 1[)). (2.20)

Proof. Let

<I> = iy2+ 2~ w2 + e. (2.21)

Multiplying the equations (1.2), (1.3) and (1.4) respectively by y<I>, A-1p-lw<I>

and p-1<I>, integrating over ]0, 1[ and making use of (1.5)-(1.7), after addition of
the obtained equations, we find that

or

1 1 1

l!!... J <I>2dx+ J p(a<I»2 dx + (D - 1) J pae a<I>dx2dt ax ax ax
000

1 I

( 1) J aw a<I> J a<I> [+ 1 - A pw ax ax dx - K pey ax dx = 0 on ]0, T ,
o 0

(2.22)

I 1 1

l!!... J <I>2dx + J P ( a<I>) 2 dx + (D - 1) J P a e a<I>dx2dt ax ax ax
o 0 0

1 1

~ L f pjw ~~ ~; I dx + K J pely~; Idx on ]0, T[, (2.23)
o 0

where L = 11 - A-II. Applying on the right-hand side the Young inequality with a
parameter 8 > 0, we obtain

1 1

1 d J 2 J [ (a<I»2 ae a<I»
-- <I> dx+ p (1-28) - + (D-1)-- dx2 dt ax ax ax

o 0

1

~ C8-1 J P [w2 (~~) 2 + e2y2) dx on ]0, T[. (2.24)
o



204 N. MUJAKOVIC

One can easily see that the following inequality holds true

(1-28) (~;) \(D-l) ~~ ~; ~ (D-68) (~~) 2_ (48+ (1-~~+Df)y2(~~) 2

- 4~ ((1-28)2+ i(1-48 +D)2) ~: (~~)2. (2.25)

Let 8 = 24-1 min{l, D}. From (2.24) and (2.25) it follows the inequality
1 1

~1<1>2dx+3f 1p(~~)2dx
o 0

1

~ CI 1 P [y2 (~~) 2 + w2( ~~)2 + e2y2] dx on ]0, T[, (2.26)
o

where

C - 2 {4~ + (1-48+D)2 r + 2(1-28)2+(1-48+D)2 r}1 - max u 88' 8 88 ' 8 .

Multiplying (1.2) and (1.3) respectively by y3 and p-Iw3, integrating over ]0, 1[
and making use of (1.5) and (1.6), after applying the Young inequality we obtain
the inequalities

1 1 1

:t 1 y4dx+ 1 py2(~~fdx ~ 6K2 1 pe2y2dxon]0, T[, (2.27)
000

1 1

~1w4dx +A 1pw2( ~~fdx ~ a on ]0, T[. (2.28)
o 0

Multiplying (2.27) by C1 and (2.28) by C2 = A -I Cj, after addition of the obtained
inequalities with (2.26), we find that

1 1 1

~ 1 (<1>2+cly4+C2W4)dx+D 1 p(~~)2dx ~ C 1 pe2y2dxon]0, T[ (2.29)
o 0 0

or, taking into account (2.2), (2.14) and (2.11),
1

:t (1 (<1>2+ CI y4 + C2(4)dx + Dh) ~ C(1 + Dh)
o

1

~ c( 1 + 1(<1>2+ CI y4 + C2(4)dx + Dh) on ]0, T[. (2.30)
o

From (2.30) it follows the inequality
1

1 (<1>2+ CI y4 + C2(4)dx + Dh ~ Con ]0, T[ (2.31)
o
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h E L00 (]O, TD,

<1> E Loo(O, T;L2(]0, ID).
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(2.32)

(2.33)

From (2.32) and (2.11) we conclude that (2.18) holds true. The inequality (2.19)
follows now from (2.18) and (2.12); the inclusion (2.20) follows from (2.33), (2.19)
and (2.32). 0

LEMMA 2.5. ([ 1]' pp. 53-54) It holds

p E Loo (0, T;HI(]O, ID) n HI(QT)' (2.34)

LEMMA 2.6. ([ 1], pp. 53-54) It holds

v E Loo (0, T;H1(]0, ID) n H1(QT) n L2(0, T;H2(]0, ID). (2.35)

LEMMA 2.7. It holds

Proof Multiplying the equation (1.3) by p-1w, integrating over ]0, 1[ and
making use of (1.6), we obtain

1

~ :t IIwl12 +A J [p(~:) 2 + ~2]dX = 0 on ]0, T[, (2.37)
o

or

I 1

~llw(.,t)112+A J d-. J[p(~:f + ~2](x,-')dX
o 0

1

1 J 2= 2" wo(x)dx ~ C,
o

t E]O, T[. (2.38)

Using (2.19), we conclude that

wE L2(0, T;H1(]0, 1[)). (2.39)

82w

Multiplying (1.3) by A-1p-1 8x2 and integrating over ]0,1[, after integration by
parts on the left-hand side and making use of (1.6), we find that

1 1

~~118WI12 +Jp(82W)2dx=J(W82W _ 8P8W82W)dx on ]O,T[.2A dt 8x 8x2 p 8x2 8x 8x 8x2
o 0

(2.40)
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In that what follows we use the inequalities

(2.41 )

(2.42)

valid for a function f vanishing at x = 0 and x = 1 or having derivatives that vanish
at the same points.

With the help of (2.19) and (2.41) and using the Young inequality with a
parameter 8 > 0, for the terms on the right-hand side of (2.40) we find estimates on
JO,T[ as follows:

IJ1W 82w I II82w 112P 8x2 dx ::;;8 8x2 + Cllw112,
o

1 I

IJ 8p 8w 82w dxl ::;;211 8w II t II 82w II t JI 82w 8p Idx8x 8x 8x2 8x 8x2 8x2 8x
o 0

::;;211~: IIt II ~:~ II ~ II ~~ II ::;;811 ~:~ II+ ell ~:~ 11211~~ r (2.43)

Using again (2.19), from (2.40), (2.42) and (2.43) we obtain (making use of (1.10))

t t

II~: (., t)ll\ JII ~:~(.,T)112dT::;;Ilw~112+ e J (11w112+ II~: Inl ~~ IndT
o 0

t

::;;e(l+ J(llwI12+1I~:11211~~lndT), tEJO,T[. (2.44)
o

With the help of (2.34) and (2.39), from (2.44) we find that

t

11~:(·,t)112 + JII~:~(·,T)112dT::;;e, tEJO,T[. (2.45)
o

Using (2.14) and (2.19), from (1.3) we obtain

and, because of (2.39) and (2.45),

t

JII ~~ (., T)1I2dT::;; e, t EJO, T[.
o

The conclusion (2.36) follows from (2.45) and (2.47). D

(2.47)
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LEMMA 2.8. It holds

e E Loo(O, T;HI(JO, 1[)) nHI(QT) nL2(0, T;H2(JO, 1[)). (2.48)

Proof Multiplying (1.4) by p-I ~:~and integrating over JO, 1[, after integra­
tion by parts on the left-hand side and making use of (1.7), we obtain

I I I

1 d II 8e 112 J (82e)2 J 8v 82e J (8V)282e2. dt 8x + D P 8x2 dx = K pe 8x 8x2 dx - P 8x 8x2 dx
o 0 0

I I I

J (8W) 282e J w2 82e J 8p 8e 82e- p 8x 8x2 dx - P 8x2 dx - D 8x 8x 8x2 dx on JO, T[. (2.49)
o 0 0

With the help of (2.14), (2.35), (2.41) and (2.36) and using the Young inequality
with a parametar 8 > 0, for the terms on the right-hand side of (2.49) we find
estimates on JO,T[ as follows:

(2.50)

(2.51 )

(2.52)

(2.53)

Using again (2.19), from (2.49)-(2.54) (making use of (1.11)) we obtain
t t

II~: (., t)112 + JII ~:~ (., r)112dr ~ Ile~112+ c( 1 + J (M~(r)
o 0

+ II ~:~ (., r) 112+ II ~:~ (., r) 112+ II ~: (., r) In dr). (2.55)



208 N. MUJAKOVIC

With the help of (2.18), (2.35), (2.36) and (2.20), from (2.55) we find that

t EJO, T[. (2.56)

(2.57)

(2.58)

Using (2.14), (2.19), (2.34), (2.35), (2.36), (2.41) and (2.53), from (1.4) we obtain

II ~~ 112 ~ C( 1 +M~ + II ::~ 112+ II ~:~ 112+ II ::~ In on JO, T[

and, because of (2.18), (2.35), (2.36) and (2.56),
t

JII~~(.,T)112dT~C, tEJO,T[.
o

The conclusion (2.48) follows from (2.56) and (2.58). D

The Proposition 2.1 follows immediately from (2.13), (2.19), (2.34), (2.35),
(2.36) and (2.48).
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