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ON THE HYPERBOLIC PARTIAL DIFFERENCE
EQUATIONS AND THEIR OSCILLATORY PROPERTIES

A. Musielak and J. Popenda, Poznan, Poland

Abstract. For the solutions hyperbolic partial difference equation
D%,z y{m, n) = a(m, n)y(m, n)

satisfying some boundary conditions an analytical formula is presented. The solutions are then studied
in relation to their oscillatory properties.

In this note we shall study the linear partial difference equations of the form
D} 2y(m, n) = a(m, n)y(m, n), (m,n) € Ng (E)

where Ng = {0, 1, ...} is the set of nonnegative integers.

In Section 1 a closed analytical formula for the solution of (E) satisfying some
boundary conditions is given. In Section 2 we shall study existence of oscillatory
solutions, by using the method of separation of variables.

We shall consider real valued sequences of two independent variables, that is
the functions y : N3 — R.

For the sequence y = {y(m, n)};f:o:io we define partial difference operators
of the first order:

Dj y(m,n) =y(m+1,n) —y(m,n), mneNg
Djay(m,n) =y(m,n+1) = y(m,n), mné€ No;

and of the second order
D%l,z)’("la n) = D/Z(D/l y(m,n)), m,n € No.
1t is evident that

D3, ,y(m, n) = D}, y(m,n) = y(m+1,n+1)—y(m+1,n)—=y(m, n+1)+y(m, n).

Mathematics subject classification (1991): 39A10.
Keywords and phrases: hyperbolic partial difference equation, boundary value problem, oscillation.
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1. Explicit form of solutions of the equation (E)

In this Section we introduce some sum operators, similar to those used in [2],
which allow us to present every solution of (E) in an explicit form.
For any two sequences x : N3 — R, w : Ng — R we define

Erx(i,j) ow(i) = Z (ﬁx(ik,jk))w(ir)

icmm mi i Sirzp k=1
JEVR n2j1>j2..>jr 2V

foru,mv,ne€Ng, 1 <r<minm—pu+l,n—v+1),m2unzv,
> x(ij)ow(i) =0

i€p,m
JEVR

forr=0,orr>min(m—-pu+l,n—v+1l),orm<uorn<v.
For example
Zl x(i, )ow(i)=x(2, 6)0(2)+x(2, T)w(2)+x(3, 6) (3)+x(3, ) (3)
i€2,5
j€6,7
+x(4, 6)w(4)+x(4, T)w(4)+x(5, 6)w(5)+x(5, 7)w(5),
x(i, jlow(i)=x(3, 7)x(2, 6)0(2)+x(4, 7)x(2, 6)w(2)+x(5, 7)x(2, 6)w(2)
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+x(5, 7)x(3, 6)w(3)+x(4, 7)x(3, 6)w(3)+x(5, 7)x(4, 6)w(4),
Z3x(i, j)ow(i)=0.

The following properties of the operator ) . can be observed

n m
> xiNew = x(k o), D x(@j)ewl) = x(iK)w(),
i€FF j=v i€mm i=n
j€wn jexx
hence
m
Yo b )o@+ xlsnt Nols) = D x(i)) o wli),
icum =i i€mm
jevn jevntl
n
Yo xee@+ Y xmtLom+1)= Y x(ij)e o)
icu,m =y i€p,m+1
JEV,n icvin

JeEV.n
furthermore
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ii—1 ir—1—1

S xiheo®= 3 (Y xlini)Yoatai)-. Yo xinideli)

icum nZ2j1 > 2y h=p =p ir=p
j€vnn
and
m n
S paY, Hihea®= Y Y dpa)Y, xi el
pP=p g=v i€pp=1 p=p+1g=v+1 =T
Jjevg—1 JjEVg—1
= x(i,) cw(i),
icp,m
j€vn
n
> ool =Y sGjee@+ Y xma)Y  x(ij)ow()
e— iemm—1 g=vir=1 icum—1
jevn je€vn jevg—1

forr 2 2.
Similar properties are possessed by the operator

er(i,j) ow(j) = > (ﬁx(ik,jk))w(jr)-

icgm m2i i Sirpp k=1
j€vin n2j1 > i 2v

For w(n) = 1 on Ny we shall write

r
> wipew() =Y xGew@ =3 xin= > ([[=i).
iegm icgm icm,m m2iy > Sipy k=1
jevn jevn icvn nZj1>ja. i 2y
From the above we obtain:

THEOREM 1. Let a : N3 — R, and ¢,y : Ny — R be functions such that

©(0) = w(0). Then there exists a unique solution of the problem
D7, , y(m, n) = a(m, n)y(m, n)

y(m, 0) = ¢(m) (P1)
¥(0,n) = y(n)
Jor m, n € No. This solution can be presented in the form
n—1
y(m, n) +Z Y albNee@+ym+Y_ Y alij)ow())
r=1 i€lm—1 r=1 i€c0,m—1
JjeO,n—1 jel,n—1
p
+ (9(0)a(0 Z >, alii)+ (@(0)a(0,0) — ¢(0)) (1)

IEl,m 1
JELn—1
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forallm,n € N, where p = min{m — 1,n — 1}.
Proof. Equation (E) can be written in the following equivalent form:
yim+Ln+ D) =ym+1,n) +y(mn+1)—y(mn)+a(mn)y(m,n). (2)

Assuming that (1) holds forallm € {1,2,...,m},n € {1,2,..., n;} wecan prove
(1) inductively from (2), first for m = my + 1 and successively n = 1,2, ..., n1;
then for n = n; + 1 and successively m = 1,2, .. ., my, and finally form = m; + 1,
n = n; + 1. The proof is rather technical so to elucidate we present short part of it.
Let (1) holds for y(m, 1), that is

y(m, m)+Z Y alij)oo(d) +w(1) + (¢(0)a(0,0) — ¢(0))

tEl,m 1
1600

m—1

=o(m)+ Y _ a(i,0) 0 o(i) + w(1) + (¢(0)a(0, 0) — p(0)).

i=1

Hence for y(m + 1, 1) we get from (2) by initial conditions

y(m+1, )=y(m+1, 0)+y(m, 1}—y(m, 0)+a(m, 0)y(m, 0)
=p(m+1)+o(m)+ Z a(i, 0) o @(i)+w(1)+(9(0)a(0, 0)—(0))
i=1
—@(m)+a(m, 0)p(m)

=@(m+1)+ Z a(i, 0) o @(i)+w(1)+(9(0)a(0, 0)—9(0)).

That is (1) valid for y(m + 1, 1). Similarly (1) can be verified for y(1, n).

Assume that (1) holds for y(m + 1, k), y(m, k + 1), y(m, k), where m > k. We
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prove that (1) holds for y(m + 1, k + 1). By (2) and inductive assumption we obtain

y(m+1, k+1):y(m+1 k)+y(m, k+1)—y(m, k)+a(m, k)y(m, k)

{ m+l+z Z a(i, j)oe(i +u/(k+z Z a(i, )ey ()

lelm 1€0m
j€0k—1 jeTk—1
+(0(0)af0,0)- Z Z ali ) +(6(0)a(0,0)~0(0) |
JEW—I
{ m—i—Z Z a(i, Joo(i)+w(k+1) +Z Z a{i, j)ow (j)
e i
k
+(6(01a0,00-0(0) Y ¥, aliiH+(6(0)a(0,01-0(0) }
r=1 . —
’ejléﬁl
k
—{<o(m>+2 Y ai ool z>+w<k+2 Y alievt)
= el i
jE0E—1 JETF-T
k—1
+(6(01a0,0-0(0) 3 3, ali)+(0(01a(0,01-0(0) }
=l ieTm—1
jeerk——l
k
+alm {0+ X, alifool+v Y Y aiowt)
r=1 i€lm-1 1 =l icom=1
jEOk jElk 1
+(9(0)a(0 Z Y ali,j)+(9(0)a(0,0)- ())}.
=

Notice that suitable upper limits of summations have been changend because of the
condition m > k. We shall consider the sum
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k m—1 k
S aios 3 Y alieo -3 Y atiieol)
r=1 . — r=1 . r=1
iel, ielm—1 icl,m—1
JjeOEk—1 Jjeok JjE0E—1
k
+ a(m, k)p(m) + a(m, k Z Zr a(i, j)oe(i)
r=1 iclm— 1
160&
m—1
= Z a(i, j)oo(i) + a(m, kyo(m) + a(m, k)z Z a(i, j)oe(i)
r=1 iclym—1 tElm 1
jedk j€0k=
+ D ali Do) + D ali o) + ... + Z a(i, j)ow (i)
icl,m icl,m icl,m
jEDK—T jebk—1 je0k=1
= >, alid)ew) = > alifoe() —...= Y a(i.j)oe()
iel,m—1 i€l,m—1 i€l,m—1
JEOE—1 jebk—1 je0k—1
m—1
= Z Z a(i, jYop(i) + a(m, k)o(m) + a(m, k) Z Z a(i, jyop(i
r=1 i€l,m—1 r=1 ieln—1
jebk jE0k—1
k-1 k-1
+Za(m, s)o(s) +Za m, s) Z a(i, jlop(i
s=0 s=1
1€1,m 1
Jj€O0,s—1
+ Z a(m, s Z_‘ (i, Noo(i)
s=k--1
zel,m 1
jEOs—1
k
= Z Z a(i, j)oe(i) +Za(m, 5)o(s)
1€1m 1 s=0
je0k
k-1
(mk) > ali)oe(i) + D alm,s) > ali,j)op(i)
i€lm—1 s=1 i€Tm—1
jEOK—1 JEDs—1
k-1
+ a{m, k) Z 1a(z,j)o(p(z) + Z a(m, s) Z (i, Now(i)
ieTm—1 s=k=1 ieTm=1
JEBE—1 JjEOs—T
+a(m, k) zk (i, oo (i)
icl,m—1
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k k
= Z Z a(i, j)oo(i +Za (m, s)o(s) + Za(m, s) 21 a(i, j)op(i)
r= ltel,m—l s=0 s=1 i€ Tm—T
jebk jEbs—1
k
+. .+ Z a(m, s) }:k_la(i, Joo(i) + a(m, k) Zk a(i, j)oo(i)
s=k=1 €Tl i€Tm=1
jebs—1 JEOE=T
k
= 21 (i, /)o(i) + Za m, s) Zz a(i, jyop(i)
i€Tm—1 s=0 ieTm—1
jeok jevk
k
+Y alms) Yy alif)oe(@) +...+ D ali,j)og(i)
s=1 lelm 1 iclm—1
jEOs—1 Jjeok
k
+ 3 a9 Y, aiion)
s=k—1 , —
i€l,m—1
j€O,s—1
+ a(m, k) Z a(i, j)oo(i ( Zk+1 a{i,jlop(i) if m>k+ 1)
i€el,m—1 i€Tm—1
jebk=1 jedk
= alif)ew() + ) alij)ow() +
iel,m ,m lEl,m
JEOR Jjeok
+ 3 alifowl) + Y, ali ool
i€lm i€tm
jeok jebk
k+1
=3 atiion = 355, et ont
r=1 i€lm =1 ieTm

JEOK jeok
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In similar way we can prove

k k—
ZZ a(iyov()+Y Y ali)ow() - ZZ a(i,j) o w(j)

1€0m i€0,m—1 lEOm 1
jeTk—1 JELE jeTk—1
k—1
+alm Ry +am k) Y Y ali) o i) = zz aliyj) o WG,
r=1 i€0,m—1 xEOm
JjeLk—1 jELk

and

-~

—1 k
(¢(0)a(0,0)~0(0)) > D ali,j)+(9(0)a(0,0)~ Z > aliJ)
=1 —_— r=1

7

iEl_m_ i€l,m—
jeLk—1 ]elk
k k—1
~(9(0)a(0,0)-0(0)) Y~ 3 ali,j)+alm k)(¢(0)a(0,0)~9(0)) Y >
=l ieTmo1 =1 ieTm=
k
+a(m, k) (¢(0)a(0, 0)~¢(0))=((0)a(0, 0)~(0)) 3 > a(i,j
r=1 . _—

Since we consider the case m > k, it suffices to replace upper limits of summation

m
(because, for example inthe sum ) >~ a(i, ) terms with r > k are equal to zero),
r=1 iel,_m
jeTk
and (2) holds fory(m + 1,k + 1).

In the following result we shall consider a problem which will be useful in the
next section.

THEOREM 2. Let a : N3 — R and ¢,y : Ng — R be functions such that
©(0) = y(0). Then there exists a unique solution of the problem

D, ,y(m, n) = a(m, n)y(m, n)
y(m, 0) = g(m) (P2)
y(n,n) = y(n)

form,n € Np.
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Proof. It suffices to take in Theorem 1

n—1
w(n) = ¥( Z Y. aliiee) =Y Y aliiey()
=l ieTa—1 =1 it
jeG,n—1 JELn—1
n—1
— (0(0)a(0,0) — 9(0)) > Zr a(i, j) — (¢(0)a(0,0) - ¢(0))
=
JET -1

forn > 1, y(0) = ¢(0), and note that from (1) we get y(n, n) = y(n).
A similar theorem can be formulated for the problem
D?I,Z y(ma n) = a(m7 n)y(m, I‘l)
¥(0,n) = y(n) (P3)
y(m,m) = y(m)
for m, n € Np.

2. Oscillatory properties

Definition. A sequence y = {y(m, n)}32, is said to be nonoscillatory (in
relation to 0) if there exist positive integers u, v such that

y(m,n) >0 (positive sequence) forall m2pu,nzv
or

y(m,n) < 0 (negativesequence) forall m>pu,n>v.

Otherwise the sequence y is called oscillatory.

However this definition calls eventually zero sequence as oscillatory, we exclude
this type of sequences from our considerations.

If the sequence y is nonoscillatory then it is nonoscillatory for each section
along each arbitrary but fixed m = m, m > pu as well as arbitrary but fixed n = 7,
7 2 v. Moreover, all these sections are of the same sign (positive or negative).

A necessary and sufficient condition for oscillation can be formulated as follows.

THEOREM 3. A sequence y = {y(m, n)}32 o -, of real numbers is oscillatory
if and only if there exist increasing to infinity sequences m = {m}2, and n =
{ni} 2, such that {y(my, ni)} 2, is an oscillatory sequence.

Example 1. Consider the equation

Dj, 2 ¥(m, n) = y(m, n).
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One of the oscillatory solutions of this equation, namely satisfying

y(m,0)=1 for mé& Ny,
and
y(m,m) = (—-1)" for m € Ng,
can be presented in the form
m Jjn Jn—k+2

yOm m) = (=1y'+>_{ (-1~
k=1

For example
3
y(m,3) = (1)’ + Z{
k=1
(-1 +

Assuming that

jn=n+1jn_y=n

2

Jn—kr1=n—k+2

1} for m>2nneN.

Js—k

BkZ Z

B=4 jak=5—k
m J3 m j3 Ja
Zl+ DY N1+ Y >
=4 J3=4j2=3 J3=4 j2=3 j1=2

Jn—k+2
> 1)

Jn—ks1=n—k+2

n m Jn
Sty 5
k=1 Jn=n+1jp_1=n

n s Jn
=Sy 5
k=1

Jn=nt1j_y=n

fn-—k+?. ‘
> 1)

Jn—ks1=n—k+2

n
the above formula remains true for m < n, if furthermore we take > ... = 0 for

k=1
n = 0 also for y(m, 0), m € No.

From Theorem 2 it follows immediately:

THEOREM 4. Let a : N2 — R. For any function ¢ : Ny — R there exists a
Sfamily of oscillatory solutions of the problem

{wmﬂmm=4mwﬂmm

(P4)
y(mv 0) = (p(m)
Jorm,n € Ny

Proof. To get the desired result we can take in the Theorem 2 any arbitrary
oscillatory sequence .
In fact we can obtain the same result as in the Theorem 4 for the problem

D7, , ¥(m, n) = a(m, n)y(m, n)
y(m, 0) = ¢(m)
¥(0, a(n)) = y(m)

where a : Ng — Np is strictly increasing and such that card{Ng \ a(Ng)} = Ro.

(P3)
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THEOREM 5. Let a : Ng — Ry, and @, v : No — Ry be functions such that
@(0) = y(0). Then the solution of the problem (P1) is positive on N3.

In what follows we shall study solutions of the equation (E) of a particular
type, namely those which can be presented as a product of two functions of one
independent variable. We use the method of separation of variables (see [1] for
details) and examine the solutions thus obtained.

THEOREM 6. Let a, B : Ny — R. Then there exist solutions of the equation
D?uy(m, n) = a(m)B(n)y(m,n), (m,n) e NZ (E1)

which can be written as

Nmm)=ﬂQ®<T§U+mx )(Ti1+60/c) (3)
- L

where c is any real nonzero constant.

Proof. Suppose that the solution of (E1) can be presented as the product
y(m, n) = u(m)v(n) for all (m, n) € N3. Then D?my(m, n) = (Au(m))(Av(n)),
where Au{m) = u(m+ 1) — u(m). Assuming that the suitable operations are admis-

sible, we get
Aulm) B(n)v(n)
= =c).
a(m)u(m) Av(n)
From this we obtain two first order difference equations in one variable
{ Au(m) = co(m)u(m), m € Np
Av(n) = (1/c)B(n)v(n), n € Np.

The solutions of these equations are

u(m) = u(O)”ﬁ(l +cali)), meNp
and -
) =) T[4 BG)/e), e N,
Therefore ”
w(m)v(n) = (u(O) m_fgu + cai ) ( in (1+BG)/c) )
=(0,0) (ﬁ(l +ca(i))) (}11(1 +BG)/c))

should be solution of (E1). By direct substitution to (E1) we check validity of this
statement.

From the formula (3) we can deduce existence of solutions of (E1) which
posses some interesting properties. For example in relation to oscillation we get
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THEOREM 7. Let @, 8 : Ng — R. The equation (E1) has an oscillatory solution
in the form given by the formula (3) if and only if the sequence o or B possesses a
subsequence bounded away from zero.

Proof. Necessity. Suppose for contrary both im o(m) = Oand lim B(n) =
m— oo n—oo

0. Hence for any c there exist m(c) € N and n(c) € N such that 1 + ca(m) > 0 for
allm 2 m{c) and 1 + B(n)/c > O forall n > n(c). So for all m = m(c), n > n{c)
there is

m—1

sgn{y(0,0)(H (1 + ca(i )(1} 1+ B(j)/c )}

i=0
m(c)—1

= sgn{y(O, 0)( I o+ ca(i))) (n(iﬁlu + ﬁ(/')/c))}.

i=0
Sufficiency. Suppose that there exists a sequence {my };2; and a constant € < 0

-1
such that a(m;) < ¢ for all kK € N. Then for ¢ > — we have

l4+ca(m)<l+ce<0 forall keN.

m—1 o
Therefore the sequence { IT (1 + ca(i) } is oscillatory, and hence the same be-
i=0 m=1

haviour characterises the sequences {y(O 0)( Hl (1+cafi ))) (vl:[ol (1+[3(i)/c)) }°°
j= m=1

for any fixed but arbitrary v € N. Hence the SOIUUOH y(m, n) given by the formula
(3) is oscillatory. Similar proofs can be made in other cases thatis: a(rmy) > £ > 0,
Blm) <e<0,B(m) >e>0.

Example 2. Letin (E1) a(m) = a (constant), B(n) = 1. Then the solutions of
(E1) given by (3) are

y(m,n) = y(0,0)(1 + ca)™(1 + 1/c)".

1 1 m—1
Let in (El) a(m) = m, ﬁ(”) = m Then y(ma ") = y(O, O) I-[O (1 +
i=l
n—1
c
1) L0+ zn):
Since
m—1 m—1
e N 1T Ly 1 Het+m)
g(1+i+1)_;0 ATt O= 0 Ty for e#—kkEN,
n—1 n—1
L \_17 .1 (s 1y, _ 1 F(n+1/c) 1
0+ agem) = Ir bt = rapg o c#pken
then

1 1 Tm+o)(n+1/c)
m! n! I‘(c)l"(l/c)

y(m, n) = y(0,0)
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for (m,n) € N’°, ¢ #0,c # —k,c # —1/k, k € N.

For ¢ = —k, k € N there is y(m, n) = 0 for m > k, similarly for c = —1/k,
ke Nwegety(m,n)=0forn 2 k.

Let in (E1) a(m) = m, f(n) = n. Then the solution given by (3) for ¢ # 0,
c# —kc# —%, k € N is of the form

Fm=1+1/c)T(n—1+¢)
I'(1/e)T(c)

Furthermore y(m, n) =0 forn > k+ linthecase c = —k, k € Nand y(m,n) =0
form > k+ linthecasec = —1/k, k € N.

y(m, n) = y(0,0)c™" for mz1,n2 1l
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