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ON G-PSEUDO-CENTRES OF CONVEX BODIES

Maria Moszyhska and Tomasz Zukowski, Warsaw, Poland

Abstract. As is well known, for every convex body A in R” there is a unique centrally symmetric
kernel, that is, a centrally symmetric convex body C C A with maximal n-volume. The paper concerns
G-kemnels of a covex body A for any subgroup G of O(n), i.e. G-invariant convex subsets of A with
maximal n-volume. We prove that only for G generated by the central symmetry og every A has a unique
G-kemnel. If A is strictly convex, then its G-kernel is unique for every G.

Introduction

In 1950 Fary and Rédei proved that for every convex body A in R” there exists
a unique centrally symmetric convex body C C A with a maximal volume (see [2]).
They referred to the set C as the centrally symmetric kernel of A. Let p(A) be the
symmetry centre of the kernel C. We call p{A) the pseudo-centre of A.

The map p : J£" — R” defined on the class ;" of all convex bodies in R” is a
selector, i.e., p(A) € A for every A. Evidently

0.1. The map p is equivariant under affine automorphisms, i.e., f(p(A)) =
p(f(A)) for every f € GA(n).

0.2. (comp.[2], Satz 5) If A is a simplex, then p(A) is the centroid of A.

Of course, in general, for arbitrary subgroup G of O(n), the situation is quite
different than for the group {op) generated by the reflection at 0. For instance, a
convex body may contain many balls (i.e. translates of an O(n)-invariant body) with
a maximal volume.

We shall refer to any G-invariant (up to a translation) convex body contained in
A with a maximal volume as a G-kernel of A. We prove that {op) is the only non-
trivial subgroup G of O(n) such that every convex body in R” has a unique G-kernel
(Theorem 3.8); however, if A is strictly convex, then A has a unique G-kernel for
arbitrary non-trivial G (Theorem 3.9). Our conjecture is that for arbitrary G C O(n)
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and for every convex body A there is a representative of the affine type of A with a
unique G-kernel. We prove this conjecture under some additional assumption on G
(Theorem 4.4).

1. Preliminaries

We use the following terminology and notation:

Let ¢ be the class of all convex bodies in R”, i.e. compact convex subsets of
R" with non-empty interior.

The support function /14 : "~ — R is defined by

ha(u) = sup{x - u;x € A},

where - is the usual scalar product; we write also (A, u) for ha(u).

The width of A in direction u is b(A, u) := h(A, u) + h(A, —u) and the thickness
of A is d(A) := inf{b(A, u);u € §"7'}. Of course, diam(A) = sup{b(4, u);u €
Sn—l}_

It is well known that d : ™ — R is continuous with respect to the Hausdorff
limit limy.

The unit ball in R” is B” and its volume k.

The line passing through a, b (a # b) is aff(a,b). The linear subspace
spanned by (vi, ..., v¢} is lin{vy, ..., v¢).

The relative interior of A with respect to affA is relintA.

We use the symbol & for the euclidean direct sum, i.e. the Minkowski sum of
subsets of orthogonal subspaces of R”.

For arbitrary A, B C R", let

dist(A, B) = inf{|la — b||;a € A, b € B}.

Let X be a nonempty convex subset of R". A family {A,;x € X} of subsets of
R" is concave provided that for every xg, x; € X and ¢ € [0, 1]

A(l—l)xo-H.\’] ) (1 - I)Axo + tAx1~

As usually, GL(n), O(n), SL{n), GA(n), and SA(n) are the groups of linear
automorphisms, linear isometries, special linear maps (preserving volume), affine
automorphisms, and special affine maps (preserving volume) of R”, respectively.

If f € GA(n), then detf and ||f|| are understood as detf and ||f|| for the
corresponding linear map f. Let oy be the reflection at 0 and 7, the translation by x.

For any group G of transformations of R" and any x € R”, let G(x) be the orbit
of x and let

G* = .Gt "
Further,
fix G:= {x € R"; g(x) = x for every g € G}.
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A set C C R" is G-invariant provided that g(C) = C forevery g € G.
Evidently,

1.1. C is G*-invariant if and only if C—x is G-invariant.
We shall need the following elementary lemma.

1.2. LEMMA. Let P, be an n-dimensional parallelepiped in R", n > 2, with
(n — 1)-dimensional faces contained in hyperplanes H, ..., Hy, Hi, ..., H.,, where H;
and H} are parallel for all i. Let x; be a unit normal vector of H;. Ifdist(H;, H!) = B

and sin (x;, in{x1, ..., x;_1)) 2 a > 0fori =1, ..., n, then V,(P,) < ;,,B—n_—y

Proof. We can assume that P, is the Minkowski sum of n segments:

P, =2 A0, v)
for some basis (vi, ..., v,) of R".

Lety = (xn, lin(x1, ..., Xn—1))-

Induction on n:

Ifn=2,theny = = — (v1, v2) and

2 [32

Va(P2) = [[»2]IB = siny < o
Let n > 3 and assume the assertion holds forn — 1. Let
F=37'A(0,v;) and E = (linv,)".

Consider the orthogonal projection Iz : R — E and let P,_; = I1g(F). Then,
evidently, for i = 1,...,n — 1, the intersections E N H; and E N H] are parallel
(n — 2)- dimensional flats containing (n — 2)-dimensional faces of P,_;. Moreover,
dist(E N H;, EN H}) = B and sin $(x;, lin(xy, ..., x;-1)) Z afori=1,..,n— 1.

Hence, by the inductive assumption,

Vn—l(Pn—l) <

an—2 :
Since

Vn(Pn) - ﬁvn—l(F); Vn—l(F) = Vn—l(Pn—l) !

cos X(xp, V)’
andv, L x; fori =1, ..., n, it follows that

cos L(Xn, V) = sin L(xn, viF) = sin L(xn, lin(xy, , .., Xnm1)) > @,
whence

B

n
Ve < By < L

an—! '

This completes the proof. O
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2. Invariant convex bodies

Let n > 2. We are interested in subgroups of GL(n) for which there exist
invariant convex bodies in R”.

2.1. PROPOSITION. For every G C GL(n) the following are equivalent:
(i) There exists a G-invariant set C € Jy",
(ii) G = fG'f~! for some G' C O(n) and f € GL(n).

Proof. (ii) = (i): Assume (ii). Let C = f(B") and let g € G. Then
g = fg'f~! for some g’ € G' and thus

8(C) = fg'f'f(B") = f(B") = C.

(i) = (ii): Let C be G-invariant and let E be the unique ellipsoid with a
maximal volume contained in C (see [1] or [4]). Then E is G-invariant and thus E
has centre 0, whence E = f(B") for some f € GL(n). Let G’ := f~!Gf; then B" is
G'-invariant and, consequently, G’ C O(n). O

Evidently,

2.2. For every G C GL(n) and compact subset C of R"
C is G-invariant if and only if C is G-invariant.
In view of 2.1 and 2.2, we can restrict our consideration to compact subgroups

of O(n).
We shall need the following.

2.3. LEMMA. Let G be a compact subgroup of O(n). If there is no G-invariant
linear subspace of dimension k € {1, ..., n — 1}, then there exists ag > 0 satisfying
the following conditions:

(i) d(G(x)) > ag forevery x € S"1,

(ii) for every x, € S"7! there exist x3, ..., x, € G(x1) such that x1, ..., x, are
linearly independent and

1
sin é:(xi, lin(xl, ...,x,-_l)) P 'iac

fori=1,..,n.

Proof. (i): Since there are no G-invariant subspaces, it follows that

Vx € §" 1 d(G(x)) > 0. (2.1)
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Since G is compact, the function x — G(x) is continuous, and thus, by the
continuity of d, also the function x — d(G(x)) is continuous. Therefore, there exists
o > 0 such that

d(G(x)) > ag for every xe€ S L.
(ii): It suffices to prove that if for some k € {2, ...,n} and x; € §"~!
x € Gxy)fori<k—1, xi,...,x¢—1 are linearly independent (2.2)k-1
and
sin (x, linxr, o xi1)) > 506 fori=1, k=1, (23

then there exists x; € G(x1) such that (2.2); and (2.3); hold.

Assume (2.2);—, and (2.3);—;. Let H and H' be arbitrary two supporting hy-
perplanes of G{x;) with normal vectors orthogonal to x;. Let L := lin(x1, ..., x¢—1)-
Without any loss of generality we can assume that

diSt(H, Lk) Z %d(G(xl))

Since G(x;) is compact, there is an x; € H N G(x1). Clearly, x1, ...x; are linearly
independent and

1
sin {(Xk, Lk) = diSt(Ha Lk) 2 d(G(xl)) 2 EaG'

g

2.4. PROPOSITION. Let G be a compact subgroup of O(n). If there is is no G-
invariant linear subspace of dimension k € {1, ...,n — 1}, then there exists Ac > 0
such that

Vn(C) < /16 d(C)n
for every G-invariant C € ;.

Proof. Let C € " be G-invariant. Then 0 € C and d(C) > 0. Hence there
exist two parallel supporting hyperplanes H and H' of C such that dist(H, H') =
d(C).

Let x; be the unit outer normal vector of H. By Lemma 2.3, there exist ag > 0
and x», ..., x, € G(x1) such that x1, ..., x,, are linearly independent and

. 1
sin ¥(xn, L) > EaG, (2-3)'!
where L, = lin(xy, ..., Xp—1)-
Choose g; € G such that g;(x;) = x;, fori = 1, ..., n. Let, further,
H; := g(H) and H] := g;(H').

Then dist(H;, H]) = d(C), x; is a unit normal vector of H;, and each H; and H]
support C.
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Let P be the parallelepiped with (n— 1)-dimensional faces contained in H, ..., Hy,
H{, ..., H,. Then, evidently,

Va(C) < Va(P).
n—1

Let Ag := (%) . Applying now Lemma 1.2 for a := %ac and § :=d(C),
by (2.3), we obtain
Va(P) < A6 d(C)".

3. G-pseudo-centres and G-kernels of a convex body

3.1. PROPOSITION. Let G be any transformation group of R" and let A C R
For every C C R” the following are equivalent:

(i) C is a maximal G-invariant subset of A,

Proof. (ii) = (i):

Evidently C C A, since id € G. Forevery f € G, f(C) = (,ccf8(4) D C
and f~1(C) = e f'8(A) D C. Thus f(C) = C. Hence C is G-invariant.

Moreover, if C' C A and C’ is G-invariant, then C' C C; indeed, C' = g(C') C
g(A) for every g € G, whence C' C [\,c5(A) = C. Thus C is maximal.
(i) = (ii):

Evidently, if C C A and g(C) = C for every g € G, then C C [, 8(A).
Since, by (ii) = (i), this intersection is G-invariant, it follows that

CD> ﬂ g(A).

geG

3.2. Definition. For G C O(n), A € ", andx € A, let

Avg:= m g(A).

geG*

If it does not lead to a confusion, we write A, for A, .
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3.3. PROPOSITION. For every G C O(n) and A € X", the family (A G)xca is
concave.
Proof. Forevery g € G and x € R", let
8x = TegT, .

Let us first notice that for every ¢ € [0, 1] and xo, x; € A,

(1 = 1)8x(A) + 182 (A) = g(1-n)so1x, (A)- (3.1)
Indeed, if y belongs to the left-hand side, then
y = (1 —1t)gx{ao) +tgx,(a1) for some ap, a; € A;
thus
y = (1 —1)(glao — x0) + x0) + t(g(ar — x1) +x1) = x + g(a — x),

where x = (1 —t)xg+x; and a = (1 —t)ag +ta;; hence y belongs to the right-hand
side. This proves C. The inverse inclusion is obvious; thus (3.1) holds.
Foreveryg € G
Ay; C gg(A) for i=0,1,

whence
(1 - t)AXo + tAxl C (1 - t)gxo(A) + th] (A)
Therefore, by (3.1),

(1= 1)Ag, + 1Ay, C ) 8:(A) = As.
geG

3.4. Definition. For G C O(n) and A € J", let
PG(A) : = {p € A; Va(Ap) 2 Va(A;) forevery x € A}.
We shall refer to Pg(A) as the set of G-pseudo-centres of A.
A convex body C C A will be called a G-kernel of A if G is GP-invariant for
some p € Pg(A).
In view of 3.3, for every G C O(n) and A € X",
PG(A) # @,

i.e., by 3.1, there exists at least one G-kernel of A.

Let us prove a little more.
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3.5. PROPOSITION. For every G C O(n) and A € ¢,
PG(A) NintA # 0.

Proof. Let p € Pg(A). Since A, 6 D Apo(n) and A, o) is a ball, it follows that
Ap,G # 0.

Let xg be the gravity center of Ap . Then
xg € intA N fixG”.
If xo = p, then p € Pg(A) NintA. If xg # p, then xo, p € fixGP, whence
Ay, = ) g(4) = 4,.
8€G

Thus V,(Ay,) = Va(A,) and, therefore, xg € Pg(A) NintA. O

The following two statements describe some properties of G-pseudo-centres.

3.6. PROPOSITION. For every A € Jty" the set Pg(A) is convex.

Proof. If x,y € Pg(A) and x # y, then V,(Ac) = V,(4,) and thus, by the
Brunn-Minkowski inequality ([3],p.309), V.(A;) = Va(Ay) for every z € A(x, y).
Thus A(x, y) C Pg(A). O

3.7. PROPOSITION. Let G C O(n) and let E; and E; be G-invariant linear
subspaces of R" withR" = E1 @ E;. If G; = {g|E:;; g € G} and A; is a convex body
inE;fori=1,2, then

Pg(A1 @ Az) = P (A1) @ Pg,(As).

Proof. Letn; = dimE; fori = 1,2andletA = A; ®A,. Since g(A) = g{A;) ®
g(A;) for every g € G, it follows that for every x = x; +x, withx; € A;, i = 1,2,
AX1+X2,G = (Al)xl,Gl o (AZ)Xz,Gz'

Hence,
VH(AX,G) = V'll ((Al)xl,Gl) ) Vnz ((AZ)XZ;GZ) . (32)

Let p € Pg(A). Then p = p; + pa for some p; € A;,i = 1,2, and, for every
X1 € Ay,

Vn(Ap1+pz,G) > Vn(Ax1+pg,G)',
thus, by (3.2),
Vn| (Apl,Gl) 2 Vm(Axl,Gl)7
i.e. p1 € Pg,(A;). Similarly, p» € Pg,(A2). Hence

P(;(A) C PGl(Al) @PGg(A2)~
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Let now p; € Pg;(A;) fori = 1,2 and let p = p; + p». Then, for every
x =x; +x; withx; € A,

Vni (API,Gi ) Z V'li (AXi,Gi ),
whence, V,(Ap6) 2 Va(Arc). by (3.2); hence p € Pg(A).
Thus
PG;(AI) D PGZ(AZ) C P(;(A).
O

As was proved by Féry and Rédei in 2], if G = {0p), then every convex body
A has a unique G-pseudo-centre, pg(A). Thus, in this particular case we obtain a
selector pg : Jf' — R™.

We shall now prove that the group generated by central symmetry is the only
group G with this uniqueness property.

3.8. THEOREM. Let G # {0p). Then there exists A € " with non-unique
G-kernel and thus with
card Pg(A) > 1.

Proof. By the assumption, there exists a line L passing through 0 which is not
G-invariant, and thus g(L) # L for some g € G.
Let B = 4 (L, g(L)); then B € (0, 5]. Take a € L such that

2V2

sin E

llall =

Let b = —a and let B be the unit ball in the hyperplane H = L*.
Let A be defined by
:= B® Aa, b).

2 Sl (3.4)
sin 3 2

Indeed, let E; = lin(L U g(L)) and E; = (E;)*. Since R = E; © Ea, it is easy to
sce that

Then
diam (AN g(A)) =

diam (A N g(A)) = \/4 + diam (E; N AN g(A))?

and
2

sin

diam (E; NANg(A)) =

bl

[Nl

which proves (3.4).

In view of (3.3) and (3.4), diam(Ao ) < diam (A Ng(A)). Let § := |a|| —
diam(Ao,g) and v := “—2:—2’”. Then Agg and Ag g + & - v are two different G-kernels
of A. O



260 MARIA MOSZYNSKA AND TOMASZ ZUKOWSKI

It is an open problem to characterize the class of convex bodies with exactly
one G-kernel for every G. The following theorem gives a partial solution.

3.9. THEOREM. IfA is strictly convex, then for every non-trivial subgroup G of
O(n) there exists a unique G-kernel of A.

Proof. Suppose that Cy and C; are G-kernels of A. By Proposition 3.3 the family
(Ax.G)xca is concave; by the Brunn-Minkowski theorem ([3], p.309) it follows that
C; = Cp + v for some v € R" and all the sets C; := (1 — 1)Cp + 1C; have the same
volume for ¢ € [0, 1]. By the strong convexity of A,

relintA(e, ¢ + v) C intA
for every ¢ € Co. Hence Cy C intA.

Let & := dist(C}, bdA) and
C:= C% + eB".

Obviously, C is G-invariant and, since € > 0, it follows that V,,(C) > V,(C),
contrary to the assumption. O

Evidently, for any G C O(n), if a convex body A has a unique G-pseudocentre,
then it has a unique G-kernel. The converse implication in general fails; for example,
if G is generated by the symmetry with respect to a line L and o7.(A) = A, then the
body A is the unique G-kernel of itself but Pg{A) = AN L.

3.10. PROPOSITION. If fixG = {0}, then for every A € X" and every py, p1 €
Pg(A)
Apo,G = Api,G = Po = p1,
i.e. the uniqueness of G-kernel implies the uniqueness of G-pseudo-centre.
Proof. We may assume that pg = 0. Let p = p; # 0. Then there exists g € G
with g(p) # p. Let us consider the isometry f := g,g~". Evidently, for every x,
fx)=x+p—2glp)

i.e., fis a translation by a non-zero vector.
Since A, g is invariant under g, and g, it follows that f(A, ) = Ap. This
contradicts the compactness of A. a

In view of 3.9 and 3.10, if fixG = {0}, then every strictly convex body A has a
unique G-pseudo-centre, pg(A).

4. The uniqueness of G-kernel for an affine image

As we have seen, generally a convex body may have many G-kernels (see 3.8).
However, our conjecture is that for arbitrary G C O(n), the affine class of any convex
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body has a representative with a unique G-kernel. We prove this conjecture under
additional assumption on G, which, in view of 3.10, implies that the uniqueness of
G-kernel is equivalent to the uniqueness of G-pseudo-centre.

For any G C O(n), let us consider the function ¢g : J¢" — R defined by
the formula:
sup,e4 Va(AxG)

¢G(A) = V,,(A)

(4.1)
We start with two lemmas which hold without any restriction on G.

4.1. LEMMA. Let G C O(n). For every similarity f : R* — R”",
¢ (f(4)) = d6(A).

4.2. LEMMA. For every G C O(n) the function ¢¢ is continuous.

Proof. In view of 4.1, without any loss of generality we may assume that
Va(A) = 1. Then
¢G(A) = Vn(Ap),

where p is an arbitrary point of Pg(A).
By 3.5, we may assume that p € intA. Thus it suffices to prove that the function
ve : {{A,x); A € £, x € intA} — R defined by the formula

WG(Avx) = Vn(Ax,G) (4'2)

is continuous.
Let A = limg A¢ and x = limx, where A, Ax € 6", x € intA, and x; € intAg
for k € N. We replace A and (Ag)ken by A’ and (A} Jken:

A':'=A—x and A} =Ar—x:
Then 0 € A’ N2, A}, A’ = limyAy, and, by (4.2),
We(A,x) = wG(A',0) and  yG(Ak, xk) = WG(A;, 0).
Hence, it remains to prove that

lim wg (A}, 0) = ws(A',0),

limV, | () (4 | = Va | [) 84")

gEG gEG
Since V), is continuous, it suffices to show that

limy (1) g(A}) = [ 8(4"). (4.3)

g€G g8€G
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There exist @ > 0 and 8 > 1 such that
aB" CA' C BB" and aB" C A, C BB" for every k.
Let e > 0. Since A’ = limA;, there exists k, € N such that

o
A;cA'+%.B" and A’CA§c+—ﬁE-B" for k 3 ko.

But, it is easy to check that

A'+%-B”C(1+£—)-A’

and similarly for 4;, k € N.
Thus

ALC(1+%)-A’ and A'c(1+B€-)-A; for k > ko.

Hence, forevery g € G,
€

g(A) c (1+ E) -g(A")

and therefore

m glAy c(1+ E) ﬂ g(a") c m g(A") + eB* fork > ko.

8€G B g€G g€G
Similarly,
(&) C () g(A) +eB™ fork > ko.
2€EG 8€EG
This proves (4.3). O

The next lemma requires an additional assumption on G.

4.3. LEMMA. Let G C O(n). If there is no G-invariant linear subspace of
dimension k € {1, ...,n — 1}, then for every A € J" and every € > O there exists
y > 0 such that for every f € SA(n)

£l >y = ¢c (f(4)) <. (4.4)

Proof. Let us first notice that it suffices to prove the assertion for the unit n-ball.
Indeed, let it hold for B". Take A € ;" and € > 0. By 4.1, we may assume
that V,(A4) = 1. Take @ > O such that A C a - B" and let ¢’ = 4. Then, by the

assumption, there exists y > 0 such that for every f € SA(n) with ||f]| > ¥
o6 (f(B") < €.

Thus
oG (f(4)) = Va((f(A)xG) < @"Kn - 96 (f(B")) < &,



ON G-PSEUDO-CENTRES OF CONVEX BODIES 263

which proves the assertion for arbitrary convex body A.
Hence, we assume A = B". By Proposition 2.4, there exists Ag > 0 such that
for every G-invariant C € J£g"

Va(C) < Ag - d(C)". (4.5)
Take an € > 0 and let
n—1
¥y = (%) 2n (4.6)

We may assume without any loss of generality that f € SL( )- Let||f]| > v and let
ai, ..., a, be the half-axes of the ellipsoid f(B"), witha; > ... 2 a,. Then

i 1
an < (az- ... a))™1 = (Vo (f(B™) - (Kpa1) ') "7,
and, since V,, (f(B")) = K, it follows that (a,)"~! < (a;)7 %, ie.,
a; £ (an)l " (47)
But ||f|| = ai; thus, by the assumption, a; > ¥, which, together with (4.6) and

(4.7), yields
2\
on—1, (f) < (an)l—n

(2a,)" < —. (4.8)

and, consequently,

Let C be a G-kernel of f(B"). Then ¢g (f(B")) = V,(C), and thus, by (4.5)
and (4.8),

06 (f(B") < A6 (d(C))" < Agd (f(B"))" = Ac(2aa)" < €
O

4.4. THEOREM. Let G C O(n). If there is no G-invariant linear subspace
of dimension k € {1,...,n — 1}, then for every A € ¥’ there exists an affine
automorphism fy of R" such that fo(A) has a unique G-pseudo-centre.

Proof. Let ¢ := ¢g. Take A € " and € > 0. By Lemma 4.3, there exists
y > O such that ¢ (f(A)) < € whenever f € SA(n) and ||f]] > v.

By the continuity of ¢ (Lemma 4.2), also the function ¢4 : SA(n) — R
defined by A

0a(f) := ¢ (F(4))
is continuous and, therefore, it attains its maximum in the compact subset ® := {f €
GA(n); |If]| € 7, |detf] < 1} of GA(n). Let fy be a maximizer of ¢,|®. We have to
show that
Ps (fo{4)) 1is a singleton. (4.9)
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Let A’ = fo(A) and p; € Pg(A’) for i = 0, 1. Then, by the Brunn-Minkowski

Theorem combined with 3.3,

(A)p,c = (A")po,c +v for some v € R".

and thus, by 3.10, p; = pg + v, because fixG = {0}.
Without any loss of generality we may assume that p; = —po.

Suppose that v # 0 and let (wy, ..., w,) be an orthonormal basis of R* with

Wy = ﬁ Let f be the linear automorphism with f(w;) = w; fori = 1,.

and f(w,) = a - w,, where

_ h((AI)O’ W,,) h((A,)O) _Wn)
s {h«A')m, W) B((A7) gy — W) } '
Then a < 1 and ffy € ®. We shall show that
(Ao C f(A").

Letx = X oxw; € (A")o; then f~1(x) = 77! x;w; + 2 w,, whence

F ) —x =x,,(é Z 1),
and thus
Flx) € Al — {x,,l(é — 1) wa x4 |x,,|(—é 1) ).

Evidently
[xn| < max{h((A")o, wn), h((A")o, —=wn)}.
Since (A")p, = (A")o — § and (A"),, = (4")o + 3, it follows that

(A Yo =) = B Yo, =) + 51
and )
H(A Yy n) = B4 i) + 51

By simple calculation,

LS R ] vl
a ! {2h((A’)o,wn)’2h((A’)o, _Wn)}
vl - (2max{h((A")o, wn), R((A" Yo, —wa)}) "
Hence, by (4.12),

which, together with (4.11), implies

fHx) € A(

v v
X — —
2

an—1

(4.10)

(4.11)

(4.12)
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Therefore
FH(x) € conv((A"),, U (A"),,) C A"
This proves (4.10).

Let now C be any G-kernel of f(A’). Since (A’)g is G-invariant, by (4.10) it
follows that

Va((A)0) < Va(C).

Hence

Vn((AI)O) — Vn((AI)O) V,,(C)
Va(A)  SVa(f(A7) T Valf(A")

6(4") = = ¢(f(4")),

ie.,
0a(ffo) > ¢alfo),
contrary to the assumption that f; is a maximizer of 6,4[(13. Hence v = 0, i.e.

(AI)PO,G = (AI)PhG‘
Applying now Proposition 3.10, we obtain pg = p;. This proves (4.9). a
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