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CURVES IN n-DIMENSIONAL k-ISOTROPIC SPACE

Zeljka Milin Sipus, Zagreb, Croatia, and Blazenka Divjak, Varazdin, Croatia

Abstract. In this paper we develop the theory of curves in n-dimensional k-isotropic space I~. We
derive explicit expressions and geometrical interpretations for the curvatures of a curve.

1. Introduction

The n-dimensional k-isotropic space I~ was introduced by H. Vogler and H.
Wresnik in [17]. We follow the notations and the terminology used in that paper.
The special cases of Ii, Ii, I~were thoroughly studied in [2]' [3], [4]' [9], [10] [12]'
[13], [14], [15], [16]. The case of I~was introduced in [11]' and studied in [1] and
[5]. The theory of curves in n-dimensional flag space I~-I was studied in [7] and in
[8]. A general approach to the theory of curves in Cayley/Klein spaces is given in
[6].

In this paper we develop the theory of curves in I~. We construct the Frenet
frame of an admissible curve and calculate the explicit expressions of the curvatures
of such a curve. We derive also the geometrical interpretation of these curvatures
and investigate the curves having some of their curvatures equal to zero. Finally
we describe the conditions, in terms of curvatures, if a curve lies in an [-isotropic
m-plane.

Let A denote an n-dimensional affine space and V its corresponding vector
space. The space V is decomposed in a direct sum

(1)

such that dim Vz = k, dim VI = n - k. Let Bz = {bn-k+l, , bn} be a basis for
the subspace Vz. In Vz a flag of vector spaces Vz := C1 :J :J Cz :J CZ+I :J
... :J Ck := [bn], Cz = [bn-k+/, ... bn] is defined. According to it we distinguish
the following classes of vectors: the Euclidean vectors as the vectors in V \ Vz and
the isotropic vectors of degree [ or [-isotropic vectors, [ = 1, ... k, as the vectors in

",k .Vz, X = wm=1 xn-k+mbn-k+m, for which holds

Xn-k+l = ... = Xn-k+Z-1 = 0, Xn-k+Z i= O.
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By 1T:; : V .......•Ui, i = 1,2, we denote the canonical projections.
The scalar product· : Ul x Ul .......•R is extended in the following way on the whole
Vby

(2)

Therefore the isotropic vectors are orthogonal (scalar product vanishes) to all other
vectors, especially also to themselves.

For x E V we define its isotropic length by Ilxll := l1T:l(X)I. But if x is an [­
isotropic vector, then its isotropic length is 0, and therefore we introduce as isotropic
length the Ith- range of x, i.e. [X]I := Xn-k+l, 1= 1, ... , k.

The group of motions of I~is given by the matrix

(3)

where A is an orthogonal (n - k, n - k)-matrix, detA=1, B a real (k, n - k)-matrix

and C a real lower triangular (k, k)-matrix such that c~=zt:= 1.

2. Hyperplanes in I~

We distinguish the following classes of hyperplanes in I~. We say that a
hyperplane in I~given by an equation

Uo + UIXI + ... + UnXn = 0

is of type I or 1- isotropic, I = 0, ... k, if Un-I =I- 0 and Un-I+l = ... = Un = O.
Especially, for 1= 0 we say that a hyperplane is non-isotropic and for I = k that it
is completely isotropic.

PROPOSITION 1. Let H be an I-isotropic hyperplane, I = 0, ... , k - 1. Then
there are no (k -I) -isotropic vectors in H. Furthermore, there e;'(istsa basis consisting
ofn-k Euclidean vectors and of one ofm-isotropic vectors, m = 1, ... , k, m =I- k-I,
but also a basis consisting of n - I - 1 Euclidean vectors and of one of m-isotropic
vectors, m = k -I + 1, ... , k.
In every basis of H the number of Euclidean vectors varies from n - k to n - [ - 1;
there are at most k - m m-isotropic vectors, ifm :::;k -1- 1, and at most k - m + 1

m-isotropic vectors, ifm ~ k - 1+ 1.

Proof. Let H be an I-isotropic hyperplane given by

Uo + UIXI + ... Un-IXn-1 = 0, Un-I =I- O.
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Then its equation can be written in the following form
Xl

Xn-kXn-l-l+ UoXn-l+lXn-l un-l

un-l

00-ul0

0

un-l 0-un-k0

0

0un-l-un-l-l0

0
0001

0

0000 269

Xn

0

0

=0.
(4)

0
0

From (4) it can be seen that there are no (k - l)-isotropic vectors in an I-isotropic
hyperplane, l = 0, ... , k - 1. Furthermore, it can also be seen that there exist the
mentioned bases for H; the first follows directly from (4), the others by making
linear combinations of the vectors of the first mentioned basis.

COROLLARY 1. In a non-isotropic hyperplane there are no k-isotropic vectors.
FurthemlOre, there exists a basis consisting of n - 1 Euclidean vectors, but also
a basis consisting of n - k Euclidean vectors and of one of m-isotropic vectors,
m = 1, ... , k - 1.

In every basis the number of Euclidean vectors varies from n - k to n - 1, there are
at most k - m m-isotropic vectors, m = 1, ... , k - 1.

COROLLARY 2. In a completely isotropic hyperplane exist all m-isotropic di­
rections, m = 1, ... , k.
There exists a basis consisting of n - k - 1Euclidean vectors and of one of m-isotropic
vectors, m = 1, ... , k. Generally, every basis consists of n- k - 1 Euclidean vectors,
and of at most k - m + 1 m-isotropic vectors, m = 1, ... , k.

3. Curves in I~

Definition I. Let I ~ R be an open interval and cp : I --+ I~ a vector function
given in affine coordinates by

OX(t) = (Xl(t), ... ,xn(t)) := x(t),

where cp(t) = X is a point in A.
The set of points c E I~is called a C-curve, r ~ 1, if there is an open interval I ~ R
and a C' -mapping cp : I --+ I~ such that cp (I) = c.
A C -curve is regular if x(t) :f:. 0, tEl.
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A cr -curve is simple if it is regular and qJ is injective.

One can easily see that the notions of cr -curve, regular e' -curve and simple cr -curve
are invariant under the group of motions of I~.

Definition 2. A point Po(to) of a regular en-curve is called an inflection point
of order I, I = 2, ... , n - 1, if the set of vectors

{x(to), ... , X(l-l) (to)}

is linearly independent and the set of vectors

{x(to), ... , x(l)(to)}

is linearly dependent.
If a curve has no inflection points of any order I, I = 2, ... , n - 1, it is said to be
non-degenerated.

The notion of an inflection point of order I is a geometrical notion i.e. it does
not depend on parametrization and is invariant under the group of motions. More­
over, it is a differential invariant of order l.

4. Osculating planes

Definition 3. Let c be a simple e'-curve given by x = x(t) and P(t) E can
inflection point of order r. The osculating m-plane, m = 1, , r - 1, at the point P

is m-dimensional plane in I~ spanned by the vectors x(t), , x(m)(t).
If c is a non-degenerated simple en-curve, then the osculating hyperplane of c

at P(t) is the hyperplane spanned by x(t), ... , x(n-ll(t). Its equation is given by

det(x - x(t), x(t), ... , x(n-l)(t)) = 0, (5)

where x denotes a position vector of an arbitrary point of the osculating hyperplane.

PROPOSITION 2. Let c : I -t I~be a simple e(l+lLcurve on which all of the
points are inflection points of order I + 1, I = 1, ... , n - 1. Then there exists an
I-plane which contains the curve c.

Definition 4. A curve c is said to be an admissible cr -curve, r ;;::n - 1, if 1rl (c)
is non-degenerated and c is a simple, non-degenerated cr -curve without I-isotropic
osculating hyperplanes, 1= 1, ... , k.

THEOREM 1. A cr -curve c, r ;;::n - 1, is admissible if and only if

=1= 0, tEl, (6)
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i- 0, tEl.
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(7)

x\n-k)(t) x~,,--,.k)(t)

An admissible curve has neither I-isotropic tangents nor I-isotropic osculating m­
planes, I = 1, ... , k, m = 2, ... , n - 1.

Proof If c is admissible, then the statement obviously holds.
Conversely, if (6) holds, then c is non-degenerated. Furthermore c is regular because
otherwise it would be x(t) = 0, tEl, and so the first row of the determinant
(6) would consists of zeros. If c has I-isotropic tangents, then the first row of the
determinant (7) would be zero. In every I-isotropic m-plane, I = 1, ... , k, there is
k-isotropic direction. Therefore if c has osculating I-isotropic m-plane, (6) would be
zero.

5. Frenet's equations of a curve in I~

Definition 5. Let c : [a, b] ---t I~be an admissible curve. Then

s:= lbIlxlldt = lbl1rj(x)ldt

is called the isotropic arc length of the curve c from x(a) to x(b).
One can notice that the isotropic arc length of an admissible curve c coincides

with the Euclidean arc length of the projection 1rj (c) to the basic space.

PROPOSITION 3. Every admissible C -curve c can be reparametrized by the arc
length sand s is the arc length Oilc exactly whell Ilx(s) II = 1.

Let c : I ---t I~be a curve parametrized by the arc length. Notice that c is also
admissible. Now we can define the Il-frame {tj(s), ... , tn(s)} of a curve c in a point
x( s). It should be an orthonormal basis of V like it is defined in [17].
By applying the Gram-Schmidt orthogonalization process to the set

{Xl, ... , x(n-k)}

we get the orthonormal set of vectors {tj, ... , tn-d

tj .- Xl

bm := x(m) - E;:~j(x(m) . tj)tj
t .- ~ m-2 n-k
m Ilbmll' - , ... , .

One can see that the frame {1rI(td, ... , 1rj (tn-k)) is the Frenet (Il - k)- frame of the
curve 1rj(c).

If we put [II = [tj, ... , tn-k], then 01 n U2 = {O}, and therefore we have the
following decomposition V = OJ EB U2. Now we should define the basis of U2
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consisting of one unit I-isotropic vector, ... , one unit k-isotropic vector. Let us

suppose that x~~~~il) (s) #- O. If x~~~il) (s) = 0 then there must exist some other

coordinatexn_Hi such thatx~~~~~I)(s) #- 0 and we can form the vector tn-k+1 by it.
Now we define

(n-k+l) (n-k+l)

xn-k+2 Xn )tn-HI := (0, ... 0, 1, (n-k+l)"'" (n-HI) .
~ Xn_k+1 Xn_k+1

Obviously tn-HI is an unit I-isotropic vector.
Let us also define

( (n-HI)( ))'

Xn-k+2 S

(n-k+l) ( )Xn-k+1 S

If K"n-k+1 (s) #- 0, we can put

(x(n-k+I)) ,

n-k+3

x1n-k+1)

tn-k+2 ;= (0, ... 0,0, 1, n-k+1
~ K"n-k+1

n-k+1

, .. "'
(x(n-k+11 ) ,
~)
K"n-k+1

which is an unit 2-isotropic vector. Now we introduce

( (x<n-k+l\S)) ') I

n-k+3

x<n-k+l)(s)
( ) n-k+1

K"n-k+2 S = ( )K"n-k+1 S

Continuing the process, under the assumptions K"n-k+2(S) #- 0, ... , K"n-k+j(S) #- 0,
we define the U + 1)-isotropic vector

_ ( (n-k+l) . (n-HI),. )' ., .tn-k+j+1 - (~I, (xn-Hj+2' Xn-k+1 ) . K"n-k+1 ..... K"n-Hj, ... ,
n-k+j

( (n-k+I). (n-k+I),. )' . .... , (xn . Xn-k+1 ) . K"n-k+1 ..... K"n-Hj)

and

K"n-k+j+1 = ( ')'
(n-HI) . (n-k+l) I • ' • ".

( ((Xn-k+j+2 . xn-k+1 ) • K"n-k+l) . K"n-H2) ..... K"n-k+j ,

j = 1, ... k - 2.

The last vector is equal to
tn=(O, ... O,I).

Obviously the following theorem is true.
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THEOREM 2. (Frenet's Equations)
Let c be an admissible curve in l~parametrized by the arc length and let {tI, ... , tn}

be its Frenet n-frame. Then there exist functions Kl, ... , Kn-l : I -+ R such that the

following equations hold

tl'
t/

tn-k+/
tn'

Klt2,
-Ki-lti-l + Kiti+l,

Kn-k+jtn-k+H 1,
O.

i = 2, , n - k,

j = 1, , k - 1,

6. Explicit expressions of the curvatures of a curve in l~

Let us derive now the explicit expressions of the curvatures of an admissible
curve c parametrized by its arc length. Since Ki, i = 1, ... , n - k - 1, are the
curvatures of the projection 1rl (c) of the curve c, we have

1"""'( I (i-l))1"""'(, (i+l))
2( ) _ ~ x, ... , x ~ x, ... , x . _ _ k _ 1

Ki S - 2( I (i)) , 1- 1, ... , n ,r X, ... ,X

where r denotes Gram's determinant with a scalar product defined in (2).
The expressions for the curvatures Kn-k+l, ... , Kn-l are given by the construction
of the Frenet frame in the previous section. We can obtain the explicit expression
for the curvature Kn-k in the following way. Using Frenet's equations we get

x' tl
x(i) antI + ... + aii-lti-l + Kl ... Ki-lti, i = 2, ... , n.

Therefore it holds

d ( , (n))et x, , x

det(1rl(x'), ,1rl(X(n-k)))

Now we have

n-l
K1 ... Kn-l

n-k-l
K1 ... Kn-k-l'

k _ det(x', ... , x(n))
Kn-k - k 1 .

det(1rl(x/), ... , 1rl (x(n-k)))k+l Kn=k+l ... Kn-l

By substituting the expressions for Ki, i = 1, ... , n - k - 1, and by noticing that

d ( ( (n-k+l)) ( (n))) _ ( (n-k+l))k k-l ...et 1r2 x , ... , 1r2 X - Xn-k+1 Kn-k+1 Kn-l

we get the following expression for Kn-k

k _ det(x', ... , x(n))1(x', ... , x(n-k-l)l/2(x~~k:il))k
Kn-k - ----------------- (8)

det(1rl(x'), ... , 1rl(X(n-k)))k+1det(1r2(x(n-k+l)), ... , 1r2(X(n)))'
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Let us notice that for the curvatures I(n-k, ... , I(n-I we can also derive the

following explicit expressions. It is easy to show that

XlI Xn-k+j

(n-k+j)
Xn-k+j

_ n-k+j-I
- 1(1 •.• I(n-k+j-I (9)

j = 2, ... , k - 1,

holds. By using (9) and by considering that

)2 nx/, ... , x(n-k))
(1(1'" I(n-k-I = n I . (n-k-I))x, ... , x

we get
XlI X~-k+1

2

nx/, ... , x(n-k-I))
(n-k+l)

XI

and by induction

(n-k+l)
Xn-k+1

12(Xl , ... , x(n-k))
(10)

XlI

(n-k+j+I)
xI

I(n-k+j =

I XlXn-k+j+1
I

(n-k+j+I)

(n-k+j-I)
xn-k+j+1

XI

Xl

I2

I xn-k+j

(n-k+j)

(n-k+j)
XI

xn-k+j

j = 1, ... , k - 1.

Xln-k+j-I

(n-k+j-I)
xn-k+j-I

, (11)

(12)

Let us now suppose that V is endowed with a scalar product· : V x V --> R
such that its restriction to VI coincides with the already defined scalar product
. : VI x VI --> R. We shall use the same notation for the scalar product on V as for
the degenerated scalar product defined in (2). Let us also introduce the following
notation. Let 1n-k+i(Yr, ... , Ym) , i = 1, ... , k, denote the Gram's determinant of
the projections ofthe vectors YI, ... , Ym onto the (n - k + i)-dimensional subspace
of V spanned by the first 11 - k + i coordinate vectors and 1n-k(YI, ... , Ym)

nYI, ... , Ym)' Then the expression (10) can be written as

2 1n-k+1 (Xl, ... , x(n-k+I))nx/, ... , x(n-k-I))I( =-----------------
n-k 12(X/, ... , x(n-k))
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and the expressions (11) as

2 rn-k+j+I (x', ... , X(n-k+j+I))rn_k+j_I (x', ... , X(n-k+j-l))

Kn-k+j = r2 .(X' X(n-k+j)) , (13)n-k+J ' ... ,

j = 1, ... , k - 1.

We can prove the following theorem.

THEOREM 3. Let KI, ... , Kn-l : I -+ R be differentiable functions different

from 0 such that KI, ... , Kn-k-2 > O. Then there exists, up to isotropic motions, a

unique admissible curve c parametrized by the arc length such that KI, ... , Kn-I are
its curvatures.

Proof Under these assumptions, there exists, up to an Euclidean motion, a
unique projection 1t'1(c) of the curve c in the Euclidean space UI parametrized by
the arc length such that KI, ... , Kn-k-I are its curvatures. Furthermore, (9) implies

x'1

(n-k+l)
Xl

Xn-k+1

(n-k+l)
Xn-k+l

n-k= KI ... Kn-k'

Expansion by the last column of this determinant gives a linear differential equation
with differentiable coefficients for the function Xn-k+l (s) which enables us to find
that function. By similar reasoning, for already found functions XI , ... , Xn-k+j-I, the
expression (9) enables us to find the functions Xn-k+j, j = 2, ... , k - 1. Therefore,
the existence of the curve c is proved.
In order to show that a curve c is unique up to an isotropic motion, we can see at

first that YI (s) = 1, Y2(S) = XI (s), ... , Yn-k+j = Xn-k+j-I (s) form the fundamental
solutions for the corresponding homogeneous differential equation of the equation

(9). If X~_k+j(S) is a particular solution of (9), then the general solution of (9) is
given by

Xn-k+j(S) = C· 1 + CIXI (s) -1- ... + Cn-k+j-IXn-k+j-1 (s) + x~_k+j(s).

Therefore, every curve which is obtained by an isotropic motion from the curve

x(s) = (XI (s), ... , Xn-k(S), X~-k+l (s), ... , x~(s)) satisfies the conditions of the the­
orem.

7. Geometrical interpretations of the curvatures

Using explicit expressions of the curvatures obtained in the previous section we
can show that the following propositions hold.

PROPOSITION 4. Let c be an admissible Cn-curve. Then

. (J

IKn-I(So)1 = lzms~ol-Is
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where e denotes the angle between the osculating hyperplanes at the points x(so)
and x(s + so) and s is the parameter o/the arc length.

Proof" Since the osculating hyperplanes of an admissible curve c at the points
x(so) and x(s + so) are non-isotropic, their angle is given by

x; (s + so) x~_2(s + so) x~(s + so)

[el
x;n-I)(S + so)

x; (s + so)

(n-I)( ) (n-I)( )xn_2 S + So Xn S + So

X~_I (s + so)

In-I)() (n-I)()XI'S + So Xn_1 S + So

x; (so) X~_2(sO) X~(So)

(n-I)( ) .rn-1)( )xn_2 So Xn So
I·

X~_I (so)

(n-I)( )xn_1 So

(k) (k+I)(= Xi (so) + Xi SO)s + ... , k

(n-I)( )XI So

Using the Taylor expansion of xlk)(s + so)

1, ... , n - 1, i = 1, ... , n, we get that
e

lims~o [-I =
s

x~(so )
X; (so)

.rn-I)( )XI So

(n-2) ( )xn-2 So

(n) ( )xn_2 So

x; (so)

(n-I)( )XI So

X~_l (so)
2

(n-I)( )Xn_1 So

(n-I) ( )XI So (n-I)( )Xn-2 So (n-I) ( )Xn So
(n-2) ( )XI So

x;n) (so)

X~_I(SO) 2

(n-2) ( )Xn_1 So

(n) ( )Xn_1 So
I·

(n-I) ( )XI So (n-I) ( )Xn_1 So
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Some calculation shows that the numerator of this expression is equal to
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d ( , (n))et x, ... , x

(n-2) ( ) (n-2) ( )xI So Xn-I So

which, comparing by (11) for j = k - 1, implies the statement of the proposition.

For the curvatures Kn-k, ... , Kn-2 we have the following interpretation.

PROPOSITION 5. Let c be an admissible e(n)-curve. Then

OJ

IKn-k+j(SO)I = limHol-l, j = 0, ... , k - 2s

where OJ denotes the angle between the (k- i-I )-isotropic hyperplanes at the points

x(so) andx(s + so) spanned by the vectors tl, .. " tn-k+j, bn-k+j+2, ... , bn, s is the
parameter of the arc length, andbn-k+j+2, ... , bn are the vectors of the orthonormal
basis for U2.

Proof. For the curvatures Kn-k+l, ... , Kn-2 the proof is analogues to the proof
of the previous proposition, if we consider the projection of the curve c to the

(n - k + j + I)-dimensional space spanned by the first (n - k +j + 1) coordinate
vectors.

For the curvature Kn-k we consider (k - I)-isotropic hyperplanes spanned by
tl, ... , tn-k, bn-k+2, ... , bn at the points x(so) and x(s + so). First let us no­
tice that for the formally introduced Euclidean normal vector u = (ui, ... , un) =
tl /\ ... /\ tn-k /\ bn-k+2 ... /\ bn of such a hyperplane we have Jrl (u') = Kn-kJrI(tn-k)
and therefore Ilu'll = IKn-kl. Now we have

I. OJ2 -I' [UI(S + so) - UI(SO)]2 [un-k(s + so) - un-k(so)] 2
Ims~02 - Ims~O ------- + ... + ---------s s s

which completes the proof.

Furthermore, by using the explicit expressions for the curvatures, we can show
that the following propositions hold.

PROPOSITION 6. The only admissible en-curves for which Kn-l ::::::0 holds are
the lIOn-degenerated en-curves in non-isotropic hyperplanes.

Proof. Let us first remark that Kn-l ::::::0 if and only if

x'X~_lI
d ( , (n)) - 0

=1= O.et x , ... , x -,
(n-l)

(n-l)
Xl

Xn_l

(14)
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Now let c be a curve in a non-isotropic hyperplane. Then by an isotropic motion we
obtain that c lies in a hyperplanexn = O. Therefore c is given by

x(s) = (XI (s), ... ,Xn-1 (s), 0)

from which (14) follows.
Conversely, let us show that c lies in its osculating hyperplane at an arbitrary point
x(s) and that that hyperplane is non-isotropic. The equation of the osculating
hyperplane at the point x(s) is given by

det(x - x(s), t1(S), ... , tn-1(S)) = O.

We can formally introduce its Euclidean normal vector by t1 (s) /\ ... /\ tn-1 (s) and
by using the Frenet's equations and the assumption Kn-1 == 0 we can show that this
vector is a constant vector. Indeed, differentiation yields

(t1(S) /\ ... /\ tn-1(S))' = t1(S) /\ ... /\ tn-z(s) /\ Kn-1(S)tn
= O.

Therefore, all the osculating hyperplanes are parallel. Let us show now that they are
all equal. It is enough to show that

det(x(s), t1(S), ... , tn_I(S))

is constant. This follows also by differentiating the previous determinant. So, c lies
in its osculating hyperplane. From the condition (14) follows that this hyperplane is
non-isotropic.

Analogously, the following geometrical interpretations for the curvatures Kn-k, ... ,
Kn-z hold.

PROPOiITION 7. Let c be a simple C(n-k+j+ILcuf>le. Then Kn-k+j == 0 if and
only if c is a cUf>le in an (k - i-I )-isotropic hyperplane, i = 0, ... , k - 2.

Proof. Let us first notice that from (10) and (11) follows that Kn-k+j == 0 if and
only if

Xl Xl x'II n-k+j+1 Ixn-k+j

=0,
#0.

(n-k+j+I)

(n-k+j+I)(n-k+j)(n-k+j)
XI xn_k+j+1XIxn-k+j

Then the proof proceeds analogously to the proof of the Proposition 6 if we consider
the projection of the curve c onto the (n - k +i + 1)- dimensional subspace of V
spanned by the first n - k +i + 1 coordinate vectors. We can conclude that this
projection lies in a non-isotropic (n - k + i)-plane which means that c lies in an
(k - i-I)-isotropic hyperplane.

Furthermore, we know that Km == 0, m < n - k, if and only if the projection
1t1 (c) of c is a curve in a m-plane in the basic subspace U1. That is exactly the case
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when c lies in a k-isotropic (m + k)-plane in V. By using this fact and the previous
propositions we may understand better the nature of a degenerated curve c. This can
be described by introducing the supplementary curvatures.
We shall distinguish several cases.

Case 1. If Km == 0, m < n - k, then c is a curve in a k-isotropic (m + k)-plane
spanned by vectors x', ... , x(m+k). We construct the Frenet (m + k)- frame in the
same way as we did it for non-degenerated curves. We obtain m Euclidean vectors
tI, ... , tm and one I-isotropic vector tm+h ... , one k-isotropic vector tm+k' Now,

there exist functions KI, ••. , Km-1, K~Il, ... , K~~k-I : I --t R such that the following
Frenet's equations are satisfied

tI'
t/
tm'

tm+/
tm+k'

For the supplementary curvatures K~I), •.• , K~~k_ I we can obtain explicit expres­
sions in the same way as we did it for non-degenerated curves. For the higher

(I) (I)
curvatures Km+ I' ... , Km+k- I we get

(I) ((( (m+I) . (m+I) '. (I))'. (I))'. . (I))'
Km+i+I = (Xn-k+i+2 • Xn-k+I) . Km+I . Km+2 ..•.. Km+i

i = 0, ... , k - 2,

or (by supposing that V is unitarian)

( (I) ) 2 _ rn-k+i+I (X', ... , X(m+i+21)rn_k+i_I (x', ... , x(m+i))
Km+i+I - r~_k+i(X', ... , X(m+i+I)) . ' (15)

i = 0, ... , k - 2.

For the next curvature K~l) we get

2 r ( , (m+I))r( , (m-l))
(K(l)) = n-k+l x, ... , x x , ... , x .m r2(x', ... , x(m))

Using Propositions 6, 7 we can conclude as follows.

PROPOSITION 8. Let c be a simple C(mHl-curve such that Km == 0, m < n - k.

Then K~~i == 0 if and only if c is a curve in a (k - i-I )-isotropic (m + k - 1)-plane,
i = 0, ... , k - 1.

Now we can proceed by supposing Km = K~l) == O. Then c lies in a (k - 1)­
isotropic (m+k-l )-plane ~panned by mEuclidean vectors tl, ... , tm, one 2-isotropic
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vector tm+], , one k-isotropic vector tm+k-I. We introduce supplementary curva-

tures K~), , K~~k-2 : I --+ R such that the following Frenet's equations hold

tl'
t/
tm'

tm+/
tm+k-I'

Klh,
-Ki-Iti-I + Kiti+l, i = 2, ... , m - 1,

(2)
-Km-Itm-I + Km tm+l,

(2)
Km+jtm+j+J, j = 1, ... , k - 2,
O.

By proceeding inductively under the assumptions Km == K~I) == == K~-I) ==

o we obtain supplementary curvatures K~~i' I = 1, ... , k, i = 0, , k - I, for
which we obtain the following explicit expressions. For the higher curvatures

(I) (I)
Km+l> ... , Km+k-I we get

(I) ((( (m+l) . (m+I),. (I))'. (I))'. . (I))'
Km+i+1 = (xn-k+i+I+1 . xn-k+l) . Km+1 . Km+2 ..... Km+i

i = 0, ... , k - I,

or (by supposing that V is unitarian)

((I) )2_Km+i+1 -

r ( , (m+i++2))r ( , (m+i))n-k+i+I+I,I, ...,I-i x, ... , X n-k+i+I-I,I, ...,I-1 x, ... , x

r2 (x' x(m+i+I))n-k+i+I,I, ...,1-1 , ... ,

i = 0, ... , k - l.

and for the next curvature K~) we obtain

2 r ( , (m+I))r( , (m-I))
(K(I)) = n-k+I,I, ...,I-I. X , ... , x x, ... , Xm r2(x', ... , x(m)) ,

where rn-k+i,I, ..AYI, ... , Ym) , i = 1, ... , k, I = 1, ... , k - 1, denotes the Gram's
determinant of the projections of the given vectors onto the (n - k + i -I)-dimensional
subspace of V spanned by the first n - k+i coordinate vectors except the first isotropic,
... , I-th isotropic direction.

Furthermore, the following theorem holds.

THEOREM 4. Let c be a simple C(m+k)-curve such that Km == K~I) == ... ==

(I-I) - 0 < k 1- 1 kiTh (I) - 0 if d I if .Km =, m n - , - , ... , -. en Km+i = I an on Y I C IS a curve

in a (k - I - i)-isotropic (m + k - I)-plane.

COROLLARY 3. Let c be a simple C(m+kl-curve, m < n - k. Then c is a curve

in a non-isotropic m-plane if and only if Km == K~I) == ... == K~k) == O.
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Case 2. Let us now consider the case Kn-k == O. By Proposition 7 it means that c
lies in a (k - 1)-isotropic hyperplane spanned by vectors x', ... , x(n- I). Constructing
the Frenet (n - 1)-frame in the same way as we did it for non-degenerated curves, we
obtain n - k Euclidean vectors tl, ... , tn-b one 2-isotropic vector tn-k+I, ... , one

k-isotropic vector tn-I. We introduce supplementary curvatures K~~k' ... , K~~2
I ~ R such that the following Frenet's equations are true

tl I
t/

tn-k'

tn-k+/

tn-I'

KI t2,

-Ki-Iti-I + Kiti+l, i = 2, ... , n - k - 1,
(I)

-Kn-k-Itn-k-I + Kn_ktn-k+l,

K~~k+jtn-k+j+I, j = 1, ... , k - 2,
O.

We can obtain the explicit expressions for the supplementary curvatures. For the
. (I) (I) hhIgher curvatures Kn_k+l, ... , Kn-2 we ave

(I) _
Kn-k+i -

or

( ')'
(n-k+l) . (n-k+I),. (I) '. (I) . . (I)

( ((Xn-k+i+2 . xn-k+2 ) . Kn-k+l) . Kn-k+2) ..... Kn-k+i-I

i = 1, ... , k - 2,

( (I) )2_Kn-k+i -

r ( , (n-k+i+I))r ( , (n-k+i-I))n-k+i+2,1 X, ... , X n-k+i,1 X, ... , x

r2 (x' x(n-k+i)) ,n-k+i+I,1 , ... ,

i = 1, ... , k - 2,

and for the next curvature K~~k we get

2 r ( , (n-k+I))r( , (n-k-I))

(K(I)) = n-k+2,1 X, ... , x x , ... , x .n-k r2(X', ... , x(n-k))

Furthermore, the following proposition holds.

PROPOSITION 9. Let c be a simple C(n-ILcurve such that Kn-k == O. Then

K~~k+i == o ifandonly ifclies ina (k-i-2)-isotropic (n-2)-plane, i = 0, ... , k-2.

Let us suppose now that Kn-k == K~~k == O. Then c lies in a (k - 2)-isotropic
(n - 2)-plane spanned by n - k Euclidean vectors t], ... , tn-b one 3-isotropic vector
tn-k+1> ... , one k-isotropic vector tn-2. We introduce supplementary curvatures
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K~~k' ... , K~~3 : I --> R such that the following Frenet's equations hold

tl I
t/

tn-k'

tn-k+/
tn-2'

Klt2,

-Ki-Iti-I + Kiti+l, i = 2, ... , Il - k - 1,
(2)

-Kn-k-Itn-k-I + Kn_ktn-k+l,
(2)

Kn_k+jtn-k+j+I, j = 1, ... , k - 2,
O.

B d" d . 1 d h . (I) (/-1) 0Yprocee mg m uctIve y un er t e assumptIOns Kn-k == Kn-k == ... == Kn-k ==

we obtain supplementary curvatures K~~k+i' I = 1, ... , k - 1, i = 0, ... , k - I­
1, for which the following explicit expressions hold. For the higher curvatures

(I) (I)
Kn-k+l, ... , Kn-2 we have

(/) ­
Kn-k+i -

or

( ')'
(n-k+l) . (n-k+l) I. (/) I. (/) .. (I)

( ((Xn-k+i+I+1 . Xn-k+I+I) . Kn-k+I) . Kn-k+2) ..... Kn-k+i-I

i = 1, ... , k - 1- 1

( (/) )2_Kn-k+i -

rn-k+i+I+I,I, ...,L(x', ... , x(n-k+i+I))rn_k+i+I_I,I, ...,L(x', ... , x(n-k+i-I))

r2 ( I x(n-k+i)) ,n-k+i+I.I •...•1 x, ... ,
i = 1, ... , k - 2.

For the next curvature K~~k we get

2 r ( I (n-k+I))r( I (n-k-I))
(K(/)) = n-k+I+I,I, ...•1 X , ... , x x , ... , x .n-k r2(x', ... , x(n-k))

Now the following statements hold.

THEOREM 5. Let c be a simple e(n-I)-curve such that Kn-k == K~~k == ... ==

(/-1) - 0 I - 1 kIT" (/) - 0 if d I if . .Kn_k = , - , ... , -. 11ell Kn-k+i = I all all Y I C IS a curve 111 a
(k-1- i - I)-isotropic (n -1- I)-plane, i = 1, ... , k-1- 1.

COROLLARY 4. Let c be a simple e(n-I)-curve. Theil c is a curve in a non­

. . ( k) I if d I if - (I) - - (k-I) - 0Isotropic Il - -p aile I an on Y I Kn-k = Kn-k = ... = Kn-k = .

Case 3. Finally, let us consider the case when Kn-k+j == 0, j = 1, ... , k - 2,
holds. By Proposition 7 it follows that c lies in a (k - j - I)-isotropic hyperplane
spanned by vectors x', ... , x(n-I). By constructing the Frenet's (n - I)-frame
we get n - k Euclidean vectors tl, ... , tn-b one I-isotropic vector tn-k+l •... ,

one j-isotropic vector tn-k+j, one (j + 2)-isotropic vector tn-k+j+J, ... , one k­
isotropic vector tn-I. Since the geometry of the (k - j - I)-isotropic hyperplane,
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j 1, ... , k - 2 coincides with the geometry of the space l~=i, we introduce

supplementary curvatures K~~k+j' ... , K~~2 : I ~ R such that the following Frenet's
equations hold

tI'

t/
tn-k+/

tn-k+/

tn-I'

KIt2,

-Ki-Iti-I + Kiti+I,

Kn-k+itn-k+i+I,
(I)

Kn_k+ltn-k+I+I,
O.

i = 2, , IJ - k,

i = 1, ,j - 1,

l = j, , IJ - 2,

In the same way as before we obtain the explicit expressions for the supplementary
curvatures. We get

(I) _
Kn-k+j+i -

(( , )'
(n-k+l) . (n-k+1),. ' " . (I)

( ((Xn-k+j+i+2 . Xn-k+I ) . Kn-k+I) ..... Kn-k+j-I) . Kn_k+j

• (I) )'.... Kn-k+j+i-I ,

i = 0, ... , k - j - 2,

or

( (I) )2_Kn-k+j -

:r ( , (n-k+j+I)):r ( , (n-k+j-I))n-k+j+2J+I X , ... , X n-k+j X , ... , x
:r2 .(X' X(n-k+j))n-k+j , ... ,

( (I) )2 _Kn-k+j+1 -

:r ( , (n-k+j+2)):r (' (n-k+j))n-k+j+3J+I X, ... , X n-k+j X, ... , x

:r2 (x' X(n-k+j+I))n-k+j+2J+I ' ... ,

( (I) )2 _Kn-k+j+i -

:r ( , (n-k+j+i+I)):r ( , (n-k+j+i-I))n-k+j+i+2J+I X, ... , X n-k+j+iJ+I X, ... , x

:r2 ( , X(n-k+i))n-k+j+i+IJ+I X, ... ,

i = 2, ... , k - j - 2.

Furthermore, the following proposition is true.
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PROPOSITION 10. Let c be a simple C(n-Il-curve such that I(n-k+j == O. j =
1, ... , k - 2. Theil I(~~k+j+i == 0 if alld ollly if c lies in a (k - j - i - 2)-isotropic
(11 - 2)-plalle, i = 0, ... , k - j - 2.

Let us now suppose that I(n-k+j == I(~~k+j == O. Then c lies in a (k - j - 2)­
isotropic (11 - 2)-plane spanned by n - k Euclidean vectors tl, ... , tn-b one 1­
isotropic vector tn-k+I, ... , one j-isotropic vector tn-k+j, one U + 3)-isotropic
vector tn-k+j+I, , one k-isotropic vector tn-2. Again we introduce supplementary

curvatures I(~~k' , 1(~~3 : I --+ R such that the following Frenet's equations hold

tl'
t/

tn-k+/

tn-k+/

tn-2'

I(lh,
-I(i-Iti-I + l(iti+l,

I(n-k+itn-k+i+I,
(2)

I(n_k+ltn-k+l+ I,
O.

i = 2, , Il - k,

i = 1, ,j - 1,

I = j, , n - 3,

By proceeding inductively under the assumptions I(n-k+j == I(~~k+j

(I-I) - 0 b' 1 (I) I - 1 k 1'-I(n-k+j = we 0 tam supp ementary curvatures I(n-k+j+i' - , ... , - , I -
0, ... , k -j - 1- 1, for which the following explicit expressions hold

(I) _
I(n-k+j+i -

( ( (( (x~,:;'0~+I+I ,,~,:;':; I»)' ,".-Hl)' , .. ,".-.+J-I)' '";~k >J)'

. (I) )'.... I(n-k+j+i-I ,

i = 0, ... , k - j - I - 1,

or

( I(~~k+j) 2 =
r ( , (n-k+j+I))r ( , (n-k+j-I))n-k+j+I+lj+I •...j+1 X, ... , X n-k+j+I-l X, ... , x

r2 (x' X(n-k+j))n-k+j+1 , ... ,

( (I) ) 2I(n-k+j+l =

r ( , (n-k+j+2))r ( , (n-k+j))n-k+j+1+2j+I •...j+1 X , ... , X n-k+j+1 X , ... , x

r2 ( , (n-k+j+I))n-k+j+I+lj+I •...j+1 X , ..• , x

( I(~~k+j+i) 2 =

rn-k+j+i+l+lj+I, ...j+I(X', ... , x(n-k+j+i+I))

r2 (x' X(n-k+j+i))n-k+j+i+lj+I, ...j+1 , ... ,
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T' ( I (n-k+j+i-I))'1 n-k+j+i+I-Ij+I, ...j+1 X, ... , X

i = 2, ... , k - j - I - 1.

The following statements hold.

285

THEOREM 6. Let c be a simple c(n- I) -curve such that Kn-k+j == K~~k+j == ... ==

(I-I) - 0 1- 1 k' 1 '1'1 (I) - O;F d I ;F . .Kn_k+j = , - , ... , - } - . 11lell Kn-k+j+i = IJ all Oil Y l.J C IS a curve III a
(k - j - 1- i-I )-isotropic (Il - I-I )-plalle, i = 0, ... , k - j - I - 1.

COROLLARY 5. Let c be a simple C(n-I)-curve. Theil c is a curve ill a 1l01l­

. . . ( k ') I ;F d I ;F - (I) - - (k-j-l) - 0ISOtl'OPIC Il - +} -p aile l.J all Oil Y IJ Kn-k+j = Kn-k+j = ... = Kn_k+j = .
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