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CURVES IN n-DIMENSIONAL -ISOTROPIC SPACE

ieljka Milin sipu§, Zagreb, Croatia, and BlaZenka Divjak, Varazdin, Croatia

Abstract. In this paper we develop the theory of curves in n-dimensional k-isotropic space I,’;'. We
derive explicit expressions and geometrical interpretations for the curvatures of a curve.

1. Introduction

The n-dimensional k-isotropic space I¥ was introduced by H. Vogler and H.
Wresnik in [17]. We follow the notations and the terminology used in that paper.
The special cases of 13, I, I; were thoroughly studied in {2], [3], [4], [9], [10] [12],
[13], [14], [15], [16]. The case of I} was introduced in [11], and studied in [1] and
[5]. The theory of curves in n-dimensional flag space I7~! was studied in [7] and in
[8]. A general approach to the theory of curves in Cayley/Klein spaces is given in
[6].

In this paper we develop the theory of curves in I¥, We construct the Frenet
frame of an admissible curve and calculate the explicit expressions of the curvatures
of such a curve. We derive also the geometrical interpretation of these curvatures
and investigate the curves having some of their curvatures equal to zero. Finally
we describe the conditions, in terms of curvatures, if a curve lies in an l-isotropic
m-plane.

Let A denote an n-dimensional affine space and V its corresponding vector
space. The space V is decomposed in a direct sum

V=U U (1)

such that dim U, = k, dim U; = n — k. Let By = {bp—k41, - - ., bs} be a basis for
the subspace U>. In U, a flag of vector spaces U, :=C; D ... D C; D Ciy1 D
... D Cg := [by], C; = [bp—gsi, - - - by] is defined. According to it we distinguish
the following classes of vectors: the Euclidean vectors as the vectors in V' \ U, and
the isotropic vectors of degree [ or l-isotropic vectors, I = 1, ...k, as the vectors in
Uz, X = Y5 _| Xn—k4mBneksm, for which holds

Xp—ktl =+ = Xn_jpi—1 = 0, Xp_g41 # 0.
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By @ : V— U, i = 1,2, we denote the canonical projections.
The scalar product - : U; x U; — R is extended in the following way on the whole
V by

xy =m(x) - m(y). (2)

Therefore the isotropic vectors are orthogonal (scalar product vanishes) to all other
vectors, especially also to themselves.

For x € V we define its isotropic length by ||x|| := |m(x)|. But if x is an -
isotropic vector, then its isotropic length is 0, and therefore we introduce as isotropic
length the Ith- range of X, i.e. [X]; ' =xp—pqn I =1,..., k.

The group of motions of I* is given by the matrix

5 0]

where A is an orthogonal (n — &, n — k)-matrix, detA=1, B a real (k, n — k)-matrix

and C areal lower triangular (k, k)-matrix such that c::ﬁf = 1.

2. Hyperplanes in I*

We distinguish the following classes of hyperplanes in IX. We say that a
hyperplane in IX given by an equation

ugt+uxy+ ...+ ux, =0

is of type ! or - isotropic, | = O, ...k, if up—y # O and up_jy1 = ... = u, = 0.
Especially, for I = 0 we say that a hyperplane is non-isotropic and for I = k that it
is completely isotropic.

PROPOSITION 1. Let H be an l-isotropic hyperplane, 1 = 0, ...,k — 1. Then
there are no (k—1)-isotropic vectors in H. Furthermore, there exists a basis consisting
of n—k Euclidean vectors and of one of m-isotropic vectors,m = 1, .. . . k,m # k—1,
but also a basis consisting of n — | — 1 Euclidean vectors and of one of m-isotropic
vectors, m=k—1+1,...,k
In every basis of H the number of Euclidean vectors varies fromn —kton —1—1;
there are at most k — m m-isotropic vectors, ifm < k—1—1, andat mostk —m+1
m-isotropic vectors, if m 2 k — 1+ 1.

Proof. Let H be an [-isotropic hyperplane given by

up+wx1+ . up—pxp—; =0, up_; #0.
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Then its equation can be written in the following form

Uo

X1 oo Xp—k .. Xp—l-1 Xp—t+ Tl Xn—Il+1 --- Xn
Up_| ... 0 0 —Uux 0 0
0 ... upy ... 0 — Uk 0 .. 0

. . . . . . -1 =0 (4)
0 0 Up—; —Up_1—1 0 0
0 0 0 0 1 0
o ... 0 ... 0 0 0 e 1

From (4) it can be seen that there are no (k — [)-isotropic vectors in an I-isotropic
hyperplane, ! =0, ..., k — 1. Furthermore, it can also be seen that there exist the
mentioned bases for H; the first follows directly from (4), the others by making
linear combinations of the vectors of the first mentioned basis.

COROLLARY 1. In a non-isotropic hyperplane there are no k-isotropic vectors.
Furthermore, there exists a basis consisting of n — 1 Euclidean vectors, but also
a basis consisting of n — k Euclidean vectors and of one of m-isotropic vectors,
m=1,...,k— L
In every basis the number of Euclidean vectors varies from n — k to n — 1, there are
at most k — m m-isotropic vectors, m =1, ...,k — 1.

COROLLARY 2. In a completely isotropic hyperplane exist all m-isotropic di-
rections, m=1, ...,k
There exists a basis consisting of n—k— 1 Euclidean vectors and of one of m-isotropic
vectors, m = 1, ..., k. Generally, every basis consists of n—k— 1 Euclidean vectors,
and of at most k — m + 1 m-isotropic vectors, m=1,... k.

3. Curvesin ¥

Definition 1. Let I C R be an open interval and ¢ : I — I,’§ a vector function
given in affine coordinates by

0X(t) = (x1(2), . . ., xa(2)) := x(2),

where ¢(z) = X is a point in A.

The set of points ¢ € I¥ is called a C"- curve, r > 1, if there is an open interval I C R
and a C"-mapping ¢ : I — I* such that ¢(I) = c.

A C'-curveisregular if x(¢) # 0,z € I
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A C"-curve is simple if it is regular and ¢ is injective.

One can easily see that the notions of C"-curve, regular C"-curve and simple C"-curve
are invariant under the group of motions of I*.

Definition 2. A point Py(tg) of a regular C"-curve is called an inflection point
oforderl,l =2,...,n— 1, if the set of vectors

{x(t0), ..., x!"D(x)}

is linearly independent and the set of vectors

{X(IO)) ey XU)(IO)}

is linearly dependent.
If a curve has no inflection points of any order [, [ = 2,...,n — 1, it is said to be
non-degenerated.

The notion of an inflection point of order [ is a geometrical notion i.e. it does
not depend on parametrization and is invariant under the group of motions. More-
over, it is a differential invariant of order [.

4. Osculating planes

Definition 3. Let ¢ be a simple C"-curve given by x = x(¢) and P(t) € c an
inflection point of order r. The osculating m-plane,m = 1, ..., r — 1, at the point P
is m-dimensional plane in I* spanned by the vectors x(¢), . . ., x"(z).

If ¢ is a non-degenerated simple C"-curve, then the osculating hyperplane of ¢
at P(t) is the hyperplane spanned by x(¢), . .., x{*~1)(z). Its equation is given by

der(x — x(2),x(¢), ..., x"" V() =0, (5)
where x denotes a position vector of an arbitrary point of the osculating hyperplane.

PROPOSITION 2. Letc : I — If,' be a simple C"*V-curve on which all of the
points are inflection points of order I + 1,1 = 1,...,n — 1. Then there exists an
I-plane which contains the curve c.

Definition 4. A curve c is said to be an admissible C"-curve, r 2 n— 1, if my(c)
is non-degenerated and c is a simple, non-degenerated C"-curve without /-isotropic
osculating hyperplanes,/ =1, .. ., k.

THEOREM 1. A C'-curvec, r 2 n — 1, is admissible if and only if
X'l(t) x,,_.l(t)
: : #0, 1€l (6)
-1 —1
PO B Ll ()
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x1(2) cee Xpi(8)
5 : : #0, tel 7
-k —K
PG Il ()
An admissible curve has neither l-isotropic tangents nor l-isotropic osculating m-
planes,l=1,...)km=2,...,n— 1.

Proof. If c is admissible, then the statement obviously holds.
Conversely, if (6) holds, then ¢ is non-degenerated. Furthermore c is regular because
otherwise it would be x(¢) = 0,7 € I, and so the first row of the determinant
(6) would consists of zeros. If ¢ has I-isotropic tangents, then the first row of the
determinant (7) would be zero. In every l-isotropic m-plane, = 1, ..., k, there is
k-isotropic direction. Therefore if ¢ has osculating [-isotropic m-plane, (6) would be
Zero.

5. Frenet’s equations of a curve in I}

Definition 5. Let ¢ : [a, b] — I be an admissible curve. Then

b b
s::/ |[X||dt:/ | ()| dt

is called the isotropic arc length of the curve ¢ from x(a) to x(b).
One can notice that the isotropic arc length of an admissible curve ¢ coincides
with the Euclidean arc length of the projection 7; (¢) to the basic space.

PROPOSITION 3. Every admissible C"-curve ¢ can be reparametrized by the arc
length s and s is the arc length on c exactly when |[x(s)|| = 1.

Let ¢ : I — I* be a curve parametrized by the arc length. Notice that ¢ is also
admissible. Now we can define the n-frame {t(s), . . ., t,(s)} of a curve c in a point
x(s). It should be an orthonormal basis of V like it is defined in [17)].

By applying the Gram-Schmidt orthogonalization process to the set

{x,.. .,x(""‘)}
we get the orthonormal set of vectors {t;, ..., t,—4}
t1 = X
bn = x-S )t
— b —
t, = H_bmmﬂ’ m=2,....n—k.
One can see that the frame {m(t,), ..., 1 (t,—¢) } is the Frenet (n — k)-frame of the

curve 71 (c).
If we put Uy = [ty,...,t,—4), then U; N Uy = {0}, and therefore we have the
following decomposition V = U; @ U,. Now we should define the basis of U,
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consisting of one unit 1-isotropic vector, ..., one unit k-isotropic vector. Let us

suppose that xf,"__:rll)(s) £0. If xf,"_—,ﬁll)(s) = 0 then there must exist some other

coordinate x,,_4; such that x("__k+.1) s 0 and we can form the vector t,,_;.1 by it.
n—k+i
Now we define
(n—k+1) n—k+1
ta_gy = (0, ...0, 1, n=kt2 aw
n—k+1 _( s T T n—k+l))'
o Xn—k+1 Xn—k+1

Obviously t,—z+1 1s an unit 1-isotropic vector.

Let us also define
(n—k+1)(s) !

. n—k+2
Kn—k+l(s) - (n—k+1)
xn—k+1 (s)
If k,—+1(s) # 0, we can put
x("_kk';” ! Ln—ken) !
n—k+
A=k o )
n—k+1 n—k+1

tr2:=(0,...0,0, 1,
e —r

n—k+1

yeaey
Kn—k+1 Kn—k+1

which is an unit 2-isotropic vector. Now we introduce
(n—k+1)(:) !
*n—ks3
xil"—— k++1” (s)
Kn—ks2(s) = | —0——<—
Kn—k+1 (S )

Continuing the process, under the assumptions K,—g+2(s) Z 0, .. ., Kn—k+i{s) # 0,
we define the (j + 1)-isotropic vector

i
_ (n—k+1) | _(n—k+1)ys | . .
ti—ksj41 = (0,...,0, 1, ((‘xn—k+j+2 T X ka1 ) i Kn—kt1 )t Kn—kgy e
n—k+j
I3
—k+1) . (n=kt1)ys . .
N ((xf," ) C Xkl ) D Kn—k+1 [ K,,_k+j)
and
!
(n=k+1)  _{n—k+1)ys ! I
n— _
Kn—k+j+1 = ((xn—k+j+2 Xy k41 ) Kn-k+1) Kn—kt2 ] o i Kn—kij |
j=1,. . k—2.

The last vector is equal to
t,=(0,...0,1).

Obviously the following theorem is true.
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THEOREM 2. (Frenet’s Equations)
Let ¢ be an admissible curve in I¥ parametrized by the arc length and let {t1, ..., t,}
be its Frenet n-frame. Then there exist functions K1, ..., Kn—1 : [ = R such that the
following equations hold

t,’ = Kity,

t! = kit Kty i=2,...,n-k,
tn—k+j’ = Kn—k+tjtn—kti+1, J=1.. k-1,

t, = 0.

6. Explicit expressions of the curvatures of a curve in /¥

Let us derive now the explicit expressions of the curvatures of an admissible
curve ¢ parametrized by its arc length. Since x;, i = 1,...,n — k — 1, are the
curvatures of the projection 7; (¢) of the curve c, we have

I(x', ..., xU"Mri, ..., x(+)
r2(x',...,x")

K (s) = ,i=1...,n—k-1,

where I" denotes Gram’s determinant with a scalar product defined in (2).

The expressions for the curvatures K41, - . ., Kn—1 are given by the construction
of the Frenet frame in the previous section. We can obtain the explicit expression
for the curvature k,_ in the following way. Using Frenet’s equations we get

x' = f
x) = apti + ...+ aati—1 + K1 K-t i=2,...,n.
Therefore it holds
det(x', ..., x\M) = KK
det(m(x'), ..., m(x"9)) = k1o .
Now we have
. de(¥',...,x")
n— .
det(m(x’), Ceay 77.'1()( n—k) ))k+1 ’l: ,:+1 c e Kp—1
By substituting the expressions for x;,i = 1, ..., n — k — 1, and by noticing that
n— k+1)
det(ﬂz(x( k+1))7 LR ( )) (xn" k:i )k ;l: l:+1 < Kn—1
we get the following expression for x,_¢
‘ det(x', ..., xX\MT(X, ..., x"*=D)k/2(x n"_kk+1))

%ot = Galm (), et (D), ) O
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Let us notice that for the curvatures K,_4, ..., K,—1 we can also derive the
following explicit expressions. It is easy to show that

!

X1 PN Xn—k+j
: : : =k ki 9)
xgn—k+j) . xfln_—kfjjj)
j=2,..., k-1,

holds. By using (9) and by considering that

I, ..., x"=h)
.. 2 _ 1 ?
(Kl . Kn—k—-l) - F(X', o, x(n—k—l))

we get
! ! 2
*1 coo Xkl
: : : O, ..., x=*1)
x(n-k—H) x(n—k+1)
2 1 to n—k+1
Kyy = (10)
n—k r2(x, ..., x(n=0)
and by induction
/ ! ! !
X1 s Xkl *1 o Fnktj-1
(n—k+j+1) (n—k+j+1) x(n—k+j—1) x(n—k+j—1)
M s Xkl 1 SRR P T . | (11)
Kn—k+j = 2 b
/ '
xi cer Xp_gyy
(n—k+j) (n—k-+j)
X R S
j=1 .., k—-1

Let us now suppose that V is endowed with a scalar product - : V. x V —» R
such that its restriction to U; coincides with the already defined scalar product
-: Uy x U; — R. We shall use the same notation for the scalar product on V as for
the degenerated scalar product defined in (2). Let us also introduce the following
notation. Let Tp—j1i(¥1, .-+, ¥m) » § = 1, ..., k, denote the Gram’s determinant of
the projections of the vectors yy, . . ., Ym onto the (n — k + i)-dimensional subspace
of V spanned by the first » — k + i coordinate vectors and Tp—i(y1, ..., ¥m) =
I(y1, ..., ¥m)- Then the expression {10) can be written as

2 Do (X, x0)(x, L x(n—k=D))

n—k — FZ(X', e, X(""k)) (12)
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and the expressions (11) as

/ —k+j+1 ! —k+j—1
K2 _ F,,_k+j+1(x R x(n—ktit ))rn—k+j—1(x 1ttty X(" i ))
" DX xR0 ’

j=1,... k-1

We can prove the following theorem.

(13)

THEOREM 3. Let k1, ...,Kqy—1 : I — R be differentiable functions different
from O such that i, . .., Kn—g—2 > 0. Then there exists, up to isotropic motions, a
unique admissible curve ¢ parametrized by the arc length such that xy, . . ., K,_1 are
its curvatures.

Proof. Under these assumptions, there exists, up to an Euclidean motion, a
unique projection 7; (¢) of the curve c¢ in the Euclidean space U; parametrized by

the arc length such that k1, . . ., K, are its curvatures. Furthermore, (9) implies
x4 cer Xp—ial
—k
(n—k+1) (n—k+1)
*1 R S 38 |

Expansion by the last column of this determinant gives a linear differential equation
with differentiable coefficients for the function x,—+1(s) which enables us to find
that function. By similar reasoning, for already found functions x1, . . ., Xy—t+j—1, the
expression (9) enables us to find the functions x,—k4j, j =2, ...,k — 1. Therefore,
the existence of the curve ¢ is proved.

In order to show that a curve ¢ is unique up to an isotropic motion, we can see at
first that y 1 (s) = 1, ya(s) = x1(s), ..., Yn—ktj = Xn—k+j—1(s) form the fundamental
solutions for the corresponding homogeneous differential equation of the equation
9). Ifxh_, +(8) is a particular solution of (9), then the general solution of (9) is
given by

Xn—itj(s) = C- 1+ Cix1(s) 4 ... + Coipjm1Xn—ksj—1(8) + xﬁ_k+j(s).

Therefore, every curve which is obtained by an isotropic motion from the curve

x(s) = (x1(s), ... Xn—i(s), xb_,. 1 (5), ..., xh(s)) satisfies the conditions of the the-

orem.

7. Geometrical interpretations of the curvatures

Using explicit expressions of the curvatures obtained in the previous section we
can show that the following propositions hold.

PROPOSITION 4. Let ¢ be an admissible C"-curve. Then

. 0
[Kn—1(s0)] = llm_g_.0|}-[
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where 0 denotes the angle berween the osculating hyperplanes at the points x(sg)

and x(s + so) and s is the parameter of the arc length.
Proof: Since the osculating hyperplanes of an admissible curve ¢ at the points
x(s0) and x(s + sg) are non-isotropic, their angle is given by
xi(s +s0) Xpa(s+s0)  xp(s+ )

x("_l)(s + s0) xf,"ul)(s + 50)

n—-2
xh_ (s 4+ s0)

o] = (L s+ 50)
- x1(s + s50)

x(,"_l)(s + s0) x,(,"__ll)(s + s0)

x1(s0) Xp_2(50)  xu(s0)
L s0) xS (s0) xnV(so)
x1(s0) x,_1(50)
1 ‘ —1
A7 s0) xS (so)

: : (k) _ K (k+1) _
Using the Taylor expansion of x; '(s + so) = xi (s0) + xi = '(so)s + -+, k =
I,...,n—1,i=1,...,n, we get that

0
limg_o|—=| =
s
xi(s x' (s x'(s
1(' 0) n—h( 0) n(. 0) x/l (50) x:,_I(SO)
-2 -2 2 : :
x(1" )(So) xnn—Z )(So) x;" )(So) l(n—l)(sO) x(n—l)(so)
INECY saa(s0)  x(so) |
x1(s0) Xp_1(s0)
Y ' —1
X)L 1 (so)
x! S0 X/_ 30)
1 (s0) Xalso)  xho) 150 il
(n—2) n-2)
(n—1) (n—1) (n=1) x; (s0) X, (s0)
x; (so0) X,_o (S0) xn (s0)
_ 1 n—2 xn)(SO) xil](SO) l
2
x1(s0) Xp—1(s0)
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Some calculation shows that the numerator of this expression is equal to

x1(s0) o Xp_o(s0)
det(x', ..., x") : C :
X so) o 1 (s0)

which, comparing by (11) for j = k — 1, implies the statement of the proposition.

For the curvatures K,_, . . ., K,—2 we have the following interpretation.

PROPOSITION 5. Let ¢ be an admissible C™ -curve. Then
. W .
{Kn—k+j(s0)| = lzms_.o|?[, j=0,..., k=2

where @ denotes the angle between the (k- j— 1)-isotropic hyperplanes at the points
x(s0) and x(s + so) spanned by the vectors ti, ..., ta_jij, by_ktjt2, ..., bn, S is the
parameter of the arc length, and b,_i1jy2, . . ., by are the vectors of the orthonormal
basis for U,.

Proof. For the curvatures Ky_+1, - . . , Kn—2 the proof is analogues to the proof
of the previous proposition, if we consider the projection of the curve ¢ to the
(n — k + j + 1)-dimensional space spanned by the first (n — k + j + 1) coordinate
vectors. '

For the curvature k,—; we consider (k — 1)-isotropic hyperplanes spanned by

ty, ..., ta—g, by—ki2, ..., b, at the points x(so) and x(s + sp). First let us no-
tice that for the formally introduced Euclidean normal vector u = (u}, ..., u,) =
tiA...Aty_gAby_ii3 ... Ab, of such a hyperplane we have ) (0') = Ky— 711 (th—k)
and therefore ||[u’[] = |k,—|. Now we have

. w?
llm,.*o—2 = lim;_,g
s

Il

2

ui(s + so) — w1 (s0) 2 tn—i(s + 50) — un—i(s0)

+...+
s s
= [[0']]* = |xo—i|?

which completes the proof.

Furthermore, by using the explicit expressions for the curvatures, we can show
that the following propositions hold.

PROPOSITION 6. The only admissible C"-curves for which x,_; = 0 holds are
the non-degenerated C"-curves in non-isotropic hyperplanes.

Proof. Let us first remark that x,_; = 0 if and only if

Xy o X
det(x', ..., x"™) =0, : : : # 0. (14)
L
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Now let ¢ be a curve in a non-isotropic hyperplane. Then by an isotropic motion we
obtain that ¢ lies in a hyperplane x, = 0. Therefore ¢ is given by

x(s) = (x1(s), ..., xn—1(5), Q)

from which (14) follows.

Conversely, let us show that ¢ lies in its osculating hyperplane at an arbitrary point
x(s) and that that hyperplane is non-isotropic. The equation of the osculating
hyperplane at the point x(s) is given by

det(x — x(s), t;(s), ..., ta=1(s)) = 0.

We can formally introduce its Euclidean normal vector by t;(s) A - -+ A t,—1(s) and
by using the Frenet’s equations and the assumption k,_; = 0 we can show that this
vector is a constant vector. Indeed, differentiation yields

(tl(s) A--- A tn_l(S))l = t (S) A...A tn_z(S) A K,,_I(S)tn
= 0.

Therefore, all the osculating hyperplanes are parallel. Let us show now that they are
all equal. It is enough to show that

det(x(s), t1(s), . . -, ta=1(5))

is constant. This follows also by differentiating the previous determinant. So, c lies
in its osculating hyperplane. From the condition (14) follows that this hyperplane is
non-isotropic.

Analogously, the following geometrical interpretations for the curvatures kg, . . .,
Kn—2 hold.

PROPOSITION 7. Let ¢ be a simple C"~*+Y_curve. Then k,_4,; = 0 if and
only if ¢ is a curve in an (k — j — 1)-isotropic hyperplane, j =0, ..., k — 2.

Proof. Let us first notice that from (10) and (11) follows that k,,_x4; = 0 if and
only if

! ") / !
*y s Xk X1 o Xkt
: : : =0, : : : #0.
(n—k+j+1) (n—k+j+1) (n—k+j) (n—k+j)
X1 . n—k+j+1 X1 . n—k+j

Then the proof proceeds analogously to the proof of the Proposition 6 if we consider
the projection of the curve ¢ onto the (n — k + j + 1)- dimensional subspace of V
spanned by the first n — k + j + 1 coordinate vectors. We can conclude that this
projection lies in a non-isotropic (n — k + j)-plane which means that ¢ lies in an
(k — j — 1)-isotropic hyperplane.

Furthermore, we know that x,, = 0, m < n — k, if and only if the projection
m1(c) of ¢ is a curve in a m-plane in the basic subspace U;. That is exactly the case
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when c lies in a k-isotropic (m + k)-plane in V. By using this fact and the previous
propositions we may understand better the nature of a degenerated curve c. This can
be described by introducing the supplementary curvatures.
We shall distinguish several cases.

Case 1. If k,, = 0, m < n — k, then ¢ is a curve in a k-isotropic (m + k)-plane

spanned by vectors X/, ..., x5 We construct the Frenet (m + k)-frame in the
same way as we did it for non-degenerated curves. We obtain m Euclidean vectors
t),..., t, and one l-isotropic vector tp41, ..., one k-isotropic vector t,, ;. Now,
there exist functions kq, . . ., Km—1, K,(,,l), cee, K'E':)_k_l : I — R such that the following
Frenet’s equations are satisfied
t' = Kt
t! = —Kxi_itiog + Kitig, i=2,....m—1,
1
tm’ = —Kpm—itm—1+ Kr(n )tm+11
1 .
tm+jl = K,El-()-jtm+j+1) J= ..., k— I
tm—i—kl = 0
For the supplementary curvatures K,s,l), ey K,("llk_l we can obtain explicit expres-
sions in the same way as we did it for non-degenerated curves. For the higher
curvatures K,(nlll, Ceey K,S,llk_l we get
' ! '
n (mt1) . _(mtD) e (D) (D)} L L (D)
Kmtiv1 = ((((xn—k+i+2 DXy gr) Km+1) : Km+2> Peeed Km+i) )
i=0,...,k=2,
or (by supposing that V is unitarian)
(K(l) )2 _ 1—‘n—k+i-{-1(x1) EREY x(m+i+2))rn—k+i—l(xla ceey X("H_i)) (15)
i+l = A )
m+i+ r’Zl_k_H(x/’ . x(m+1+1)) .
i=0,...,k—2.

For the next curvature K,s,l) we get

,x"Y)

(K(l))z —_ Fn_k+1(xI, ety X(m+1))r(xl7 A
m r2(x,...,xm)

Using Propositions 6, 7 we can conclude as follows.

PROPOSITION 8. Let ¢ be a simple C (m+k)_cyrve such that Km=0, m<n—k.
Then K,E,l“)_,- =0ifandonlyifcisacurveina (k—i— 1)-isotropic (m+k — 1)-plane,
i=0,....,k— 1L

Now we can proceed by supposing k,, = K,ﬁ,” = 0. Thenc liesina (k — 1)-
isotropic (m+k—1)-plane spanned by m Euclidean vectorsty, . . ., tn, one 2-isotropic
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vector ty41, - . ., One k-isotropic vector t,4x—1. We introduce supplementary curva-

(2) @ .

tures Km ', - . -, K, 4o : I — R such that the following Frenet’s equations hold

t = Kit,
ti, = —Ki-1ti-1 + Kitit1, i=2,...,m—1,
2
' = —Kmoitmol + Kt
2 :
toif = Koltmeiet, ji=1.. k=2,
tm+k—l, = 0.
By proceeding inductively under the assumptions K, = K,S,l) =...= K,E,I_l) =
0 we obtain supplementary curvatures K,(,,llri, l=1,...,ki=0,...,k— 1 for
which we obtain the following explicit expressions. For the higher curvatures
! !
K,("}H, ceo K’(n_)'_k_l we get
i !
m me) . mbDy O Y 0 ) L L0
Kmtit1 = ((((xn—k+i+l+l . xn—k-H)l : Km+l> . K-m+2) et Km+i> s
i=0,...,k—1
or {by supposing that V is unitarian)
2
0 —
(Km+i+1) =
D kit 1 det (X o XOHHEINT, g (X, x Ot
T2 rint1, g1 (X -, X(mHEL)
i=0,...,k—1L

and for the next curvature K,f,l) we obtain

V2 Tacient, it o X, 1)
kW) = :
( m ) r2(x/, ..., xtm) ’

where Tn_iyi1, i1, - s ¥m) ,i=1,...,k, 1 =1,...,k— 1, denotes the Gram’s
determinant of the projections of the given vectors onto the (n — k+i—I)-dimensional
subspace of V spanned by the first n—k—+i coordinate vectors except the first isotropic,
..., l-th isotropic direction.

Furthermore, the following theorem holds.

THEOREM 4. Let ¢ be a simple C™ ) _curve such that k, = K,S,l) =...=
K,S,l_l) =0m<n—kl=1,....,k— 1. Then K,(,g_,- = 0 ifand only if c is a curve
ina (k — 1 —i)-isotropic (m + k — I)-plane.

COROLLARY 3. Let ¢ be a simple C(’"+k)—curve, m< n—k Thencisacurve

in a non-isotropic m-plane if and only if x,, = K,E,l) =...= K,(,,k) =0.
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Case 2. Let us now consider the case k,_x = 0. By Proposition 7 it means that ¢
lies in a (k— 1)-isotropic hyperplane spanned by vectors X', . . ., x"~ 1. Constructing
the Frenet (n — 1)-frame in the same way as we did it for non-degenerated curves, we
obtain n — k Euclidean vectors ty, . . ., t,_, one 2-isotropic vector t,_g+1, ..., One
k-isotropic vector t,_;. We introduce supplementary curvatures K,Sl_)k, ey K,(ll_)2 :
I — R such that the following Frenet’s equations are true

' = Kty
t/ = —xi_itio + Kt i=2,...,n—k~1,
1
thk' = —Kn—k—itp—k—1 + K,E_)ktn—kﬂ’
1 .
tiky = K,E_)k+jtn—k+j+la J=L.. k=2
tn—ll

We can obtain the explicit expressions for the supplementary curvatures. For the
1) (1)

higher curvatures k, |, .. ., k,_, we have
1 ! !
m (n—k+1) | _(n—k+)yr, (1) el . e
Kn—kti = ((((‘xn—k+i+2 PXpgyz ) Kn—k+1) : Kn—k+2> Pt Kn—k+i—1> '
i=1,...,k-2,
or

(Krsl—)kﬁ) i =

Dtz (X, o, xTRPIND, (3, L x(RED)
Lo et (X5 xln—k+i)) ’
i=1,...,k—2,
and for the next curvature K,(,l_) . We get
(K(l) )2 _ Tpkgza (X0, X("“kﬂ))r(x', .., xlmk=1)y
n—k - FZ(X', e, X("_k)) .

Furthermore, the following proposition holds.

PROPOSITION 9. Let ¢ be a simple C"=D_curve such that k,—x = 0. Then
K"(I_)Hi = Qifandonlyifcliesina (k—i—2)-isotropic (n—2)-plane,i = 0, ..., k—2.
(1)

Let us suppose now that k,_¢ = k,_;, = 0. Then c lies in a (k — 2)-isotropic
(n—2)-plane spanned by n — k Euclidean vectors t, . . ., t,_x, one 3-isotropic vector
tp—k+1, ..., ONE k-isotropic vector t,_,. We introduce supplementary curvatures
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,52 [T K,E_2_)3 : I — R such that the following Frenet’s equations hold
t' = Kty
t/ = —Ki—1ti-1 + Kiti1, i=2,...,n—k-1,
2
tik' = —Knk—ith—k—1+ K,E_)ktn—k+17
2 ;
tn—k+jl = K’E_)k+jtn—k+j+lv J= ... k-2,
t._2 = 0.
By proceeding inductively under the assumptions Kn_p = K(l)k =...= K,(,I__kl) =0

we obtain supplementary curvatures K k wl=1L.  k=1i= O, e k—1-

1, for which the following explicit expressions hold. For the higher curvatures
(1) 0

Kn_ka1s - -1 Kpop WE have
) (n—k+1) (n—k+1) o \..o Y 0 ,
n—k+ L phn—ktl) e . . .
Kntti = (((xn—k+i+l+l Xy gin) Kn—k+l) : Kn—k+2> e Ky i1 s
i=1,.. . k—1-1
or

2
O] —
(Kn—k+i) -

ki / —kti—1
T kistand, g (X oo XOTRHEND, iy 1 (X L xR D)

2 ! —k+i ’
L2 i, (X5 oo x(nktd))
i=1,...,k=2.
For the next curvature K,Ell ¢ e get

(K(l) )2 _ Tocgsreng,t(X, o xR, L xRl
n—k | — FZ(X’, e, x(n—k)) !

Now the following statements hold.

THEOREM 5. Let ¢ be a simple C("_l -curve such that K,_; = ,El)k =...=

K,E'__kl) =01=1,...,k—1 Then K H, =0 zfand only if ¢ is a curve in a

(k—l—i—1)—is0tropzc(n—l—l)plane i=1...,k—1-1

COROLLARY 4. Let ¢ be a simple C"1 -curve Then ¢ is a curve in a non-

isotropic (n — k)-plane if and only if K, = K, ) =...= K,(,k kl) =0.

Case 3. Finally, let us consider the case when k,_; =0,/ = 1,..., k=2,
holds. By Proposition 7 it follows that ¢ lies in a (k — j — 1)-isotropic hyperplane
spanned by vectors x/,...,x"~U, By constructing the Frenet’s (n — 1)-frame
we get n — k Euclidean vectors t,, ..., t,_4, one l-isotropic vector t,_g41, .- -,
one j-isotropic vector t,_z4;, one (j + 2)-isotropic vector t,_iij+1, ..., One k-
isotropic vector t,—;. Since the geometry of the (k — j — 1)-isotropic hyperplane,
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J = 1,...,k — 2 coincides with the geometry of the space I,f:{, we introduce
supplementary curvatures K,El_)k e K,El_)z : I — R such that the following Frenet’s
equations hold
138 = Kty
t/ = —Kkati1+Ktq, i=2,...,n-k,
tn—k-HI = Kn—k+itn—k+i+l’ i= 17 s 7j - 1»
i .
tn—k+l/ = K,S_)k+1tn—k+l+17 [ =b--- 0 27
tn—ll =

In the same way as before we obtain the explicit expressions for the supplementary
curvatures. We get

K(l) _
n—k+j+i
, ’
/
(n—k+1) L A=k, . . ) LD
(((xn—k+j+i+2 PXp g1 ) Knokbl) Dol Knokgjo1 ) Kn-k+j

(D '
- Kn—k+j+i—1) )
i=0,... k—j—2,

or

2
(1 _
(Kn—k+j> =

—k4j+1 / —k+j—1
Lo pjrjrn (X -y x(n—kHt ))rn—k+j(x U ))

2 — k47 )
Lg%/, oo xlnmk)
2
O —
n—k+j+1 -
! —k+j+2 / —k+j
Dpokjasgat (X, XOTHIND, s (x!, L xinhn))
2 7 n—k+j+1) ’
|S-EPREIPTRT ¢ SRR x(n—kHi+D)
2
e —
n—k-+j+i -
: —ktj+itl ' —k+j+i—1
Do pjrivagrr (X5 .- -, x(n—ktitit ))rn—k+j+i,/+1(x > - ~>X(" i ))
2 ! n—k-+i ’
D ki (X x( )

i=2,.. . k—j—2.

Furthermore, the following proposition is true.
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PROPOSITION 10. Let ¢ be a simple C"~V-curve such that Kniyj =0, j =
1,...,k—2. Then K,51_)k+j+i = 0 if and only if ¢ lies in a (k — j — i — 2)-isotropic
(n—2)-plane,i=0,...,k—j—2.

Let us now suppose that K,_x4; = ,El_)k+j = 0. Thencliesina (k —j — 2)-
isotropic (n — 2)-plane spanned by n — k Euclidean vectors ty, ..., t,_t, one 1-
isotropic vector t,_g41, ..., one j-isotropic vector t,_i4j, one (j + 3)-isotropic
vector tp_kyjy1, - - - , ONE k-isotropic vector t,_». Again we introduce supplementary

curvatures K,Ez_)k, ceny K,('2_)3 : I — R such that the following Frenet’s equations hold

t' = Kty
t/ = —Kkitio1tKtiy, =2,...,n—k
thkti =  Kn—ktitn—kritls i=1..,j—-1
2 .
tn—k+ll = Kn_)k+1tn—k+l+l1 l =k 31
tn—2’ =
By proceeding inductively under the assumptions K,_x4; = K’EI_)k 4 = =
K,Sl_—kllj = 0 we obtain supplementary curvatures K,Ellk ST Il=1,..,k=1,i=

0,...,k—j—1—1, for which the following explicit expressions hold

0] _
Kn—ktjri =

!
I
(n—k+1)  (nkt1)ys Yoo () )
(((((xn—k+j+i+l+l . xn—k+1 ) : Kn_k+1) et Kn_k+j_1) . Kn—k+j> .

I
0
c K kjric1 ) o

i=0,.. k—j—1—1,

2
U] _
(Kn—k+j) -

or

’ —k+j+1 / —ktj—1
Do byttt (X - XORPINE, (3 L xR L)
2 ! —k+j !
Fn_k+j+1(x,...,x(" #)
2
K(I) _
n—ktitl) =
: v —k+j42 ! —k+j
Dp—ktjrit 2ttt (Xs o XOTRFINE, (X, L x(nkd))
2 ' n—k+j+1 !
I‘n—k+j+1+1,,'+1,..4,,'+1("7--~,X( )
2
0 _
n—kbjti]

Cn— it a1, gri (X, oy x(n=kHitirl))

2 ! n—k+j+i
D sttt . g+t (X5 o X ktTFD)
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! —k+j+i—1
Tnektjtitiot 1, gt (X o, x(TTEHFL)

i=2,.. k—j—1—1.

The following statements hold.

THEOREM 6. Let ¢ be a simple C""~V-curve such that Kn—ktj = M = =

n—k-+j = ...
K;il—_kllj =0Il=1,...,k—j— 1. Then K,gllkﬂ-ﬂ =0ifandonlyifcisacurveina

(k—j—1—i— 1)-isotropic(n —1— 1)-plane,i=10,...,k—j—1— 1

COROLLARY 5. Let ¢ be a simple C"~V-curve. Then c is a curve in a non-

isotropic (n — k + j)-plane if and only if Kn_g4j = ,El_)kﬂ. =...= ,Ek_—,:jl) =0.
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