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DESCRIBING THE PROPER n-SHAPE CATEGORY
BY USING NON-CONTINUOUS FUNCTIONS

Yuji Akaike and Katsuro Sakai, Tsukuba, Japan

Abstract. In this paper, we describe the proper n-shape category by using non-continuous func-

tions. Moreover, applying non-continuous homotopies, we show that the Cech expansion is a polyhedral
expansion in the proper n-homotopy category.

1. Introduction

In homotopy theory, because of pathological situations (e.g., some spaces have
only constant maps from spheres), spaces should be restricted to ones having homo-
topy type of polyhedra (simplicial complexes) or ANR’s. But this restriction can be
removed by approximating spaces by inverse systems of polyhedra or ANR’s (called
polyhedral expansions or ANR expansions). Roughly speaking, shape theory is a
homotopy theory of such inverse systems approximating spaces, where a morphism
between spaces X and Y is represented by a system of maps between spaces (poly-
hedra or ANR’s) consisting of inverse systems approximating X and Y. Thus the
shape category is described by using external elements. Refer to [16]. To treat
non-compact but locally compact spaces, proper maps and proper homotopies are
very useful. Proper shape theory corresponds to proper homotopy theory.

As an intrinsic description without external elements, after Felt’s work [13],
Sanjurjo [19] described a shape category of compacta by using non-continuous
functions between spaces themselves, which is extended to arbitrary spaces in [7].
In [20], he also gave another intrinsic description of shape by using upper semi-
continuous (u.s.c.) multi-valued functions, which is also extended to arbitrary spaces
in [5] and [8]. By using the method in [20}, Cerin [5] gave an intrinsic description of
the proper shape, where the proper shape is defined by the proper homotopy category
of topological spaces and the proper homotopy category of polyhedra (cf. [16]).

As Menger manifold theory developed, (proper) n-shape theory was introduced
by using (proper) n-homotopy instead of (proper) homotopy (cf. [9], [10], [11],
[1]). It is said that (proper) maps f,g : X — Y are (proper) n-homotopic if
foh and g o h are (proper) homotopic for any (proper) map i : Z — X of a
space Z with dimZ < n. In this paper, we describe (proper) n-shape category
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by using non-continuous functions between spaces themselves as in [13] and [19].
Our approach is also available to obtain the (proper) n-shape version of the other
Sanjurjo’s description using upper semi-continuous multi-valued functions in [20]
and [5]. Since the definition of (proper) n-homotopy itself is external, it cannot
be expected purely internal description, but our description is sufficiently internal.
We mainly concern ourselves with the description of the proper n-shape category.
Removing the words “proper(ly)” and “locally compact”, we obtain the description
of the n-shape category in the class of separable metrizable spaces or the class of
compact Hausdorff spaces, that will be discussed in the last section.

In the general theory of shape [16, Ch.1, §2], the notion of expansions of spaces
is fundamental. The Cech expansion for X is a typical polyhedral expansion of X
in the homotopy category, which is proved by applying [16, Ch.1, §4, Lemma 1].
However, in the proper n-homotopy category the same approach is difficult. Even in
the proper homotopy category, we have troubles because the path space is not locally
compact and maps are not proper in the proof of [16, Ch.1, §4, Lemma 1]. In §5, we
apply the notion of non-continuous n-homotopy to prove that the Cech expansion
of X is a polyhedral expansion of X in the proper n-homotopy category. It should
be remarked that, even in the n-homotopy category, the existence of polyhedral
expansions of non-metrizable compacta are discussed in [15]. In the last section, we
prove that if X is a separable metrizable space or a compact Hausdor{f space, then
the Cech expansion of X is a polyhedral expansion of X in the n-homotopy category.

As shape theory, proper shape theory can be described by various methods and
all descriptions except the Ball-Sher’s method [4] are equivalent to each others, that
is, they are categorically isomorphic to each others (cf. [3]). In [18], it is shown that
the Ball-Sher’s category is isomorphic to a subcategory of the proper shape category.
In proper n-shape theory, we have the same situation.

2. Preliminaries

Throughout the paper, maps are assumed to be continuous but functions are not.
Except the last section, spaces are assumed to be locally compact separable metriz-
able.

For collections &/ and Z of subsets of X, &/ < Z# means that & refines 4,
that is, each A € &/ is contained in some B € #. By cov(X), we denote the set of
all star-finite covers of a space X consisting of relatively compact' open sets, where
cov(X) is directed by the refinement, (i.e., % < ¥ means ¥ < %). By Q(X),
we denote the directed set of finite subcollections of cov(X) with the order C. For
% € cov(X)and A C X, letst(A, %) = J{U € Z | AnU # 0}. We define
St% = {st{U, %) | U e %}.

Let 7 € cov(Y). Two functions f, g : X — Y are ¥'-close to each other (written

1A subset of X is said to be relatively compact if it has the compact closure in X.
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by f z g) if {{f(x),g(x)} |x € X} < ¥. Forpropermaps f,g: X = Y, f~, g
means that f is properly homotopic to g. It is said that f is properly n-homotopic to
g (written by f :'3,, g) if fh ~, gh for any proper map & : Z — X from an arbitrary
space Z with dimZ < n. The proper homotopy class (or the proper n-homotopy
class) of a proper map f : X — Y is denoted by [f], (or [f]}). By [X, Y], (or
(X, Y]7), we denote the collection of all proper homotopy classes (or the collection
of all proper n-homotopy classes) of proper maps from X to Y.

By K%, we denote the nerve of % € cov{X) and its polyhedron. Since % is
star-finite, Ko is a locally finite simplicial complex, hence it is locally compact and
metrizable. Each U € % is a vertex of K4 and % is the O-skeleton Kg) of Kg. The
simplex spanned by vertices Up, Uy, ..., Uy € % is denoted by (U, Uy, - -+ , Up).
LetU € % = K,g). The star and the link at U in K are denoted by St(U, K¢ )
and Lk(U, K% ), respectively. Let U° = St(U, K% ) \ Lk(U, K% ), which is called
the open star at U in K¢,. We denote ° = {U° |U € %} € cov(Ky ).

Let ¢4 : X — Ko be a canonical map for %, that is, ¢%I (U°) C U for every
U € %, in other words, ¢4 (x) € {Uo, Uy, -+, Uy if Ug, Uy, ..., Up € % are all
members containing x. (Since canonical maps for % are contiguous to each others,
the proper homotopy class of ¢4 is uniquely determined.) Then ¢4 is a proper
map. Observe

%7(8’) C ﬂ U for each simplex o of K,
Ues'®

where & is the interior of o and 6(© is the set of vertices of ¢. One should remark that
02 (U) C St(U, Ko ) but ¢, (St(U, Kz )) ¢ cl U nor $o (U) ¢ U° in general. For
example, let X = [0, 1] and % = {U, V} € cov(X), where U = [0, 2), V = (4, 1].
Define f : X — Ko by f([0,3]) = U, f([3,1]) = Vand '

fO)=@2-3x)U+Bx—1)Ve (U V) forxe[i 2]

Then f is a canonical map, whence f~1(St(U, K )) = f~(K#%) = X ¢ ¢l U nor
S(U) ¢ U° because f(U) > V.
For simplicity of arguments, we assume that a canonical map ¢ : X — Ko

satisfies the condition that ¢4 (U) C U°® for each U € % and ¢;/1(3') # { for each
simplex o of K4 . In fact, let (ky ) yca be a partition of unity on X such thatky(x) > 0
for each x € U (cf. [17, p.27]), and define ¢ (x) = > cq ku(x)U € K (note

U =KY)).

For %' < % € cov(X), let ¢;?j' : Ko+ — Ko be a simplicial map such that
UcC ¢gjl(U) for each U € ng), = %'. Since such maps from Kg to Ko are
contiguous to each others, the proper homotopy class of ¢g "is uniquely determined.
Observe that ¢3//' is a proper map. For each U' € %/, ¢3§’(St(U’, Kag1)) C
St(¢Z'(U")) and %' (U'°) C ¢Z'(U')°.
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Let K be a simplicial complex and % € cov(X). A partial % -realization of K
isamap f : L — X of a subcomplex L of K with K{©' C L such that for each simplex
o of K, f(o N L) is contained in some member of % . Incase L = K, f is called a
Sfull % -realization of K. In order that X is an ANR, it is necessary and sufficient that
each % € cov(X) has a refinement ¥ € cov(X) such that any partial ¥ -realization
of an arbitrary simplicial complex extends to a full % -realization [14]. We call such
arefinement ¥ a Lefschetz refinement of % .

3. Proper ¥-continuous functions

Let ¥ € cov(Y). Afunction f : X — Y issaid to be ¥ -continuousifeachx € X
has a neighborhood U such that f(U) is contained in some member of 7, in other
words, there exists % € cov(X) such that f(%) < ¥, ie., % < f~1(¥). Clearly,
f: X — Y is continuous if and only if f is ¥-continuous for every ¥ € cov(Y).

Note that a map f : X — Y is proper if and only if for any compactset D C Y
there is a compact set C C X such that f(X \ C) C Y\ D. A non-continuous
function f : X — Y is similarly said to be proper if for any compact set D C Y there
is a compact set C C X such that f(X \ C) C Y \ D. Then the following follows:

LEMMA 3.1. A function f : X — Y is proper if it is ¥ -close to a proper
Sunction g : X — Y for some ¥V € cov(Y).

Proof. For any compact set D C Y, let D' be the closure of st(D, ¥) in Y.
Since ¥ is star-finite, D meets only finitely many members of ¥, and the closure of
each of them is compact, hence D’ is compact. Then there is a compact set C C X
such that g(X\ C) C Y\ D'. Foreachx € X\ C, {f(x), g(x)} is contained in some
Ve ¥ and g(x) & st(D, ¥'), hence VN D = §. Thus we have f(X\ C) C Y\ D.
O

It is said that two proper ¥ -continuous functions f, g : X — Y are properly

¥ -continuously homotopic to each others (written by f Ip g) if there is a proper
st ¥-continuous function H : X x [0, 1] — Y such that Hy = f, H; = g, and H|W
is ¥’-continuous for some neighborhood W of X x {0, 1} in X x [0, 1] {i.e., each
x € X has a neighborhood U in X with € > 0 such that each of H(U x [0, €))
and H(U x (1 — g, 1]) are contained in some member of ¥'). We call H a proper
V' -continuous homotopy from f to g.

One might wonder why we don’t define H in the above to be ¥"-continuous. He
should remark that, given two proper ¥ -continuous functions F, G : X x [0, 1] = Y
such that F| = Gg, if H : X x [0,1] — Y is defined by H, = Fy, fort < %
and H, = Gy_y for¢t > % then H is st ¥-continuous (cf. the proof of Lemma
3.2 below) but, in general, it is not ¥ -continuous. For example, let ¥ = [0, 1],
¥ ={[0,%),(},1]} € cov(Y), and let F,G : X x [0,1] — Y be ¥-continuous
functions defined by F;(X) = O fort < 1, Fi(X) = 3, Go = 1 and G,(X) = 1 for

. . . LY
t > 0. Then the above H is not ¥'-continuous. Thus, in order that the relation ~,
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is an equivalence relation on the set of proper ¥ -continuous functions from X to Y,
we have to define as above.

LEMMA 3.2. For any two proper V' -continuous functions f,g : X —= Y, f z g
implies f Zp g

Proof. We define a proper function H : X x [0,1] — Y by H, = f fort < 1
and H, = g fort > 5. Then H|X x [0,1/2) U X x (1/2,1] is ¥-continuous.
On the other hand, each x € X has a neighborhood U in X such that f(U) is
contained in V; € ¥ and g(U) is contained in V, € ¥. Since f ze, {f(x), g(x)}
is contained in some Vo € ¥. Then Vi N Vy # 0 and Vo N Vy # @, hence
H(U x [0,1]) = f(U)U g(U) C st(Vy, ¥). Thus H is st ¥-continuous. 0O

The following is obvious:

LEMMA 3.3. Leth : Y — Z be a function such that l(¥) < W, where
v € cov(Y) and W € cov(Z). Then f l/p g implies hf ~Wp hg for any two
¥ -continuous functions f,g: X — Y. O

We also have the following:

LEMMA 3.4. Let ¥ € cov(Y) and f, g : X — Y be ¥ -continuous functions.
Then, f l/p g implies that there exists some % € cov(X) suchthat f(% ), g(% ) <V

and fh Ip gh for any proper % -continuous function h : Z — X of an arbitrary
space Z.

Proof. We have a proper ¥ -continuous homotopy H : X x [0, 1] — Y from f
to g, which is st #-continuous and H|W is ¥ -continuous for some neighborhood W
of X x {0, 1} in X x [0, 1]. Choose % € cov(X) so that for each U € %, there are
0<#n <+ <t, <1suchthat HU x [0,#]) and H(U X [t,, 1]) are contained
in some member of ¥ and each H(U x [t;_y, #;]) is contained in some member of
st¥. If h : Z — X is % -continuous, h(¥') < % for some # € cov(Z), hence
Ho(h x id) : Z x [0, 1] — X is a proper ¥ -continuous homotopy from fh to gh.

Thus fh rz/p gh. a

Let € cov(X). Recall Ko denotes the nerve of % and ¢ : X — Ky
a canonical map such that ¢ (U) C U° for each U € % and ¢q—/1(3) # 0 for
each simplex ¢ of K% . A (non-continuous) function y¢ : Kg — X is called a

canonical function for % if wo (8') C Nyeow U for each simplex o of Ko, whence
wq (U°) C U foreach U € % . It is easy to see that yo is a proper % -continuous
function. Since such functions are % -close to each others, the proper % -continuous
homotopy class of w4 is uniquely determined.

LEMMA 3.5. Let %' < % € cov(X). Then the following hold.
L oM U°) < U, wa (U°) < U:

2 . ° .
2. Yo b = idx, Vo = idky,;
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3 yaog Lyar, 00 E 0% 00, b2 =, 0% 0a
Proof. (1): Obvious. (2): Since wa ¢ (U) C wa (U°) C UforeachU € %,
we have ya ¢ % idx. Since ¢ Wy (U°) C 92 (U) C U° foreach U € %, we
have ¢4y v idg,, . (3): Foreach U € %',

Ve (U°) C U C 0% (U) and v 0 (U°) C va (¢ (U)°) C 0% (V).
Then wa;/q)?;' z Yo ForeachU € %', U C ¢Zj’(U)— € U, ¢pq(U) C U°,
92 (0Z' (U)) C 0% (U)° and 6% (U°) C 9% (U)°. Then 60 % 9% 0gr.
Moreover, ¢, ~, ¢;’j I¢q// because ¢4 and ¢;’j'¢%/ are contiguous. ad

Let ¥ € cov(Y) and n € N U {c0}. Two proper ¥ -continuous functions
f.g : X — Y are properly ¥-continuously n-homotopic (written by f (~'p) g) if
thereis some % € cov(X)suchthat f(% )}, g(%) < “//andqullK% ~p gwq/lK%
(fya 'Zp gV in case n = 00). Then it should be remarked that f wq,flK(q'}), ,Z,/p
gwq,:|K£;), forevery ' < % € cov(X). In fact, since u/%q);’j’ le g and q)gj’
is continuous, it follows that
fvar K, 2, fua o' 1K, 2, swa o Ky, 2, gwan K.

Then it is easy to see that the relation (Z’:) is an equivalence relation on the set of
¥ -continuous proper functions from X to Y.

By the following lemma, the phrase “properly ¥ -continuously homotopic™ can
be replaced by “properly (¥, 0o)-homotopic™.

LEMMA 3.6. For V- contmuousfunctzons g X—=Y, f~ p g ifand only if

¥,
( ~p o) g Hence, f ~ p g zmplzesf ~p gforevery neN

f

Proof. First, assume f ~p g- By Lemma 3.4, we have % € cov(X) such that
fh ,Z,/p gh for any proper % -continuous function & : Z — X of an arbitrary space Z.
Then fy4 1/,, gWa, that is, f (1/,00)

Conversely, assume f ,,) g, that is, there exists some % € cov(X) such
that f(%),g(%) < ¥ and fyg l/p gwq . Since ¢4 is continuous, we have
SV b fz/p gWa ¢g,. On the other hand, since yq ¢z % idy, it follows that
f z fwa dg and g z gy 92 . Consequently, f ,l/p g d

For proper maps f, g : X — Y, it is obvious that f ~, g implies f ~p g for
every ¥ € cov(Y). However, the n-homotopy version is non-trivial.

LemMA 3.7. Forproper mapsf,g: X =Y, f :"p g implies f (Z«’;) g for every
¥ € cov(Y).
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Proof. Consider X and Y as closed sets in Q\ {pt}. Let f, g : @\ {pt} — Q\{pt}
be proper maps extending f and g, respectively. We have a closed neighborhood N
of Yin @\ {pt} and ¥ = {V | V € cov(Y)} € cov(N) such that VNY = V for each
V € cov(Y)and Von---NV; #£ Bimplies Von---N Vi # Oforany Vg, -+, Vi € ¥,
hence the nerve K,, can be identified with K. Letr = yy 0 ¢35 : N — Y. Recall
that each V € ¥ is relatively compact in N. Since r(V) C w(V®) C V for each
V € ¥, ris ¥-continuous and ¥ -close to idy, hence it is proper. It should be also
noticed that r|¥ is ¥ -close to idy.

By [12], there exists an n-invertible map £ : u" — @, where u" is the n-
dimensional universal Menger compactum. Since dim & ~!1(X) < n, fE|EH(X) ~
gElE1(X)in Y. SinceintN isan ANR, £ ~!(X) has a neighborhood Win u"\ & ~!(pt)
such that fE|W ~, §€|W in intN.

Let M be an open neighborhood of X in @ \ {pt} and %’ € cov(M) such that
E-Y(M) C Wand f(st%'), g(st%') < ¥. Note that rf(st%'), rg(st%') < V.
Since M is an ANR, %' has a Lefschetz refinement %" € cov(M). Choose
% € cov(X) so that st% < %". Then u/a;/|K.(,78) : Kg) — X is a partial Z"'-
realization of K4 , which extends to a full %’'-realization h : K9, — M. Observe
that h is st %’-close to w4, hence it is proper. Since & is n-invertible, we have a

proper map / : KE;) — E7Y(M) C W such that Eh = th(@;), whence
fh|Kq/ = fEh~, gEh = gh|K% in N.

Therefore, rfh[K rgth%") in?.
On the other hand since h is st % '-close to yz and rf(st%') < ¥, we have

’f’lirfll/% :rqu/ gfll/%,

hence rfh Zp fu/o;/ Slmllarly rgh Np gy« . Consequently, f![/%|K% Ip

gu/a)/|K thatls,f ~p g O

For each ¥ -continuous function f : X — Y, we have some % € cov(X) such
that f(%) < ¥. Then, foreachU € % = Kg), choosing o(U) € ¥ = Kf,e) so that
f(U) € 9(U), we can obtain a simplicial map ¢ : K3 — K. Such a simplicial
map o is said to be associated with f. For every %' < %, (p¢gj' : Kgr — Ky is
also associated with f. In fact, for each U € %", since U C 9% (U) € %, we have
FU) € £(0F' () € 0(63 ' (U)):

LEMMA38. Letf:X — YbeaV- continuous Sfunction and ¢ : Kq/ — Ky

a simplicial map associated with f. Then, (pd)q/ Oy f and Yy Qo = f Hence,
if f is proper then so is Q.

Proof. For each U € %, 992 (U) C @(U°) C ¢o(U)° and ¢4 f(U) C
¢vo(U) C @(U)°, which implies ¢poo z ¢y f. Moreover, yy 9oz (U) C
vy (e(U)°) C o(U), hence yy 0o zf, I
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In case Y is an ANR, we have the following converse of Lemma 3.7.

Y,
LEMMA 3.9. IncaseY is an ANR, there exists ¥y € cov(Y) such that f (,5; ) g
implies f :np gand f 1’; g implies f =, g for any proper maps f, g : X — Y from
an arbitrary space X.
Proof. Since Y is an ANR, there exists ¥ € cov(Y) such that any two st 75-

close proper maps from an arbitrary space to Y are proerly homotopic. Choose
Y, ¥, ¥y € cov(Y)sothat ¥ € cov(Y)is astar-refinement of 5, st ¥ is a Lefschetz
refinement of 71 and 73 € cov(Y) is a star-refinement of ¥. Since yy ]KE,(E) is partial
st ¥ -realization of Ky, it extends to a full ¥-realization g : Ky — Y. Observe that

q(7°) < st ¥ < ¥ and q¢¥ % idy, hence g¢v =, idy.

Let f, g : X — Y be proper maps such that f (’3":) g, thatis, f(%), (%) < %%
and flpa;/|K(%") z’; gwq,lKﬁZ) for some % € cov(X). Then we have a proper
st¥y-continuous function H : K(q'}) x [0, 1] — ¥ such that Hy = fy|KY, Hy =
gwalKﬁ;) and H|W is ¥y-continuous for some neighborhood W of K(q;) x {0, 1}
in Kﬁ;) x [0,1]. Since H is ¥-continuous, there is % € cov(KLi'/') x [0, 1]) and
a simplicial map H' : Ky — Ky associated with H, whence ¢y H z H oy .
Then we have a proper homotopy H = qH'¢w : Kﬁz'}) x [0, 1] — Y such that
gz g9y H, hence Hy % q¢1/fl[/6y|K£Z) and A; 2 q¢1rgwq/|K£;). Leth:Z— X
be a proper map from a space Z with dimZ < n. Then we have a proper map
.z - K(qj) such that ¢4 h Y W, Since f(%) < ¥ and q¢y 2 4y, it
follows that fh Z fug oah Z fuah' B qoy fuah’ = qoyHoh' 2 Hyl', hence
fh st Hoh', which implies that fh ~, Hol'. Similarly, we have gh ~, H}'.
Consequently, fh ~, gh.

In the above, by replacing Ki,j) with X, we can show that f Z; gimplies f ~, g.
O

The following is obvious:

LEMMA 3.10. Leth : Y — Z be a function such that h(¥) < W, where

¥ € cov(Y) and W € cov(Z). Then, f (Zf;) g implies hf (ZI«’;) hg for any two

¥V -continuous functions f,g : X — Y. O
The following is the n-homotopy version of Lemma 3.4.

LEMMA 3.11. Let ¥ € cov(Y) and f, g : X — Y be ¥'-continuous functions.

Then, f (Z’;) & implies that there is some U € cov(X) such that f(% ), g(%) <V

v, . , .
and fh (~;) gh for any proper % -continuous function h : Z — X of an arbitrary
space Z.
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Proof. There exists some % € cov(X) such that f(%),g(%) < ¥ and

fy/%|K_<,£) Z/p gu/%|K£Z). For a proper % -continuous function 1 : Z — X, let

(n)
» x
and ¢ is continuous, it follows from Lemma 3.4 that f I[/%(p]K;Z) ~p glp«y(le&,").

¢ : Ky — Kg be a simplicial map associated with h. Since (p(K;",)) C K

On the other hand, wao @¢w % h by Lemma 3.8. Since ¢y Wy v idKW and
o(#°) < %°, it follows that y4 @ % Wy @Oy oy z hyy. Then we have

¥ v n) v n
fhyy ~p fwa @ and ghyy ~, gwa @. Therefore, fhu/#f]K;,) ~p ghu/y,/lK(,,,).
O

In case n = oc, Lemma 3.11 is none other than Lemma 3.4.

4. Proper proximate nets

A proper proximate net (f;) : X — Y is a net of (non-continuous) proper
functions f; : X — Y indexed by a directed set A = (A, <) such that, for each
¥ € cov(Y), there exists A9 € A such that f;, ,Z,/p fi forall A > Ay, whence f; is
¥ -continuous for all A > Aq. Itis said that (f; ) is properly homotopic to a proper
proximate net (gs) : X — Y indexed by a directed set A (denoted by (f1) ~, (gs))

provided, for each ¥ € cov(Y), there exist Ay € A and & € A such that f; pr g5
forall A > Ap and 6§ > &. Clearly, the relation ~, among proper proximate nets
from X to Y is an equivalence relation. The equivalence class of a proper proximate
net (f3) : X — Y is denoted by [(f3 )], and called the proper homotopy class of (f3 ).
The collection of all proper homotopy classes of proper proximate nets is denoted
by [X, ¥]ppn. Every propermap f : X — Y can be considered a proper proximate net
as the net consisting of only f indexed by itself.

A proper proximate Cech net (fy) : X — Y is a net of proper ¥ -continuous

functions fy: X — Y indexed by the directed set cov(Y) such that fy Zp fy for
¥ < ¥ € cov(Y), where cov(Y) has the order [¥ < ¥’ = [¥' < ¥]. Thena
proper proximate Cech net is clearly a proper proximate net.

LEMMA 4.1. Any proper proximate net is properly homotopic to a proper
proximate Cech net.
Proof. Let (f3) : X — Y be a proper proximate net. For each ¥ € cov(Y),

choose A (%) € A so that f; Ip fupry forall A > A(¥), and let fy = fi(»). Then
for ¥' < ¥ € cov(Y), we have A 2 A(¥), A(¥"), whence

4 !
fv = faewy ~p fa ~p fapwry = fyr

Therefore, (fy) : X — Y is a proper proximate Cech net which is properly homotopic
to (f3)- U
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LEMMA 4.2. For any two proper proximate Cech nets (fv), (gv) : X — Y,
(fr) ~p (g¥) ifand only if fy rz/p gy foreach ¥ € cov(Y).
Proof. The “if” part is trivial. To see the “only if” part, assume that (fy) ~,

(g). Foreach ¥ € cov(Y), we have 71, %3 € Q(Y) such that fy l/p gn for all
¥’ < ¥ and ¥" < 7. By choose % < ¥, ¥, %, we have

¥ v ¥
‘ fv ~p [% ~p 8% ~p 8¥
because (fy') and (g ) are proper proximate Cech nets. O

We shall define the composition [X, Y]ppn X [Y, Z]ppn — [X, Z]ppn- By Lemma
4.1, we may only consider proper proximate Cech nets.

LEMMA 43. Let (fy),(fy) : X — Y and (gw), (') : Y — Z be
proper proximate Cech nets, and g,g' : cov(Z) — cov(Y) be functions so that
gw(8(#)), 8 (& (W) < W for each W € cov(Z). Then, (1) (gw fyw))
is a proper proximate Cech net; (2) (fy) =~, (fy) and (gw) ~p (g% ) imply
(gw foow)) ~p (glﬂffg"(ﬁ/))'

Proof. (1): Each gy fyw) : X — Z is obviously a proper % -continuous
function. Foreach #' < # € cov(Z), gw Zla/p gw'. By Lemma 3.4, we can obtain
YV < g(#),g(#') such that gy (¥), gy (¥) < # and gyh Zf; gy h for any
proper ¥ -continuous function k& : X — Y, whence g fy Zp gy fv. Since (fy)

is a proper proximate Cech net, we have Sfeow) gSZf;) fv. Since gw(g(#)) < ¥, it

follows that gy fo(w) ’Z{/p 8w fy. Similarly, gy forwn ,’\,’/p g fy. Consequently,
»
we have gwlgwy ~p g.,,,,fg(,,//),

(2): Foreach # € cov(Z), gw Z{/p g%y by Lemma4.2. By Lemma 3.4, we can
choose ¥ < g(#'), g'(W) so that gy (¥), g4y (V') < # and gwh 2, gl h for any
proper ¥-continuous function & : X — Y, whence gy fy Z’; 8y fy. Since fy l/,,
fy by Lemma 4.2, we have gl fy ’Z{/p &'y fy by Lemma 3.3. Therefore gy fv Z,’;
8y fy. On the other hand, since (g fy(w)) and (g%, fé,(,,,)) are proper proximate
Cech nets, we have gy fo#) Zf; gwfy and gl j;f,(,,,) fzvlp 8% fy. Consequently,

v
gwfaw) ~p 8wy wy o

Then we can define [(g#)]p © [(f¥)], = [(8#fy»))]p Dy using a function
g : cov(Z) — cov(Y) such that gy (g(#')) < # for every # € cov(Z). In case
fr =idy : ¥ — ¥, we have [(fy)]p = [(idp)], and [(g5)], o [(F)]p = [(e3)]p-
Incase gy = idy : ¥ — Y, we have [(g#)], = [(idy)], and [(g#w)], o [(f»)], =
[(f¥)]p by using g = ideov(r)- It is straightforward to see that the composition is
associative. The proof is left to the readers. Thus we obtain the category &7, of
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locally compact separable metrizable spaces and proper homotopy classes of proper
proximate nets.

. v (¥ . " .

Replacing ~, by ~Z in the definition of a proper proximate net and a proper
proximate Cech net, a proper n-proximate net and a proper n-proximate Cech net
can be defined. The proper n-homotopy (f3) < » (8s) between proper n-proximate
nets can be also defined by the same replacement. Similarly to Lemmas 4.1 and 4.2,
we have the following:

LEMMA 4.4. Any proper n-proximate net is properly n-homotopic to a proper
n-proximate Cech net. 0O

LEMMA 4.5. For any two proper n-proximate Cech nets (fy), (gv) : X — Y,

(fr) :n,, (gv) ifand only if fy (Z«':) gy foreach ¥ € cov(Y). O

The proper n-homotopy class of a proper n-proximate net (f3) : X — Y is
denoted by [(f3)];, and the collection of all proper n-homotopy classes of proper 7-
proximate nets is denoted by [X, ¥],,. All the same as the composition [X, Y]ppn X
[Y. Z) ppn — [X, Z] ,pn but using Lemma 3.11 instead of Lemma 3.4, we can defined
the composition [X, Y1, x [¥, Z]} ,, — [X, Z]},,, by using proper n-proximate Cech
nets as follows: [(g#)]5 o ()]} = [(gw few))]}» Where g : cov(Z) — cov(Y)
is a function such that g5 (g(%#")) < # for every #* € cov(Z). Thus we obtain
the category &2, of locally compact separable metrizable spaces proper n-homotopy

classes of proper n-proximate nets.

5. The proper n-shape theory and the Cech expansion

Let jf;” be the category whose objects are locally compact separable metrizable
spaces and whose morphisms are the proper z2-homotopy classes of proper maps. By
J€,"Pol, we denote the full subcategory of " whose objects are spaces having the
proper n-homotopy classes of polyhedra. The proper n-shape category % is defined
as the category whose objects are locally compact spaces and whose morphisms from
X to Y are natural transformations from [¥, —]} to [X, —|7 called a proper n-shaping
(cf. [3]), where [X, —]j, is the functor from 7¢,"Pol to the category of sets.

Let p : X — X be a morphism in the pro-category pro-J¢," from a locally
compact space X to an inverse system X in jf,’,"Pdl. We call p is an J¢,;'Pol-
expansion of X if it satisfies the following:

e for any inverse system Y in J¢;"Pol and any morphism q : X — Y in pro-5¢
from X to Y, there exists a unique morphism f : X — Y in £ such that
q = fp.
By [16, Ch. §2, Theorem 1], p = (pz)aen : X — X = (X, pt , A) is an JPol-
expansion of X if and only if the following conditions are satisfied:
1. for any locally compact polyhedron P and any proper map f : X — P, there

exist A € A and a proper map ¢ : X; — P such that f ép qpi;
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2. for any locally compact polyhedron P and any two proper maps g, /i : X; — P
satisfying gpa &p hp,, there exists A’ > A such that gpf{' 2, lzpﬁ:l.
The following is Theorem 2.1 in [18]:

THEOREM 5.1.  The category J€,'Pol is dense in J¢', that is, every locally
compact space X admits an J;"Pol-expansion.

Due to [16, Ch. 1, §2], this theorem guarantees the shape theory for the pair
(), J'Pol). By [16, Ch. I, §2, Theorem 7], the shape category defined to the
pair (J¢", J,'Pol) is isomorphic to the proper n-shape category ., defined as the
above.

We call C(X) = (K#, 9. cov(X)) the Cech system for X, where cov(X) is
directed by the order {% £ 7] = [% > ¥/]. Then [C(X)]" = (K#. [¢5 ], cov(X))
isaninverse system in /%" and ¢x = ([¢#]}) z ccovixy 1 X — [C(X)]p is a morphism
in pro-J¢,', where ¢ : X — Ky is a canonical map. As mentioned in Introduction,
the same approach as in [16] cannot be available to show the following theorem. We
apply the results in §3 to prove the following theorem.

THEOREMS.2. Foreverylocally compact space X, the morphism ¢y in pro-J¢;
is an J¢,'Pol-expansion of X, which is called the Cech expansion of X.

Proof. (1): Let f : X — P be a proper map from X to a locally compact
polyhedron P. Since P is a locally compact ANR, there exists ¥* € cov(P) such that
any two 7 -close proper maps from an arbitrary space to P are proper homotopic.
Choose 71, 75 € cov(P) so that 71 is a star-refinement of 7 and st¥% is a Lefschetz
refinement of 7{. Let % € cov(X) be a refinement of f~!(¥3). Since fu/uﬂKf?g’
is a partial st¥a- realization of K4, it extends to a full 7] realization qg:Ky — P
Smcef t fway ¢% = qrpuy, we have f ~, qoz, hencef ~, g0 .

(2): Letg, i : Ko — P be two proper maps from K to a locally compact
polyhedron P such that g¢ ép h¢ . Since Pis a locally compact ANR, there exists
%p € cov(P) satisfying Lemma 3.9. Let K, be a subdivision of K such that the
star-covering ¢ = {St(v, K%, ) | v € (K% )\?} refines both g~ (%p) and h=' (Zp).
Leti: Kj, — K2 be a simplicial approximation of the identity. Then gi ~, g
and i 2, h. Let %' € cov(X) be a refinement of ¢.,'(¢"). Then there exists a
simplicial mapp: Ky — K’ such that ¢f”1 ~, ip. By the assumption, there exists

> %' such that g0 Wy ~ Iz¢«y wy by Lemma 3.7. Since (Du?/ ~, 0% "o

J . ”IO
8ipdu vy ~p hip¢g 1 yy. Since ¢, = ¢%'W1',glp¢u;,: z 8ip¢y Yy and
. U . . N ) B 4
/upq)%, = /llpdi«yrl[!y. Thus, gd)% ::Z gzpd),’y, ~: /11p¢,’”, ~n /z¢%, which
implies that g¢;, = ho,, ic., [g]h[02,]n = [A]2[05 1% a
By the above theorem, we can describe & by using Cech systems. A proper

n-morphism (fy, f) : C(X) — C(¥) from C(X) to C(Y) consists of a function
f i cov(Y) — cov(X) and proper maps fy : K¢yy — Ky, ¥ € cov(Y), satisfying
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the condition: for each ¥’ < ¥ € cov(Y) there is some % € cov(X) such
that f7/¢f?(l,,) :"p ¢f,’,/’ f1~¢f?(/,,,), which is equivalent to the condition: fy@sy, ':"p
¢;’;I fy10g51y. The composition of proper n-morphisms (fy, f) : C(x) — C(v)
and (g, g) : C(¥) — C(Z) is defined by (ewfow) f8) : C(x) — C(2). Two
proper n-morphisms (fy, f), (3, ) : C(X) — C(Y) are properly n-homotopic
to each others provided for each ¥ € cov(Y) there is some % € cov(X) such
that < f(¥), f'(¥) and fyd)f“?(/,,) :"lp f!,/¢;,”(,,), which is equivalent to the
condition: fy @) :",, ﬂ,/tpfz(y). It should be noted that every proper n-morphism
(fr. f) : C(X) — C(Y) is properly n-homotopic to a proper n-morphism (£, f') :
C(x) — C(¥) such that each f}, : K (yy — Ky is simplicial. In fact, for each
fv : Kgyy = Ky, we have % < f(7) (say f'(¥) = %) and a simplicial map
fv + Ko — Ky such that f,, ¢4 is contiguous (hence properly homotopic) to
fr9s»)- By [(fr, f)];, we denote the proper n-homotopy class of a proper n-
morphism (fy, f) : C(X) — C(¥), which is a proper n-shape morphism from X to
Y. Thus we have the proper n-shape category .

6. A categorical isomorphism

In this section, we construct a categorical isomorphism 7 : &7 — Z,. We
start to show the following:

LEMMA 6.1.  Let (fy, f), (fy. f') : C(X) — C(Y) be proper n-morphisms.
Then,
1. (wy fys»)) is a proper n-proximate Cech net from X to Y;

4 . , n
2. (wvfrorr) ~, (Wy fy9p(v)) ifand only if (fv, f) =p (fy, f')-
Proof. (1): First note that each yy fy ¢7») : X — Y is a proper ¥'-continuous

function. For 7' < 7, since fydsv) :'3,, ¢;’fl Sfy1 951y, it follows from Lemmas
3.7 and 3.10 that

Yy fr o) (Z}?) I Opv1) Z Yy fyr Os(p1)-
Then (yy fy ¢f(»)) is a proper n-proximate Cech net from X to Y.

(2): First, assume that (fy, f) ':_7,, (fy, ['), that is, fydsy) :"p fy0p 9y, for
each 7 € cov(Y). It follows from Lemmas 3.7 and 3.10 that yy fy ¢ (Z’:)
Wy fy0p (v, for each ¥ € cov(Y), hence (yy fy dsv)) é'p (Wy fyopm 7))

Conversely, assume that (¥ fy @s(»)) “_':p (wy fy @5 (v)), thatis, Wy fr ¢s(v)
(1:’;,1) vy fy s (v for each ¥ € cov(Y). By Lemma 3.9, we have %" € cov(Ky)

”/
such that # < #° and g (~’:) g’ implies g :"p g for any proper maps g, g' : X —
Ky . Let K’ be asubdivision of Ky such that the star of each vertex of X’ is contained
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in some member of #'. Then we have ¥’ € cov(Y) and a simplicial isomorphism

!
h : Kyr — K' suchthat ¥' < ¥ and h ~, ¢J,. Since Wy fy'9s1 (L},")

Yyt [y 9p vy and hgyi (V') < R(V'°) < ¥, we have
14 (¥,n) V4
hfy1Ssvry = hy1 Wy fy10pny ~p hoy1 Wy fr 91y = hf;/'d’f’("l/’)v

(#
hence Afy1¢pyry ~p hf,,,¢f, y1), which implies hfy:@sy1y =p /zf,,(pf:(,:
Then it follows that
n ! n
FrO53y =p 0% o531y 2p hfyrSsiar) =p fy (91
! n
~p 07 fyi9p vy =p frOp3n)s

which implies that fy @y} =, fi,01(x). Therefore, (fr, f) =, (fi, f'). O

By the above lemma, we can define n : & — £ by n(X) = X for each
object X of ;' and n([(f», /)I}) = [(¥» f»¢s»)]}, for each proper n-morphism
(fr, f) : C(X) — C(Y).

LEMMA 6.2. 1: 5 — 27 is a functor.

Proof. 1In case f = idcov(x) and fgy = idk,, for each % ¢ cov(X), since

% . .

W?/f"?/d)f(%) = Yo ¢4 = idx, we have n([(f7’7 f)];) = [(ldx)] [X Y]ppn

Let (fy, f) @ C(X) — C(Y) and (g, g) : C(¥Y) — C(Z) be proper n-
morphisms. It can be assumed that each gy is simplicial. We have to show
that

n([(gw )1, HIp) = n{(g, NpIn[(f», HIp).
Observe that
n([(ew, )5, N]7) = n([(gw feowy, F8)15) = [(Wwgw foow)breiw))ps
n([(gw, &)1p)n([(F», NH]}) = [(WWgW(Dg(‘///))]"[(W"Vf‘l/d’f )y
= [(wwew Sy Wg () fg () Osig"(9)) )] oo

where g’ : cov(Z) — cov(Y) is a function such that wy;/gyy(pg(,,/)(g (#)) < ¥ for
each W € cov(Z). We may assume that g’(#") < g(#) for each # € cov(Z).

Since each V € g'(#’) is contained in (bg(%)( V) € g(#) and ¢§(I§%) : Ky —
K, (w) is simplicial, we have

Bem V) (V°) C by (V) C bym) (855 (V) C 05 (vV)° = o5 00 (v°),

which implies that @g( ) W () s ¢g Smcegy;/ is sxmphclal W gw (g(#)°)

< yw(W°) < W, hence Yy gw Ogw) lyg:(y,/ l[/y,/g-,,/(pg . Thus we have

W
W 8w Ogw) W i\ fo ) bt ) = W/gwﬁm Se o) 95g #
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1
On the other hand, 0§ " fy () byt () =5 fow) 9yt Which implies that

"(#) (#.n)
Yw 8w O Sy w1950 w)) ~p YW EW Fa ) Osiaw))
by Lemma 3.10. Consequently,

(# )
YUw gw Sg(w )Wy ) Jg )05 (w)) ~p WwEW Syow)brigw))-
This completes the proof. O

THEOREM 6.3. The functor 0 : S — &P} is a categorical isomorphism.

Proof. By Lemma 6.1(2), n gives an injection between morphisms of .} and
ones of &7). Then it is left to show that 7 gives a surjection between morphisms of
&, and ones of #7].

To this end, let (fy) : X — Y be a proper n-proximate Cech net. By Lemma

3.9, we have #y € cov(Ky), ¥ € cov(Y), such that #y < #° and g (Z’:) g

implies g ~ » & for any propermaps g, g’ : X — K. Let K’ be a subdivision of K
such that the star at each vertex of K7, is contained in some member of #%. There
exists 7 € cov(Y) with a simplicial isomorphism hy : K3 — K', suchthat ¥ < ¥
and hy =, ¢;i,/. We have ¢ : cov(Y) — cov(X) such that £ (¢(¥#)) < ¥. For each
¥ € cov(Y), let @y : Ky(y) — K3 be a simplicial map associated with f3. Then
(¢j,/(p~;/, ) : C(X) — C(Y) is a proper n-morphism. In fact, for ¥’ < ¥, choose

Y < V', V. Let @y : Ko — Ky, be a simplicial map associated with ¢, fy;. Since
hy (7°) < Wy and f5, %3 fr
7 . (W5 ,n)
03 03 bo() ~p hy @y bo(¥) Z hy o3 f3 '1/17 hy 63 f
2 .
S4 h1/¢,-’f’¢%f% =4 h1/¢.;1,/°¢o¢41/ ~p 65 Poda,

hence ¢;’-,’ Qv dp(¥) :’JP ¢;’,/° Qod . Similarly, we have ¢;’~,’, Qv Pp(v) :"l,, ¢,’,/°, Podu,
hence

07 031 0310p(31) =p 07 0L P02 =y 07 Ov Po(3)-

R 3 ¥ Y.n
Since ¥y ¢ @y Oo(v) z Vi 0y be(v) z fy (~p) Sy for each ¥ € cov(Y), we
have ; )
1([(67 0%, ©)15) = [(Wr b5 05 do())]3 = [(F2)]5-
O

This completes the proof.

7. Approach by using multi-valued maps

In this section, we consider proper upper multi-valued functions instead of
non-continuous functions.
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Let F : X — Y be a multi-valued function. For A C X, we denote F(A) =
Urea F(x) C Y. Amulti-valued function F : X — Y is called upper semi-continuous
(u.s.c.) if for each neighborhood U of F(x) there exists a neighborhood V of x in X
such that F(V) C U. For simplicity, F is here called a &-function if F is u.s.c. and
F(x) # 0 is compact for each x € X.

LEMMA 7.1. LetF:X — Yand G : Y — Z be R-functions. Then GF is also
a K-function.

Proof Letx € X and let # be an open cover of GF(x) in Z, i.e., GF(x) =
G(F(x)) C U W . For each y € F(x), since G(y) is compact, G(y) is covered by
finite Wy, -+, Wj(,) € #. Since G is u:s.c., y has an open neighborhood Vy in ¥

such that G(V,) C U, ] ) W? . Because of compactness of F(x), F(x) C U, 1 Vy; for
some yi, - - -,y € F(x), whence

1 k)j)

GF(x) € G(Uj V>J)CUG ) U U w

j=1 i=1

Thus GF(x) is compact. Moreover, since F is u.s.c., we have an open neighborhood
U of x in X such that F(U) C UJI-:l Vy,;- Then GF(U) C |J#'. By the arbitrariness
of ¥, this implies that GF is u.s.c. O

A A-function F : X — Y is proper if for any compact set D C Y there is a
compact set C C X such that F(X \ C) C Y\ D. For ¥ € cov(Y), F is said to be
¥ -small if there exists % € cov(X) such that F(%) = {F({U) |U € %} < 7.
Two multi-valued functions F, G : X — Y are ¥-close if F(x) C st(G(x), ¥) and
G(x) C st(F(x), ¥) for each x € X. Lemma 3.1 is valid for &-functions.

LEMMA 7.2. A R-function F : X — Y is proper if it is V-close to a proper
R-function G : X — Y for some ¥ € cov(Y).

Proof. For any compact set D C Y, let D' be the closure of st(D, ¥) in Y.
Then D' is compact. Choose a compact set C C X so that G(X \ C) C Y\ D'.
For each x € X \ C, G(x) Nst(D, ¥) = 0, hence st(G(x), ¥ ) N D = §. Since
F(x) C st(G(x), ¥), we have F(x) N D = 0. Therefore, F(X\ C) C Y\ D. O

Two ¥ -small proper &-functions F, G : X — Y are properly ¥ -homotopic
to each others (written by F Z/p G) if there is a #-small proper &-function H :
X x [0,1] — Y such that Hy = F and H, = G, where H,(x) = H(x,t). It is easy

to see that fl/,, is an equivalence relation among ¥-small proper u.s.c. &-functions
because of upper semi-continuity.? We call H a proper ¥-small &-homotopy from
FtoG.

Corresponding to Lemmas 3.2, 3.3 and 3.4, we have the following:

2If the upper semi-continuity is not assumed, then we have to define similarly to §3, i.e., in the
above, H is st 7"-small and H|W is ¥"-small for some neighborhood W of X x {0, 1} in X x [0, 1].
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LEMMA 7.3. For any two proper ¥ -small &-functions F,G : X — Y, F L6
implies F :«/p G.
Proof. Define H: X x [0,1] — Y by Hp = Fand H, = G forr > 0. Since

F Z G, for each x € X there exists V € ¥ such that F(x) UG(x) C V. Since
F and G are u.s.c., there exist open neighborhoods U; and U, of x in X such that
F(Uy) C Vand G(U,) C V. Then H((U; N U2) x [0, 1]) C V, which implies that
H is a proper ¥'-small &-homotopy from F to G. ad

LEMMA 7.4. Let # € cov(Z) and G, G’ : Y — Z be proper ¥ -small &-

Sunctions with G Zf;, G'. Then there exists ¥ € cov(Y) such that GF Zp G'F
for any proper ¥ -small &-functions F, F' : X — Y of an arbitrary space X with
FZ,F.

Proof. Let H' : Y x [0, 1] — Z be a proper # -small &-homotopy from G to
G’'. Since [0, 1] is compact, we can choose ¥ € cov(Y) so that for each V € 7/,
there are 0 = 1§ < #f < -+ < 1}y, = 1 such that each H'(V x [/}, 1]) is
contained in some member of . Let H' : X x [0,1] — Y be a proper ¥-
small f-homotopy from F and F'. We define " : X x [0,1] — Y x [0, 1] by
H"(x,t) = H"(x) x {t}. Then A" is clearly a proper &-function. Thus we have
a proper R-function H = H'A" : X x [0,1] — Z such that H, = H]H,' for each
t € [0, 1], hence Hy = GF and H; = G'F'. Choose % € cov(X) so that, for each
U€ %, thereare0 = 5§ <s{ <--- <s¥, = lsuchthateach H"(U x [s{_, 57'])
is contained in some V € ¥. Then it can be assumed that each [s”,, 5] is contained

—10 5
in some [t} |, ¢/], whence each H(U x [s¥ |, s¥]) is contained in in some member
of #. Thus H is % -small. We can conclude GF Zf;, G'F'. a

For % € cov(X), let {Fy | U € %} be a closed shrinking of % (i.e.,
Uyea Fv =X, Fyisclosedin X and Fy C U foreach U € % ) such that, for each
Ut~ Uy € %, Ni=y Fu # 0 if and only if _, U # 0. (Recall we assume that
each U € % isnotan empty set.) We define a multi-valued function ¥4 : K — X
by Yo (x) = Nyesw Fu C Nyeoo U where o is the carrier of x in K (ie., 0 is

the simplex of K¢ with x € 8‘)

LEMMA 7.5. Yo : Ko — X is a proper % -small K-function. In fact,
Wo (U°) C U foreachU € %, hence Yo (% °) < % .

Proof. Consider the graph Gr'¥ ¢, of Y :

GrYey = U{S' X Nyeoo Fu | o is a simplex of K }.

It is easy to see that Gr'¥¢ is closed in K9 x X, which implies that ¥4 is u.s.c.
Hence VW is a R-function.

For each compactum D C X, let % = {U € % | UND # 0}. Since
Yp is finite, C = UUG%D St(U, K# ) is compact. For each x € Ky \ C, let
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o is the carrier of x in K¢. Since UN D = @ for each U € 0%, we have
Ya (x) = Nyeoo Fu C Nyeow U C X\ D, which implies that ¥ is proper.

Let U € % . Foreach simplex o in K¢ with U € 6, ¥q (5) C Nveoo Fv C
Fy C U. Since U° = U{cor | U € 69}, we have ¥4 (U°) C U. O

LEMMA 7.6. For each % € cov(X), Yo ¢ A idy and ¢ ¥ v idg,, . If
U' < U then ‘Fq/q):’k/’ % Yor.

Proof. SinceWo 99, (U) C W4 (U°) C UforeachU € % ,wehave ¥y ¢ z

o

idy. Since ¢V (U°) C ¢2(U) C U° for each U € %, we have ¢5 Y% z
id,, . Foreach U € u',

Yo (U°) C U C 0L (U) and P 0% (U°) C Yo (0% (U)°) C 0Z (V).

Then ¥y 0% £W,.. O

Let ¥ € cov(Y) and n € NU {oo}. Two proper ¥-small f-functions F, G :
)

X — Y are properly ¥ -small n-homotopic (written by F (Z’; G) if there is some
% € cov(X) such that F(%), G(%) < ¥ and F¥ |K) 2, G¥o K (F¥o <,
GY4 in case n = o0). Then F‘I’%:[Kg), l/p G‘Pa,,leg), forevery ' < % €
cov(X). In fact, since Yo du,? ' le Yo and ¢f’y/ " is continuous, it follows that

¥ ! v ! v
F¥o K5, 2, F¥2 0% |KS), 2, G¥2 0% |KS) 2, G¥apr K.

. . (Ya) . .
It is easy to see that the relation '~ is an equivalence relation on the set of proper
¥-small R-functions from X to Y.
Corresponding to Lemma 3.6, we have the following:

LEMMA 7.7. For any proper ¥ -small &-functions F,G: X —» Y, F Zp Gif
¥,00 L. 7,
andonly if F ( ~p 'G. Hence, F fz/p G implies F (~:) G foreveryn € N

Proof. First, assume F ,Z/p G. By Lemma 7.4, we have % € cov(X) such that

F¥% Zp GY, thatis, F (1;,;0) G. Conversely, assume F (1’/\,;0) G. Choose % €

cov(X) so that then F(%), G(%) < ¥ and F¥o %, G¥q. Then F¥a 02 ~,
GY¥ % ¢o by Lemma 7.4. Since ¥4 ¢ z/p idy by Lemmas 7.6 and 7.3, it follows

that F <, F¥y 00y <, G¥ar by ~p G. O
For each #'-small &-function F : X — Y, we define similarly simplicial map

¢ : K9 — Ky associated with F, that is, f(U) C ¢(U) € ¥ = ng). Similarly to
Lemma 3.8, we have
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LEMMA 7.8. Let F: X — Y be a ¥V -small &-function and ¢ : K9y — Ky a
simplicial map associated with F. Then, Q¢4 j oy F and ¥y Qoo ZF Hence,
if F is proper then so is ¢. [

Corresponding to Lemmas 3.10 and 3.11, we have the following:

LEMMA 7.9. Let G,G' : Y — Z be ¥ -small Ciﬁmcnons wtth G ~ G’
where W € cov(Z). Then there exists ¥ € cov(Y) such that Gr X ~p e F ! for any
proper ¥ -small R-functions F, F' : X — Y of an arbitrary space X with F ~p F’

Proof. Choose ¥ € cov(Y) so that F(¥),G(¥) < ¥ and G¥v K" Z,
Gl\Py/]KE;). For two proper #-small &-functions F, F' : X — Y, suppose that
F(%),F(%) < ¥ and F¥q|KY 2, F'¥Wq K. Let ¢ : Kz — Ky be a

simplicial map associated with F. Since ¢(K£;)) C KE;,'), it follows from Lemmas
7.4 and 7.3 that

ny W ) 4
GF¥a Ky 2, G¥yooa Yo Ky %, G'¥yoou¥e Ky

2, GF¥y Ky X, GF'Ya K.

The lemma is proved. O

A proper Cech (n-)multi-net (Fy) : X — Y is a net of proper ¥-small &-
functions Fy X — Y indexed by the directed set cov(Y) such that Fy '1/,,

Fy: (Fy ~ zn Fyi) for 7' < ¥ € cov(Y). Two proper Cech (n-)multi-nets

(v
(Fy),(Gy) : X — Y are properly (n-)homotopic if Fy ~ Gy (Fy ~: Gy)

for each ¥ € cov(Y). By [(F¥)], ([(F¥)]}), we denote the propcr( -)homotopy
classes of proper Cech (n-)multi-nets. Similarly to Section 4, we can discuss by
using (n-)multi-nets indexed by arbitrary directed sets, but for simplicity, we use
only Cech (n-)multi-nets which are indexed by open covers.

LEMMA 7.10. Let (Fy),(Fy) : X — Y and (Gy),(GY) : ¥ — Z
be proper Cech multi-nets and g,g' : cov(Z) — cov(Y) functions such that
Gw(g(#)), Gy (g (#)) < W for each # € cov(Z). Then, (1) (GyFgw))
is a proper Cech multi-net; (2) (Fy) =, (F\y) and (Gy) ~, (GYy) imply
(GwFyw)) =p (G F, g7 )-

Proof. (1): By Lemma 7.1, each Gy Fy(w) is a proper &-function. For each

W' < W e COV(Z), Gy z{/p Gy//l. Since Fg(y//) SZ// Fy E'Z{;) F 7,/1) for each

Y < g(#),g(W"), it follows from by Lemma 7.4 that Gy Fy( ) ~ Gy Fy Z/

Gy//:Fg(W).

(2): Foreach # € cov(Z), Gy %, p Gy . Since Fy() W,/,) Fy g(’zt;) Fy "~

¥ v
F yny, it follows from Lemma 7.4 that Gy Fyw) ~p GyFy ~, GyFy ~,
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! ’
,,,Fg(,,,,). a

For any proper Cech multi-net (Gy) : ¥ — Zand ¥ € cov(Z), since each Gy
is u.s.c., there exists a function g : cov(Z) — cov(Y) such that Gy (g(#)) < 7.
By Lemma 7.10, we can define [(Gw )], o [(F¥)]p, = [(GwFg»))]p- Thus we
obtain the category .4, of locally compact separable metrizable space and proper
homotopy classes of proper Cech multi-nets.

¥

Replacing 2 » by ¢ Z ), we can define V//,;' of locally compact separable metriz-
able space and proper n-homotopy classes of proper Cech n-multi-nets.

We can also define ' : #}' — . similar to 7 by 7'(X) = X for each
object X of & and n'([(fy, £)]3) = [(¥ fy $5())]}, for each proper n-morphism
(fy, f) : C(X) — C(¥). By the same arguments of Section 5, we have the following

THEOREM 7.11. 7' : Sy — M is a categorical isomorphism. U

8. Remarks on the n-shape theory

In this section, spaces are not assumed to be locally compact.

Let 5" be the n-homotopy category whose objects are spaces in a suitable class
(here is considered the class of separable metrizable spaces or the class of compact
Hausdorff spaces). By ##"Pol, we denote the full subcategory of J#" whose objects
are spaces having the n-homotopy classes of polyhedra. The n-shape category "
is defined as the category whose objects are same as J#" and whose morphisms
from X to Y are natural transformations from [¥, —]" to [X, —]" called a n-shaping,
where [X, —]" is the functor from 5#"Pol to the category of sets. On the other hand,
if the category S#"Pol is dense in J#” (i.e., every space in the considered class
has an J#"Pol-expansion), then it follows from [16, Ch.I, §2, Theorem 7] that the
n-shape category .#" defined as above is isomorphic to the shape theory for the pair
(5", ##"Pol) discussed in {16, Ch.1, §2]. Thus the following question is important:

Does every space X in the considered class have an 7" Pol-expansion?
Or, is the Cech expansion of X an F€"Pol-expansion?

Here the Cech expansion of X means the morphism in pro-3¢" below:

0x = (b2 ]z ecovx) : X = [CX)]" = (Kaz, (03], cov(X)).

In case spaces are separable metrizable, removing the words “proper(ly)”
and “locally compact”, we can obtain the same results on the n-shape category of
separable metrizable spaces as the previous sections. But now Lemmas 3.1 and 7.2
are nonsense. Spaces cannot be considered any longer as closed sets in Q \ {pt}.
Hence we have to make some changes in the proof of the corresponding result to
Lemma 3.7. In the proof of Lemma 3.7, replace Q \ {pt} by AR’s My and My
which contain X and Y as closed sets, respectively. Now we consider X C My C Q.
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Then, since £ 71(X) is a closed set in £ 7! (Mx) and E|E (M) : E-1(My) — My
is n-invertible by the definition of n-invertibility, we can obtain the result by the
same arguments. Among the same results as previous sections, we can answer
affirmatively to the above question in case X is separable metrizable.

THEOREM 8.1. For any separable metrizable space X, the Cech expansion of X
is an J€"Pol-expansion, that is, the morphism ¢y in pro-" is an ¢ "Pol-expansion
of X.

In case spaces are compact HausdorfT, let cov{X) be the collection of all finite
covers of X. Now, spaces are non-metrizable, but it can be assumed that a canonical
map ¢z : X — Kgq satisfies the condition that ¢4 (U) C U° foreach U € %

and ¢;”1( 8‘) # { for each simplex o of K¢ . In fact, let (ky)yea be a partition of
unity on X subordinated by % and let Vy = k' ((0, 1]) for each U € %. Then
wehave ¥ = {Vy | U € %,Vy # 0} < %. We define ¢y : X — Ky by
O (x) = X yca ku(x)Vy € Ky. Then ¢y : X — Ky is a canonical map satisfying
the above condition. Therefore, the subcollection of cov(X) satisfying the above
condition is cofinal in cov(X).

Similarly to the above, we can obtain the same results on the n-shape category
of compact Hausdorff spaces as the previous sections. However, by the same reason
as the above, we need to prove the corresponding result to Lemma 3.7. By [12,
Theorem 9], for any cardinal 7 and n € N, there exists a compact Hausdorff space
D} withamap &} : D} — I* onto the Tychonoff cube I* such that

1. the weight of D} is 7 and dim D} = n;
DI € AE(n— 1)NAE(n —2,n)NLC ' nC* Y
D} is universal in the class of spaces of the weight 7 and the dimension < »;
& is (n — 1)-soft, (n — 2, n)-soft and polyhedral n-soft;
&7 is universal in the class of maps between spaces of the weight 7 and the
dimension < n,
where the dimension is the Lebesgue covering dimension. For the definition of
each term above, refer to [12]. We can apply this map &7 : Df — I* to prove the
following:

vk w

LEMMA 8.2. Let X and Y be compact Hausdorff. Formaps f,g: X - Y, f < g
implies f o g forevery v € cov(Y).

Proof. Embed X into the Tychonoff cube I”, where 7 is the weight of X. Let &7 :
D? — I be the map above. Foreach Z C I*, wedenote Z = (£7)~!(Z) C D?. Since
dimX = nand f ~ g, it follows that fEF|X ~ g&7|X, hence ¢y FEF|X ~ ¢y gE7|X.
Since Ky is a neighborhood extensor for normal spaces, the maps ¢ f and ¢y g
extend to maps f', g’ : N — Ky, respectively, where N is an open neighborhood
of X in I'. Replacing N with a smaller one if necessary, we can assume that
FIETIN ~ g'EFIN. Choose # € cov(N) so that f'(st#), g'(st#) < ¥°. Since N
is LC™!, # has an open refinement #" such that any partial #’-realization of an
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arbitrary n-dimensional simplicial complex extends to a full " -realization. Choose

% € cov(X) so that st% < #'. Then u/q/|Kf72) is a partial #"'-realization of

K(q?, hence it extends to a full # -realization h : Kg}) — N. Since & is polyhedral

n-soft, we have i : K& — DF such that &7 = h, whence i(KJ)) C N. Then

FIETh ~ g'E%h. On the other hand, oy *Z ya ¢z Z idy, hence hoy 2 idy.

Then f'&idar = f'hox ~ f', and similarly g'£ koo 9 g'. Therefore, f’ < g’
which implies

n ¥°
ovfva|Ky = fluvalKy ~ g'valKy = orgwalKy.
Since yy ¢y z idy and wy(¥°) < ¥/, it follows that
v ¥ v
v Ky E wroyfya|Ky X wyorgwa Ky Z gva|Ky.

Y,
This means that f (<" g. O

Among the same results as previous sections, we have the affirmative answer
to the above question in case X is compact Hausdorff.

THEOREM 8.3. For any compact Hausdorff space X, the Cech expansion of X is
an J€"Pol-expansion, that is, the morphism ¢x in pro-J€" is an € "Pol-expansion
of X.

We shall finish the paper with pointing out that, if Lemma 3.7 could be extended
to more general spaces than the above, then we could weaken the restriction for
spaces.

Theorem 8.1 is valid for non-separable metrizable spaces. To see this, it suffices
to prove Lemma 3.7 for non-separable metrizable spaces. This can be shown as
follows: For an arbitrary metrizable space X, there exists a convex set K in a Banach
space E such that X can be embedded in K as a closed set and E has the same weight
as X. Then, E is an n-invertible image of n-dimensional completely metrizable
universal space P with the same weight as E by Theorem 3.8 of the following paper:

A. Chigagidze and V. Valov, Universal maps and surjective characterization of
completely metrizable LC"-spaces, Proc. Amer. Math. Soc. 109 (1990), 1125-1133.

Hence, K is an n-invertible image of a subspace of P. Thus, we can similarly
prove Lemma 3.7 for non-separable metrizable spaces.
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