
1
Introduction

,

S

Exact string matching problem is to find all the
occurrences of a given pattern [0… 1] in the text

[0… 1], where symbols of and are drawn from some
finite alphabet of size. See [1, 4, 6, 8, 10, 11, 12, 14] for
detail. Application area of string matching includes:
computational biology, information retrieval, text editor,
software maintenance etc. In the software maintenance [2,
3], it is often required to find duplicity present in the codes.
Two code fragments are equivalent, if one can be
transformed into the other via consistence renaming of
identifiers, literals and variables. This equivalency can be
detected by parameterized string matching [2, 3]. In the
parameterized string matching, we are given two different
alphabets: for fixed symbol alphabet and for
parameterized alphabet. Symbols from need not to be
renamed, whereas symbols from may be renamed. A
given pattern is said to match with a substring of the text

, if there exist a one-to-one correspondence between
symbols of and symbols of . Many string matching rely
on fairly large alphabet for good performance [15]. To make
alphabet larger, the concept of -gram [15] has been
proposed. There are two ways to form -grams: one is
overlapping -gram and the other is non-overlapping -
gram. In overlapping 2-gram, the word "abcd" is
transformed to "ab-bc-cd" and in non-overlapping -gram it
is transformed to "ab-cd".

In [1], a bit-parallel algorithm (hift-or) for solving
exact string matching has been presented. This algorithm

runs in time (), when , where is word length of

computer used. In [16], this algorithm was further speeded-
up by a factor of ' ', where is size of non-overlapping -
gram (also known as super alphabet). In [5], shift-or
algorithm has been extended for parameterized string
matching, which in [17] was further speeded-up by a factor
of ' ' by using the concept of non-overlapping -gram. In

P m
T n P T

P t
T

P t

q
q

q q

q

O n m w w

q q q

q q

–
–

Σ Π
Σ

Π

≤

243

R Prasad. et al.

ISSN 1330-3651

UDC/UDK 004.416:004.021

MAINTAINING SOFTWARE THROUGH BIT-PARALLELISM AND HASHING
THE PARAMETERIZED -GRAMSQ

Rajesh Prasad, Suneeta Agarwal, Sanjay Misra, Anuj Kumar Sharma, Alok Singh

In the software maintenance, it is often required to find duplicity present in the codes. Two code fragments are equivalent, if one can be transformed into the
other via consistent renaming of identifiers, literals and variables. This equivalency can be detected by parameterized string matching. In this matching, a given
pattern is said to match with a substring of the text , if there exists a one-to-one correspondence between symbols of and symbols of . In this paper, we
propose an efficient algorithm for this problem by using both the overlapping and non-overlapping -gram. We show the effect of running time of the algorithm
on increasing the duplicity present in the code.

P t T P t
q

bit-parallelism, plagiarism detectionKeywords: design of algorithm hashing, q-gram software maintenance, string matching, , ,

Original scientific paper

Pri održavanju softvera fragmenta koda ekvivalentna ako se jedan može transformirati u
drugi konzistentnim preimenovanjem identifikatora, znakova i vari abli. Ta se ekvivalencija može otkriti parametariziranim podešavanjem nizova.

i algoritam za taj problem upotrebom -grama

često je potrebno pronaći dupliciranost prisutnu u kodovima. Dva su
j U tom

podešavanju, kaže se da se zadani obrazac slaže s podnizom teksta ako postoji jedan-prema-jedan slaganje između simbola koji pripadaju i simbola koji
pripadaju . U ovom članku predlažemo učinkovit sa i bez preklapanja. Pokazujemo djelovanje vremena
izvršavanja algoritma na povećanje dupliciranosti prisutne u kodu.

P t T P
t q

binarni paralelizam, otkrivanje plagijata,Ključne riječi: hašingiranje, oblikovanje algoritma, poklapanje niza, q-gram, softver za održavanje

Izvorni znanstveni članak

Održavanje softvera binarnim paralelizmom i parametarizirani -grampristupanje podacima m imaq

Održavanje softvera binarnim paralelizmom i parametarizirani -grampristupanje podacima m imaq

Tehni ki vjesnikč 19, 2(2012) -247, 243

[18], an efficient algorithm using hashing the overlapping -
gram for solving exact string matching has been presented.
This algorithm uses the concept of loop unrolling to speed-
up the algorithm. In [9], Horspool algorithm was extended
for parameterized string matching, which uses the concept
of -gram and only parameterized alphabet is used.

In this paper, we propose an efficient algorithm
(FASTQGRAM) for the parameterized string matching
problem by using both the overlapping and non-overlapping
-grams. We show the effect on running time of the

algorithm on increasing the duplicity present in the code.
The article is organized as follows. In ection 2, we

present the related concept and algorithm for exact and
parameterized string matching. In ection 3, we present our
proposed algorithm for parameterized string matching. In

ection 4, we present experimental results. Finally we
conclude in ection 5.

This section presents small introduction to
parameterized string matching problem [2, 3]. Here we
assume that all the symbols of [0… 1] and [0… 1]
are taken from , where is fixed symbol alphabet of

size and is parameter symbol alphabet of size . A

pattern matches the text substring [… + 1], for 0

, if and only if {0, 1, 2,… 1}, ([]= [+]),

where (.) is a bijective mapping on . There must be

identity on but need not be identity on . For example, let
= XYABX on {A, B} and {X, Y, Z, W}. Pattern

matches the text substring ZWABZ with bijective mapping
mapping can be simplified by -

encoding [3]. For any

q

q

q

P m T n

P T j j m j

n m i m f P i T j i

f

P P

prev

S

S

S
S

()

= =

2
Related oncepts
2.1
Parameterized string matching problem

c

– –

–

– –

Σ Π Σ

Π π

Σ Π

Σ Π
Π

�

�

σ

Π

≤

≤ � j

j

X Z and Y W. This
string , () maps its each

parameter symbols to a non-negative integer , where

→ →

S prev S
s p p is

244

Maintaining software through bit-parallelism and hashing the parameterized -gramsq

Technical Gazette 19, 2(2012), 243-247

the number of symbols since the last occurrences of in .
The first occurrence of any parameter symbol in
encoding is encoded as 0 and if it is mapped to itself

(i.e. to). For example, () = 00AB4 and
(ZWABZ) = 00AB4. With this scheme of

encoding, the problem of the parameterized string matching
can be transformed to the exact string matching problem,
where () is matched against ([… + –1]), for 0

– . The () and the ([… + –1]) can be

recursively updated as j increases with the help of the
following lemma [3].

Let = prev(). Then for = prev(
[… + –1]) for all such that [] it holds that [] =

[] if [] < , otherwise [] = 0.

This section presents shift-or [1] string matching
algorithm for exact and parameterized string matching
problem. First we define the following terms: (i)

… denotes bits of computer word of length . (ii)

Exponentiation is used to denote bit repetition (e. g.

0 1=00001). C-like syntax is used for operations on the bits
of computer words: | is for bit-wise or, & is for bit-wise
and, ^ is bit-wise xor, ~ complements of all the bits. The
shift left operation, << , moves all bits to the left by ' ' and
enters ' ' zeros in the right. is an alphabet of size .

In the shift-or algorithm [1], a non-deterministic finite
automata (NFA) automaton of a given pattern [0… –1] is
constructed in the pre-processing phase. The automaton has
states 0, 1, 2… , with state 0 as initial state, state as final
state and = 0... –1and there is a transition from state to
state +1 for character [] of the pattern . In addition, there
is a transition for every from and to the initial state.

This algorithm builds a table having one bit mask entry for

each . For 0 –1, the mask [] has bit set to 0

iff [] = otherwise it is 1. If the bit in [] is 0, then in the
automaton, there is a transition from the state to +1 with
character . For searching, algorithm needs a bit mask so

that the bit of this mask is set to 0, if and only if state in
NFA is active. For each text symbol the state vector is

updated by . If after processing the

symbol of the text, the (–1) bit of is 1, then there is an
occurrence of with shift – .

In [5], the shift-or algorithm has been extended to
parameterize string matching (PSO). It has been extended in
the following way:
(i) The pattern is encoded by -encoding and stored

as ().
(ii) For all = 0, 1, 2... – , ([… + –1]) can be

efficiently -encoded by lemma 1.
(i i) The table is built such that all the parameterized

pattern prefixes can be searched in parallel. To simplify
indexing into array , it is assumed that {0,
1… –1}, and -encoded parameter offsets are
mapped into the range { … + –1}. For this purpose,
an array [0… + –1] is formed, in which the positions
0… –1 are occupied by element of and the rest
positions are occupied by -encoded offsets.

Searching for () in () can't be done
directly as explained below. Let the pattern = XAXX and
the text = ZZAZZAZZ. = 0A21 and T = 01A21A21.
Obviously, has two overlapping parameterized

s S
prev-

s

s prev P
prev prev-

prev P prev T j j m

j n m prev P prev T j j m

S S S S
j j m i S i S i

S i S i m S i

b b b b w

r r
r

P m

m m
i m i

i P i P
c

B

c i m B c i

P i c i B c
i i

c D

i i
c D

m D
P i m

P prev
prev P

j n m prev T j j m
prev
B

B
prev

m
A m

prev

P prev P T prev T
P

T P
P

�

�

Σ

Π

Σ

Σ

Σ

'

()

' "
"

' f " "

" " " "
" "

" "

i

=

' = ' =

'

≤ ≤

≤ ≤

Lemma 1:

2.2
Bit-parallel lgorithm (hift-or)a S

w w–1 –2 1 0

4

th

th

th

th

th

Σ σ

σ
σ σ

σ
σ Σ

�

�

D D B c i(<< 1) | []←

R Prasad. et al.

occurrences in (one with shift = 1 and another with shift =
4) but does not have any occurrences in . The problem
occurs because of when searching for all the m prefixes of
the text in parallel, then some non-zero encoded offset in

should be interpreted as zero in some case. For example,
when searching for in [1…4] = 1A21, 1(from left)
should be zero. The solution to this problem is that the
lemma 1 should be applied in parallel to all -length sub-
strings of . This has been achieved by [5] in the following
way. The bit vector [[+]] is the match vector for [i],

where 0 +m–1. If the bit of this vector is zero, it

means that [] = []. If any of the least significant bit of
[[]] is zero then corresponding bit of [[+]] is also

cleared. This can be achieved as: [[[+]] &

([[]] | (~ 0 <<)) which signifies that for + –1,

[] is treated as [] for prefixes whose length is greater
than [i] and as zero for shorter prefixes thus satisfies
lemma 1.

The main objective of using -gram [15] in string
matching algorithm is to make alphabet larger. When using
-grams we process characters as a single character. There

are two ways of transforming a string of characters into a
string of -grams. We can either use overlapping -grams or
non-overlapping -grams. When using overlapping -
grams, a -gram starts at every position of the original text
while with non-overlapping -grams, a -gram starts in

every position. For example transforming the word
abcd into overlapping 2-grams results in the string ab-bc-

cd and transforming it into non-overlapping 2-grams
yields the string ab-cd . In [16], non-overlapping -gram
was also known as super alphabet of size . In [16], Shift-or
algorithm has been extended to use the super alphabet and is
speeded up by a factor of ' ' (where is size of super
alphabet). In this extension, the number of bits required to
represent vector is + –1, where is size of non-
overlapping -gram and m is pattern length and is updated
by: <<) | [[]]. Let = { , , … } is a super

alphabet consisting of consecutive symbols of . Now,

[] = (([] & 1) << –1) | ([] & 1) << –2) |…|

([] & 1). If after the step, any of the –1 to + –2 bits

is zero, then pattern occurs with shift × – –1, where bit
from right is zero.

In [18], Lecroq developed an algorithm for exact string
matching, which considers substring of length
(overlapping -gram). Substrings of such a length are
hashed using a hash function into integer values within 0

and 255. For 0 255,

T
P T

p
T

P T

m
T

B A i A

i j

P j A i i
B A B A i

B A A i

B A i i m

A i A i
A

q

q q

q q
q q

q
q q

q

q
q

q q

B m q q
q D

D q B T i C c c c c

q T

B C B c q B c q

B c l m m q

l q d d

q
q B

h

c

' '

'
' '

'

'

" " "
"

" "

σ

σ

σ σ
σ

σ σ σ

≤ ≤

≤ ≤

≤

th

th

th

th

th

σ+]] [

(

i B

D

←

←

2.3
- ramsq g

1 2 3

1 2

q

q

m m

m

2.4
Hashing the - ramsq g

.

�
�
�

�

���������
�

existnotdoesiansuchwhen

])1...[(|10max,1
]Shift[

qm

cq-jjPhqmjiim
c

The searching phase of the algorithm consists in reading
substrings of length . If shift[()]>0 then a shift of
length shift[()] is applied. Otherwise, when shift[()] =
0, the pattern is naively checked in the text . In this case, a

B q h B
h B h B
P T

245Tehni ki vjesnikč 19, 2(2012), 243-247

6. shift[mod 256] –1–
7. [–3… –1] ([–3… –1])
8. (([–3]2 + [–2])2) + [–1]
9. shift[mod 256]

10. shift[mod 256]0
11. -encode()

13. do pos[[]]

h m i
P' m m prev-encoding P m m
h P' m P' m P' m
sh h

h
P' prev P

i

'
' ' '

1

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

12. for 0 to –1
–

14. for 0 to + –1
15. do [[]] ~0
16. for 0 to –1
17. do [[]] [[]] & ~ (1 <<)
18. for 1 to –1
19. do [[+]] [[+]] & ([[]] | (~0 <<))

Consider the pattern = a b a b c on = { }and = { ,
}. Let us take =3. The distinct 3-grams are: a b a, b a b and

a b c. The -encoded 3-grams are: "a 0 a", "0 a 2" and "a 0
0" respectively. The corresponding hash values are: (a 0 a)
= 69, (0 a 2) = 180 and (a00) = 20. The shift corresponding
to these hash values are: shift(69)=2, shift(180)=1,
shift(20)=0 and =3. The bit-vector is given by [] =
1111010, [0] = 1101101, [1] = 1111111, [2] = 1110101,

[3] = 1111101, [4] = 1111101.

Set [… + –1] to in order to avoid testing the end
of the text, but exit the algorithm only when an occurrence
of is found. The searching phase of the algorithm consists
in reading substrings of length . If shift[()] > 0, then a
shift of length shift[()] is applied. Otherwise, when
shift[()] = 0, the pattern is checked in the text by using
non-overlapping -gram technique. By using non-
overlapping -gram in searching phase, search time can be
reduced.Algorithm 2 gives the pseudo code.

(, , ,) for =3

1. [… + –1]
2. –1
3. while TRUE
4. do 1
5. while 0

6. do [–2…] ([–2…])
7. (([–2]2 + [–1])2) + []
8. shift[mod 256]
9. +
10. if <
11. then NON-OVERLAP-QGRAMS(, , ,)
12. +

13. else RETURN

(, , ,)
1. ~0
1. Take prev-encoding of -length

window [– +1...]
2. Let ([[– +1]]<< –1) | ([[–

+1]]<< –2) | ([[– +1]])
3. Update by: (<<3) |
4. If after scanning whole the m-length

window, bit become zero in step , then
REPORT OCCURRENCE AT –

i

i m
B A i

i m
B P i B P i i

i m
B A i B A i B A i

P a b
c q

prev
h

h h

sh B B a
B B B

B B

T n n m P

P
B q h B
h B

h B P
q

q

P m T n q

T n n m P
j m

sh
sh

T j j prev-encoding P j j
h T j T j T j
sh h
j j sh

j n
T P m q

j j sh

T P m q
D

m
T j m j
C B T j m q B T j

m q B T j m
D D D C

d l
l×s d

π
Π

σ

σ σ σ

Π

�

�

3.1.1
Example 1

3.2
Searching phase

1

Algorithm 2: Searching

NON-OVERLAP-QGRAMS

q

1

th

shift of length sh is applied where = –1– with = max {0

– | ([… + –1]= ([– +1… –1])}.

This section presents the Horspool algorithm for
parameterized string matching [9]. In the parameterized
matching problem, the last character alone never tells that
there can t be a match and even the last two characters do not
indicate that the window cannot match. Therefore, a -gram
(overlapping) of character of the window is formed and
the shift is based on it. In the parameterized matching
problem, shifts are based on the last -gram of the window,
and we wish to make a shift that aligns it with the last -gram
of the pattern that -matches it. As discussed in section 2.1,
two strings -match, if their predecessor strings match.
Thus the algorithm indexes the table with the predecessor
strings. Many solutions for calculating the indexes are given
in [9]. One possible solution for calculating the indexes is to
transform the -grams into predecessor strings and then to
reserve enough bits for each character of the predecessor

strings in the index. The character of the predecessor
string takes values between 0 and –1, so log bits are

needed to represent it.
For example, consider the text substring. abcab . The

prev-encoded string is 00033. After converting into 0 and 1,
we get the encoded string 0 00 11 011, which in decimal
system is 27. Now this encoded pattern is matched using the
simple Horspool algorithm.

In this section, we present our proposed algorithm:
FASTQGRAM, for parameterized string matching. Our
algorithm uses both the and
-gram to speed-up the algorithm. It inherits the hashing

feature from [18] and bit-parallelism feature on -gram
from [17]. Overlapping -gram is used during hashing the
parameterized -gram and non-overlapping -gram is used
during the searching. The proposed algorithm is applicable

only when , where is word length of computer used.

The algorithm consists of two phases: preprocessing and
searching phase.

During preprocessing phase, a pattern [0… –1] is
segmented into – +1 distinct overlapping -grams. These
distinct -grams are -encoded. After -encoding,
they are hashed by a hash function [18] to get the desired
shift. Another preprocessing of the pattern is needed for
searching purpose. In this preprocessing, -encoding of
the whole pattern is calculated and a bit-vector as
discussed in section 2.2 is obtained. Algorithm 1 gives the
pseudo code and Example 1 illustrates the pre-processing.

sh m i i

j m q h P j j q h P m q m

q
q

q
q

p
p

q

i
i i

overlapping non-overlapping
q

q
q

q q

m w w

P m
m q q

q prev prev

P
prev

B

≤

≤

2.5
Horspool algorithm with -grams

3
Proposed algorithm

3.1
Pre-processing phase

q

'

" "

1. for 0 to 255

th

2

Algorithm 1: Preprocessingq (, , ,) for =3

2. do shift[] –2
3. for 2 to –2
4. do [–2…] ([–2…])
5. (([–2]2 + [–1])2) + []

P m T n q

i m
i m

P' i i prev-encoding P i
h P' i P' i P' i

i

i

←

R Prasad. et al. Održavanje softvera binarnim paralelizmom i parametarizirani -grampristupanje podacima m imaq

246

4
Experimental results

We have implemented our proposed algorithm:
FASTQGRAM and existing algorithms: Horspool [6] and
PSO [5] in C , compiled with GCC 4.2.4 compilers on the
Pentium 4, 2.14 GHz processor (word length = 32) with
512 MB RAM, running ubuntu 10.04.ADNAfile of size 40
MB is taken from the file ftp://ftp.ncbi.nih.gov/genomes/
H_sapiens/other/. The patterns and text are chosen from the
set {A, C, G, T}. Fig. 1(a) and 1(b) shows the running time
of algorithms for varying pattern length, by keeping = { ,
}, = { , } and = { }, = { , , } respectively. It shows

that on increasing the pattern length, FASTQGRAM
performs better. Fig. 1(c) shows the running time of
algorithm FASTQGRAM by increasing value of , where
= { , } and = { , }.

++
w

a
t c g a c g t

q
a t c g

Σ
Π Σ Π

Σ
Π

5
Conclusion

6
References

In this paper, we have developed a new algorithm
(FASTQGRAM) for parameterized string matching. We
compare the proposed algorithm with parameterized shift-
or (PSO) and Parameterized Horspool algorithm. From Fig.
1(a) and 1(b), it is clear that (i) on increasing the pattern
length, the proposed algorithm performs better than
Horspool and is comparable to PSO (ii) on increasing the
duplicity in the code (i. e. on increasing size of the set), time
increases. From Fig. 1(c), it is clear that on increasing the
value of , time decreases and the best value is obtained
when is nearly equal to half of the pattern length.

q
q

[1] Baeza-Yates, R. A.; Gonnet, G. H. A new approach to text
searching. Communication ofACM, 35, 10(1992), 74-82.

[2] Baker, B.S. Parameterized duplication in string: algorithm
and application in software maintenance. SIAM J.
Computing, 26, 5(1997), 1343-1362.

[3] Baker, B. S. Parameterized diff. In proc. 10 Symposium on
DiscreteAlgorithm (SODA), (1999), 854-855.

[4] Boyer, R. S.; Moore, J. S. A fast string-searching algorithm.
Communication ofACM, 20, 10(1977), 762-772.

[5] Fredriksson, K.; Mozgovoy, M. Efficient parameterized
string matching. Information Processing Letters, 100,
3(2006), 91-96.

[6] Horspool, R. N. Practical fast searching in strings. Software
- Practice and Experience, 10, 6(1980), 501-506.

[7] Prasad, R.; Agarwal, S. A new parameterized string matching
algorithm by combining bit-parallelism and suffix automata.
In proc. of 8th IEEE International Conference on Computer
and Information Technology, Sydney, Australia. (2008),
778–783.

[8] Raita, T. Tuning the Boyer-Moore-Horspool string searching
algorithm. Software - Practice and Experience, 22,
10(1992), 879-884.

[9] Salmela, L.; Tarhio, J. Fast Parameterized Matching with q-
grams. Journal of discrete algorithm 6, 3(2008), 408-419.

[10] Smith, P. D. Experiments with a very fast substring search
algorithm. Software - Practice and Experience, 21,
10(1991), 1065-1074.

[11] Sunday, D. M. A very fast substring search algorithm.
Communications of theACM, 33, 8(1990), 132-142.

[12] Wu, S.; Manber, U. Fast text searching allowing errors.
Communication of theACM, 35, 10(1992), 83-91.

[13] Kulekci, M.O. BLIM: A New Bit-Parallel Pattern Matching
Algorithm Overcoming Computer Word Size Limitation.
Mathematics in Computer Science, 3, 4(2010), 407-420.

[14] Navarro, G.; Raffinot, M. Fast and Flexible String Matching
by Combining Bit-parallelism and Suffix automata. ACM
Journal of ExperimentalAlgorithms, 5, 4(2000) .

[15] Salmela, L.; Tarhio, J.; Kytojoki, J. Multi-pattern String
matching with q-gram. Journal of Experimental
Algorithmics, 11 (2006)

[16] Fredriksson, K. Shift-or String matching with super
alphabets. Information processing letter, 87, 4(2003), 201-
204.

[17] Prasad, R.; Agarwal, S. Parameterized Shift-and String
matching algorithm using super alphabet. In proc. of the
International Conference on Computer and Communication
Engineering, Malaysia, (2008), 937-942

[18] Lecroq, T. Fast Exact String matching algorithms.
Information Processing Letter, 102, 6(2007), 229-235.

//

//

//

//

//

//

//

//

//

//

//

//
, 1-36

, , 1-19.

//

//

th

Technical Gazette 19, 2(2012), 243-247

Maintaining software through bit-parallelism and hashing the parameterized -gramsq R Prasad. et al.

(a)

()b

Figure 1 Comparison of time among algorithms ((a), (b), (c)):
PSO, FASTQGRAM and HORSPOOL

247

Authors' addresses

Prof. (Dr.) Sanjay Misra
Department of Computer Engineering
Faculty of Engineering
Atilim University
Ankara, Turkey

Rajesh Prasad

Prof. Suneeta Agarwal

Anuj Kumar Sharma

Alok Singh

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Alahabad, India

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Alahabad, India

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Alahabad, India

Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Alahabad, India

Tehni ki vjesnikč 19, 2(2012), 243-247

R Prasad. et al. Održavanje softvera binarnim paralelizmom i parametarizirani -grampristupanje podacima m imaq

