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Abstract:

Using a 1 : 100,000 geographic map of the island Cres, its coastline
was digitalized into bitmap of 1696 x 5052 pixels. This bitmap was
analyzed computationally using our refined box-counting method. It was
shown that the log-log diagram separates into two parts: non-selfsimilar
and selfsimilar, divided by a critical value of the mesh size. It was found
that the power law is extremely well satisfied in selfsimilar section of
the log-log diagram, reflecting a high degree of statistical fractality of
the coastline, almost without detectable fluctuations. Therefrom the over-
all fractal dimension of the coastline of Cres was determined as D, = 1.118
= 0.001. It was found that partial fractal dimensions of particular parts
of the coastline of Cres differ sizeably from the overall value. These
results show that the coastline of Cres exhibits a high degree of stable
statistical self-similarity. A possible origin of this pattern was suggested
along the lines of a recent model of water erosion as a fractal growth
process simulated on a lattice which was used to model the stationary
state of the river pattern such as a power-law size distribution of the
drainage basin area and for the Horton’s law. In light of our results for
overall fractal dimension we discuss the problem of dependence of the
length of coastline on precision of measurement and present the corre-
sponding asymptotic formula.

Keywords:

Island Cres; box-counting method; fractal dimension; power law for
the coastline; overall fractal dimension of the coastline; partial geographic
fractal dimension of the coastline; water erosion process; relief; lenght
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FRAKTALNA DIMENZIJA OBALNE CRTE
HRVATSKOG OTOKA CRESA
Izvadak:
Koristeci geografsku kartu otoka Cresa u mjerilu 1 : 100 000
digitalizirana je njegova obalna crta u bitkartu od 1696 x 5052 piksela.
Pokazano je da se log-log dijagram separira na dva podrudja:
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nesamosliéno i samoslicno, razdijeljena kriticnom vrijednoscu duljine
kutije. Dobiven je rezultat da je eksponencijalni zakon izvanredno dobro
zadovoljen u samoslicnom dijelu log-log dijagrama, $to ukazuje na visoki
stupanj fraktalnosti obalne crte, gotovo bez uocljivih fluktuacija u tom
dijelu log-log dijagrama. Na osnovi toga izracunata je vrijednost ukupne
[fraktalne dimenzije obalne crte otoka Cresa: D, = 1,118 +0,001. Nadalje
Jje otkriveno da parcijalne fraktalne dimenzije pojedinih dijelova otoka
Cresa pokazuju znatne razlike od ukupne vrijednosti. Ovi rezultati
pokazuju da obalna crta Cresa pokazuje visoku razinu statisticke
samoslicnosti. Moguce objasnjenje za podrijetlo ove pojave sugerirano
je na crti novog modela erozije kao procesa s fraktalnim rastom
simuliranog na resetki sto je koristeno za modeliranje stacionarnog stanja
porijecja kao na primjer eksponencijalnog zakona za porijecje i za
Hortonov zakon. U svjetlu ovih rezultata za fraktalnu dimenziju
raspravlja se problem ovisnosti procjene za duljinu obale o preciznosti

mjerenja i prikazuje se odgovarajuéa asimptotska formula.

Kljucne rijeci:

otok Cres; fraktalna dimenzija, metoda brojanja kutija;
eksponencijalni zakon za obalnu crtu; ukupna geografska fraktalna
dimenzija; parcijalna geografska fraktalna dimenzija; erozija; reljef;

duljina obale

INTRODUCTION

It is known that there exist many fractal
geometries in the nature (MANDELBROT, 1983;
BARNSLEY, 1988; FEpER, 1988; HiraBAYASI, Ito
& YosHi, 1992; Takavasu, 1990; Inaoka &
Takayasu, 1993; MariTan, RINALDO, RIGON,
GiacoMETTI & RoDRIGUEZ-ITURBE, 1996;
RobpriGuez-ITUrBE & RioNnaLDO, 1996; Sousa
VIEIRA, 1996; PEITGEN, JUERGENS & SAUPE,
1992; SCHROEDER, 1990; Vicsek, 1989). Land-
scapes such as coastlines and river patterns
are familiar examples, and their fractalities are
supported by numerical analyses of real topo-
graphical data. The fractality of landscapes
first was pointed out by Mandelbrot
(ManDELBROT, 1983) in the second half of
twentieth century. According to Mandelbrot,
the Koch curve, which is a typical fractal curve
with fractal dimension of 1.26 (MANDELBROT,
1983; BARNSLEY, 1988; FEDER, 1988), presents
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a rough model of the coastline. However, we
note that some origins of the idea of fractal
coastlines can be traced already in the work
of the eighteenth century scientist and philoso-
pher Bogkovi¢ (Boscovich, 1758). Boskovi¢
wrote: ”...Nothing in Nature is mathematically
flat and smooth.... So in the river beds, in
branches of trees, in edges of salts, crystals, ...
according to my theory there is no continuity,
because all bodies consist of points... if we
imagine that any three of these points are con-
nected by straight lines, a triangle will be
formed.”

Mandelbrot (1983) has proposed a simple
model which creates the fractal surfaces, so
called Brownian surfaces, the product of which
is regarded as a model of the earth's relief.
However, the processes of the landform crea-
tion in this model are far removed from real
processes of landform evolution. The fact that
fractals on the earth’s relief exist over such an
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extensive region implies that fractals are prob-
ably created by a kind of fractal growth proc-
ess from nonfractal surfaces.

There are many factors causing the
changes of landscapes, for example tectonic
movements, water erosion, sedimentation,
weathering, and so on (MANDELBROT, 1983;
Inaoka & Takavasu, 1993; RoDRIGUEZ-ITURBE
& RionaLpo, 1996; PEITGEN, JUERGENS and
SauPE, 1992). Recently, a minimal model of
water erosion was proposed for landform evo-
lution in relatively large systems (Inaoka &
Takayasu, 1993). In this way the time evolu-
tion of river patterns and earth’s relief are
simulated on a lattice, with an initial land form
being a flat surface perturbed by a very slight
white noise.

The geometry of mathematical fractal, like
for example Koch curve and Koch island, are
characterized by self-similarity (KarLan &
Gurass, 1995; OtT, 1993; PEITGEN, JUERGENS &
SAUPE, 1992; ScHROEDER, 1990). The term self-
similar describes the geometry of objects in
which a small part when expanded looks like
a whole. Thus, the structure is said to be self-
similar if it can be broken down into arbitrar-
ily small pieces, each of which is a small rep-
lica of the entire structure.

In fact, in the cases of fractal sets arising
in typical dynamical systems, a strict self-
similarity rarely holds. Many objects
encountered in nature are to some extent self-
similar. Examples of this type are treelike
shapes like river networks, vascular system,
the branching system of bronchi in the lungs
and a tree with its branches (BARNSLEY, 1988;
BunpLE & HavLin, 1995; Feper, 1988;
MANDELBROT, 1977; MaNDELBROT, 1983;
PeiTGen, JUERGENS, & Saupg, 1992;
SCHROEDER, 1990; Vicsek, 1989). But self-
similarity is not limited to objects with treelike
geometry. For example, coastlines, clouds and
mountains can exhibit self-similar patterns.
Mountains often have small outcrops that
resemble the mountain as a whole.

We note that in geometry the word
“similar” means “not differing in shape but
only in size or position”. The mathematical
fractals are self-similar in this geometrical
sense. On the other hand, in everyday language
the word “similar” means “alike™ and does not
have as narrow a meaning as in geometry. Two
things can be alike even if they are slightly
different. The self-similarity of real trees in
nature, for example, makes use of this common
meaning of the term “similar”. One does not
expect that all branches of a tree will look the
same, just that they will look somewhat like
the tree as a whole.

Therefore, it is often worthwhile to
consider self-similarity in a statisical sense,
saying that an object is self-similar if its parts,
on average, are similar to the whole. Such a
pattern of statistical self-similarity appears for
the coastline. The coastline contains gulfs and
bays, and gulfs and bays themselves contain
smaller bays and inlets, which themselves
contain coves and other small structures, and
so on. Thus, the objects themselves are not
similar to each other, but their statistical pattern
remains the same with changing the scale. An
example of such a statistical self-similarity is
the well-known Brownian motion. Enlar-
gement of this first under microscope obser-
ved features are today used in computer
graphic to generate the pattern landscapes in
nature.

TWO VERSIONS OF FRACTAL
DIMENSION

1. Compass dimension - a form of fractal
dimension

Fractal nature of the coastline is reflected
in measuring its length on a geographical map.
In order to measure the length of the coast-
line, we can take compasses set at a certain
distance. For example, if a map is in the scale
1 : 1,000,000 and the compass setting is 5 cm,

23



Acta Geogr. Croatica, vol. 32, 21-34, 1997.

V. Paar, M. Cvitan, N. Oceli¢ and M. Josipovié: Fractal ...

the corresponding true distance is 50 km. Now
we carefully walk the compasses along the
coast counting the number of steps. In this way
we obtain a polygonal representation of a par-
ticular coast. Using different compass settings,
one obtains different measured values for the
coastal length. For example, for the length of
the coast of Britain, compass settings of 500
km, 100 km, and 17 km result in the values of
2600 km, 3800 km, and 8640 km, respectively
(PEITGEN, JUERGENS & SAUPE, 1992). With one
compass setting many of smaller bays are still
not accounted for, while, in the next smaller
one they are, while still smaller bays are still
ignored at that setting, and so on.

In such a situation one usually passes to a
log-log diagram for a polygonal representa-
tion of the coast. On the horizontal axis the
logarithm of the inverse compass setting s is
displayed. This quantity corresponds to the
precision of the measurement; the smaller the
compass setting is, the more precise is the
measurement. The vertical axis displays the
logarithm of the length «. These log-log plots
will always show how the logarithm of the
total length log(u) changes with an increase
in precision, i.e., with an increase oflog(gl ).
In this diagram the points corresponding to
the compass measurement of the coastline of
Britain roughly fall on a straight line, i.e., the
compass measurements are approximately in
accordance with the power law:

1 d

v=els), (1)

where the constants ¢ and d can be fitted to
the results of compass measurements and they
characterize the growth law. The constant d
corresponding to the slope of the fitted straight
line in the log-log plot is the key to the fractal
dimension of the underlying coastline. For
former data for the coast of Britain one ob-
tains d = 0.3. The points do not fall exactly on
a straight line in the log-log diagram, i.e., de-
viations from the straight line are sizeable
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(PEITGEN, JUERGENS & SAUPE, 1992), revealing
deviations from fractality and/or limited pre-
cision of the measurement. Therefore, the
value of the constant ¢ cannot be determined
very accurately.

If we let the size of the compass setting go
to smaller and smaller values on a geographic
map, the power law would become invalid due
to finite resolution of the map. In this case the
measured length would tend to a certain lim-
iting value, while according to the power law
(1) it would go to infinity in the limit when
the compass setting goes to zero. Thus, the
power law (1) characterizes the complexity of
the coast over some range of scales by express-
ing how quickly the coastal length increases
if we measure with ever finer accuracy.

Eventually, such compass measurements
do not make sense any more for sufficiently
small compass setting, because one would run
out of maps and would have to begin measur-
ing the coast in reality and face all the prob-
lems of identifying the coastline (when to
measure, at low or high tide, and so on). How-
ever, in any practical terms one must say that
the coastline has no definite value for its
length. The only meaningful thing we can say
about the coastal length is that it behaves ap-
proximately like the power law (1) over a
range of scales to be specified and that this
behaviour will be characteristic of each par-
ticular coastline. Thus, the value of exponent
in the power law (1) is likely to be different
when we compare different coasts.

Using the map of island Cres on the scale
1 : 300,000 with the compass setting of 9 km,
4.5 km and 1.5 km, the values for coastal
length of 177 km, 202 km and 249 km, re-
spectively, were obtained (Josirovic, 1996).

Using the value of constant d, obtained by
compass measurement, one defines the fractal
dimension, denoted by D, and referred to as
compass fractal dimension:

D.=1+d (2)
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2. Box-counting dimension - a form of
fractal dimension

Now we consider the second and more
reliable version of fractal dimension: the box-
counting dimension. Description of fractals in
terms of box-counting dimension has two ad-
vantages over compass dimension. First, it
applies to any structure in the plane, no mat-
ter how complex, and can be readily adopted
for structures in space. Second, it enables de-
termination of fractal dimension with higher
precision. Therefore, we have applied the box-
counting dimension in our investigations of
the coastline of island Cres.

The box-counting dimension is determined
as follows. We put the geographic map onto a
regular mesh with mesh size s, and simply
count the number of grid boxes which contain
some of the structure of the coastline being
investigated. For each chosen mesh size s this
gives a number of non-empty boxes denoted
by M(s).

We are changing s to progressively smaller
sizes and for each mesh size count the corre-
sponding number of non-empty boxes N(s).
Next we make a log-log diagram, displaying
log,[N(s)] in dependence on log,( gl) We then
fit a straight line to plotted points in a certain
interval of mesh sizes and determine its slope
which is denoted D,. This number is referred
to as the box-counting dimension, another spe-
cial form of fractal dimension. Thus, the box-
counting dimension is determined from the
power law:

Dh
Ms)= "-'(gl) ) 3)
In the case of mathematical selfsimilar
fractals, the fractal dimension is determined
by fitting the power law (3) in the limit of van-
ishing mesh size s:

Db=lim log[N(s)]
=0 log(d) 4)

However, the fractals in nature, as for ex-
ample the coastline, are characterized by sta-
tistical selfsimilarity down to level of a cer-
tain small size, below which the fractality dis-
appears. Similar pattern can appear also in
nonlinear dynamical systems treated
computationally, and is referred to as truncated
fractal (Paar & Pavin, 1998). Furthermore,
when we use geographical maps on a certain
scale, the finest mesh size which can be used
is determined by the map scale. In previous
calculations of overall fractal dimension of
large sections of the coastlines, like the coast-
lines of Britain and Norway (PEITGEN,
JUERGENS & SAUPE, 1992; SCHROEDER, 1991),
asmaller number of large mesh sizes was used,
with s = 30 km. From box occupations N(s,)
and N(s,) for two mesh sizes s, and s,, respec-
tively, the fractal dimension was determined
as (PEITGEN, JUERGENS & Saupg, 1992):

_ log[N(s,)] — log[N(s,)]
log(f;l) ~ log(1) (5)

The overall box-couflting dimension has
been previously determined for the coastlines
of Britain, including Ireland (D, = 1.3)
(PEITGEN, JUERGENS & SaAupe, 1992) and of
Norway (ScHROEDER, 1990) (D, = 1.5).

In the classic example of the coastline of
Britain, two underlying grids have been con-
sidered. Having normalized the width of the
entire grid covering the geographic map on
the scale 1 : 1,000,000 by 1 unit, the mesh
sizes were taken 1/24 and 1/32, respectively.
The box counting in these two cases yielded
194 and 283 non-empty boxes, respectively,
that intersect the coastline in the correspond-
ing grids (PEITGEN, JUERGENS & SAUPE, 1992).
From these data, the box-counting dimension
was calculated using Eq. (5), giving the slope
of straight line that connects the correspond-
ing two points in the log-log diagram:

_ log238-log194_ 245-229 . .,
b Jog32-log24 1.51-138

b
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COMPUTATIONAL METHOD FOR
DETERMINATION OF FRACTAL
DIMENSION OF COASTLINE AND
SENSITIVITY TO MESH SIZE

1. Computer program for box counting

To determine the box-counting dimension
of the coastline using geographic map we have
used our computational program which con-
sists of four parts: 1) subroutine for digitali-
zation of data from geographic map; 2) sub-
routine for reading digitalized data from disk
("reading subroutine™); 3) subroutine for data
processing (“processing subroutine™); 4) sub-
routine for connecting the “reading” and
“processing” subroutines.

We have used geographic map in the scale
1 : 100,000. The geographic map was scanned
so that one pixel on the bitmap corresponds to
0.125 mm on the geographic map, i.e., one
pixel corresponds to 12.5 m in nature, The C++
program was used for counting points on the
geographic map and recording in bitmap
graphical format. Each point in graphical
format has two states: 0 (absence of any
element of coastline) corresponds to white
pixel, and 1 (presence of an element of
coastline) corresponds to black pixel.
Functions from Mathematica were used for
creation of optimal tree of levels for counting
and recording pixels (CRANDALL, 1994; EBERT,
MUSGRAVE, PEACHEY, PERLIN & WORLEY, 1994;
WoLrraM, 1996). Here, the highest level in
tree construction corresponds to the smallest
mesh size s and the level gradually decreases
with increasing mesh size. Structure of the tree
is stored onto file on disk, and is being read in
before the counting starts.

Data are being read sequentially (pixel by
pixel) from disk. When the reading subroutine
encounters a black pixel, this information is
stored in the “processing” subroutine.
"Processing subroutine” constructs the grid on

26

the map. This subroutine counts black squares
on the grid, while accepting the information
on black pixels from map. Here, a square is
black if no black pixel falls within it, and white
if at least one black pixel is present. If a black
pixel falls onto a previously white square, it
turns it into black, increasing the total number
of black squares by one, and transmits the
information to all levels lying below it in the
tree construction. On the other hand, if a black
pixel falls onto a black square, it has no effect
on box counting.

2. Grid-translation averaging method

In order to diminish fluctuations in box
populations due to a particular placement of
grid on the map, we have introduced an aver-
aging method with a chain of grid translations.
For each mesh size, m computations were per-
formed for m uniformly shifted grids: in the
Jj-th step of translation the grid on map was
shifted by j pixels upwards and by j pixels to
the left. The number of black boxes in the j-th
step of translation of the grid with mesh size s,
is denoted by n(s). Then, the average value
of black boxes for the grid with mesh size s,

is: s
n(s) = > ns))] -
= (6)

Using these average occupation numbers,
the corresponding log-log diagram, display-
ing log[N(s)] in dependence on log (%) was
constructed.

3. Selfsimilar section of log-log diagram and
operational definition of fractal dimension
of the coastline

In the computation of fractal dimension
from the log-log diagram we adopt the fol-
lowing procedure. The log-log diagram is con-
structed for the range of mesh sizes from
s_, = 10 pixels to the maximum value s_, which
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is equal to about a quarter of the size of geo-
graphic map of coastline. In our computation
for Cres we take s_ = 512 pixels (the width of
Cres is 1696 pixels).

In the interval [log(s"-), log(s' )]

on the horizontal axis, denoted as /_, we have
chosen m = 32 uniformly distributed test
points. Around each test point we form a small
subinterval of the width equal to 1/16 of the
width of the interval / . In the subinterval
around each test point we fit a straight line to
data points and determine its slope. Such a
slope associated with the A-th test point is de-
noted by D, and referred to as the k-th frac-
tional slope. Thus we obtain a set of fractional
slopes D, D,, D,, ... D_. Starting from D, (as-
sociated with the first test point on the Lh.s. of
the log-log diagram), we compare the consecu-
tive values of fractional slopes. If D, differs
from D, and/or D, by more than 5%, it is dis-
carded. The same procedure is repeated for
D, in comparison to D, and D,, and so on, un-
til we come to the /-th test point with a slope
D,, which differs from the next two slopes D,
and D, by less than 5%. The value of mesh
size at the beginning of the /-th interval is de-
noted s, and referred to as the critical mesh
size of the corresponding log-log diagram.

Then we divide the total interval /, on the
horizontal axis of the log-log diagram into two
parts:

1) The section of the log-log diagram from
the initial point [log(ﬁ)]

to the critical mesh size [Iog(sl—)]
fl .

This section of the log-log diagram will be re-
ferred to as non-selfsimilar.

2) The section of the log-log diagram from
the critical mesh size [log(_slI_H

to the final point [log(g-]_—}] .

This section of the log-log diagram will be
referred to as selfsimilar.

We fit a straight line to data points in the
selfsimilar section of the log-log diagram.
Then we define the slope of this straight line
as fractal dimension D, of the coastline.

Quite generally, for each form in the plane,
of a fractal (for example, Koch curve,
Sierpinski gasket, geographical map of a coast-
line, etc.) or nonfractal type (for example, a
circle), the log-log diagram is divided into non-
selfsimilar and selfsimilar sections.

The fractional slope in non-selfsimilar
section varies in size with mesh size and its
value is generally higher than in the selfsi-
milar section of log-log diagram. The frac-
tional slope in non-selfsimilar section may
exhibit irregular oscillations with mesh size.
The origins of this behaviour are deviations
from selfsimilarity and two mathematical
effects:

First, there is an effect due to small number
of non-empty boxes. When the object becomes
comparable to the size of boxes, the boxes
containing different sides of the object start to
overlap, which increases the fractional slope.
On the other hand, for small number of non-
empty boxes, further smaller increases in the
mesh size may have no effect on box
populations; in this range of mesh sizes the
fractional slope decreases with increasing
mesh size until the value of mesh size is
reached where the number of non-empty
boxes decreases by one. At this value of mesh
size, the fractional slope will have an increase.
Such changes may be repeated until the mesh
size s__is reached. (The largest mesh size was
chosen to be smaller than the size of the ob-
ject. Namely, for a box larger than the object
itself, the corresponding fractional slope would
be equal to zero.)

Second, for large mesh sizes the grid trans-
lation averaging method becomes less effec-
tive, because in the sequence of m successive
shifts of the grid all positions within each box
are not accounted for on equal footing.
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4. Computation of box-counting dimension
of the island Cres

In the computation of fractal dimension
of the island Cres we have used the geographi-
cal map in scale 1 : 100,000 as the source of
data to be digitalized. The mesh size s was
expressed in pixels. The size of map of Cres
was 1696x5052 pixels. The log-log diagram
was computed in the interval betweens_ = 10
pixelsands_ =512 pixels. In the grid transla-
tion averaging method we employed for each
mesh size a set of m = 200 grids, shifted con-
secutively by one pixel with respect to each
other. This method has led to sizeable reduc-
tion of fluctuations in the change of box oc-

In Fig. 1 we present a diagram of fractional
slopes computed for the island Cres. It is seen
that the critical mesh size is log,(1/s) = -7.6.

The selfsimilar section of the log-log dia-
gram for the island Cres is displayed in Fig. 2.
Interval of binary logarithms of mesh sizes (in
pixels) included in the calculation goes from
log, (1/s) = -7.7, i.e., s = 200 pixels (which
corresponds to the real length of 2.5 km) to
log,(1/s)=-3.3,i.e.,s = 10 pixels (which cor-
responds to the real length of 0.125 km). As
seen in figure these data points lie to a very
good approximation on a straight line. The fit
gave the slope of this straight line, i.e., the cor-
responding overall box-counting dimension
for the coastline of the island Cres:

cupations with mesh size. D, (Cres)=1.118 £ 0.001. (7)
1.5
N
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Fig. 1. Diagram of fractional slopes computed for the island Cres

The size of the geographic map used as the source of data for digitalization is
1696x5052 pixels.The interval of mesh sizes on the horizontal axis is between log,
(1/s)=-9, i.e., s = 512 pixels (which corresponds to the real length of 6.5 km) and
log, (1/s) = -3.3, i.e., s = 10 pixels (which corresponds to the real length of 0.125
km?. It is seen that the critical mesh size is log, (1/s) = -7.6. For description see the

text.

Sl. 1. Dijagram frakcijskih nagiba izracunatih za obalnu crtu otoka Cresa

Velicina geografske karte koristene kao izvor podataka za digitalizaciju je 1696x3052
piksela. Interval duljina kutije na vodoravnoj osi ide od log,(1/s) = -9, tj. 5 = 512
piksela (Sto odgovara stvarnoj duljini od 6,5 km) do log, (1/5) = -3.3, tj. s = 10
piksela (§to odgovara stvarnoj duljini od 0,125 km). Sa slike se vidi da je kriticna
duljina kutije log,(1/s) = -7,6. Za opis vidjeti tekst.
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Fig. 2. Selfsimilar section of the log-log diagram computed for the coastline of the
island Cres

Interval of binary logarithms of mesh sizes (in pixels) is between log, (1/s) = -7.7,
i.e., s =200 pixels (which corresponds to the real length of 2.5 km) and log, (1/5) = -
3.3, i.e., 5 = 10 pixels (which corresponds to the real length of 0.125 km). Thus, for
the finest mesh size the island Cres is covered by a grid of 170x505 boxes, each of
the size 10x10 pixels. Solid straight line displays a fit to data points. The correspond-
ing box-counting dimension for the coastline of island Cres is: D, = 1.118 = 0.001.
Si. 2. Samoslicni dio log-log dijagrama izracunat za obalnu crtu otoka Cresa
Interval binarnih logaritama duljine kutije (u pikselima) je izmedu log, (1/s) = -7,7,
1j. s = 200 piksela (3to odgovara stvarnoj duljini od 2,5 km) i log,(1/s) = -3,3, tj. 5 =
10 piksela (5to odgovara stvarnoj duljini od 0,125 km). Na taj nacin, za najfiniju
duljinu kutije otok Cres je prekriven reSetkom od 170x5035 kutija, svaka velicine 10x10
piksela. Pravac predstavija fit na tocke podataka. Odgovarajuca fraktalna dimenzija

metode brojanja kutija za otok Cres je: D, = 1,118 £ 0,001.

Here, the statistical error is obtained by
linear regression method. In the following
considerations we use the rounded off value
of 1.12.

In the next step, the map of Cres was
divided into three parts: the northern part, the
central part and the southern part (Fig. 3, Lh.s.).
For each part of Cres, the fractal dimension
was determined separately, following the same
procedure as before. The results were:

D, (Northern Cres) = 1.03, (8)
D, (Central Cres) = 1.08, 9
D, (Southern Cres) = 1.17. (10)

We see that the coastline of the island Cres
can be considered as a combination of three

statistical fractals, corresponding to three parts
of Cres with partial fractal dimensions
(8)-(10). As seen, in the case of present
geographic statistical fractal, the fractal
dimension of the whole (total coastline of
Cres) is smaller than for its most fractal
segment (Southern Cres).

Dividing further the map of island Cres
into 2x6 = 12 parts, we obtain the partial fractal
dimensions given in Fig. 3 (r.h.s.). In that case,
the part of Cres in the lower right corner has
the largest fractal dimension (1.24), close to
the fractal dimension of the Koch curve, which
is a prototype of mathematical selfsimilar
fractal (OtT, 1993). Dividing this part even
further into four parts, its lowest right part,
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containing the most developed part of the
coastline of Cres, has the fractal dimension of
1.29, which is above the value of fractal
dimension of the Koch curve.

5. Dependence of measured value of the
length of coastline on the precision (com-
pass setting)

Let us now address the question of the total
length of coastline of Cres measured at
different levels of precision. We have
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Fig. 3. Fractal dimension computed for parts of island Cres
Left map: Cres is divided into three parts: northern, central and
southern. Right map: Cres is divided into twelve parts. Within
each part of the island the corresponding calculated fractal di-
mension is given,

SI. 3. Fraktalna dimenzija izracunata za dijelove otoka Cresa
Lijeva karta: Cres je podijeljen na tri dijela: sjeverni, srednji i
Juzni. Desna karta: Cres je podijeljen na 12 dijelova. Unutar
svakog dijela otoka navedena je odgovarajuéa izracunata
fraktalna dimenzija.
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determined that the overall fractal dimension
of Cres in the range of mesh size between 1.5
kmand 0.125 kmis D, = 1.12. Therefrom we
can obtain an estimate for the ratio of lengths
of the coastline of Cres obtained by
measurement at two different precisions
(compass settings). Let us denote by L(s ) the
value obtained for the coastal length using
compass setting s,, and by L(s,) the value
obtained using compass setting s,. Then the
ratio of these two values obtained for the length
of coast is given by approximate expression:

ﬁ = (ﬁ)Db-l
L(s,) s,
This approximate expression is obtained

under two assumptions. First, it is assumed
that the precisions s, and s, corresponding to
mesh sizes, lie in selfsimilar section of the log-
log diagram for this coast. Second, it is
assumed that the length of a segment of
coastline lying in each non-empty box is equal
to the length of box (mesh size).

Let us now illustrate the application of
formula (11) in the case of island Cres. For
example, Eq. (11) means that the ratio of
values for the length of coastline of Cres
obtained by measurements with precisions
(compass settings) s, =0.125 km and 5, = 1.5
km is:

L(0.125 km) L5km izt 1.5 o

L(1.5 km) "(0.125 km’ 0.125)_ 135

Let us now assume that the same value of
the overall fractal dimension of 1.12, obtained
in the range of mesh sizes between 1.5 km
and 0.125 km, can be extrapolated to lower
values of the mesh size. Then, we can obtain
estimates for the total length of Cres measured
at very high precisions, for example at the
precision of 1 m. For example, the calculated
ratio of the values for the length of Cres at the
precisions (compass settings) of 1 mand 1 km
will be:

(1)
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L(0.001 km)

012
L1 km) =(1000)=2.29

Thus, it is predicted that the value of the
coastline of Cres measured at the precision
(compass setting) of 1 m will be 2.29 times
larger than the value measured at the precision
of 1 km. This means that, under previous
assumptions, the total length of the coastline
of Cres measured at the precision of 1 m would
be more than 500 km.

CONCLUSION

In this paper we have investigated the sen-
sitivity of calculated box counting fractal di-
mension of the coastal line on the interval of
mesh sizes used in the computation. Further-
more, we investigated the partial box-count-
ing dimensions of segments of the coastline.
In order to perform these computations, we
developed a set of computer codes involving
subroutines for digitalization of data from geo-
graphic map, subroutine for reading digital-
ized data, subroutine for data processing and
subroutine for connecting the "reading” and
“processing” subroutines.

As a case study, we have performed com-
putations for the island Cres, which has a size
of about 20 km * 60 km. The main results are
as follows.

The log-log diagram displaying the
number of non-empty boxes M(s) versus in-
verse mesh size 1/s can be separated into two
sections: non-selfsimilar and selfsimilar. The
non-selfsimilar section, lying at the side of
large mesh sizes, is characterized by large fluc-
tuations in fractional slopes of the log-log
graph, which increase with increasing mesh
size. On the other hand, in the selfsimilar sec-
tion, which lies below a certain critical value
of mesh size all the way down to the limit given
by scale of geographic map, data points on
the log-log graph lie to a very good approxi-
mation on a straight line. The slope of this

straight line is associated with overall fractal
dimension of the coastline. In our case study
for the island Cres the interval of mesh size in
the selfsimilar section goes from the critical
value s =2.5 km to the limiting value s =0.125
km which is determined by the map scale.

It should be pointed out, that in any deter-
mination of fractal dimension one should be
careful to check whether the mesh sizes being
used lie in selfsimilar section of the log-log
diagram. Otherwise, it may happen that the
slope of log-log graph is, in fact, determined
in non-selfsimilar section of the log-log graph.
As shown in this paper, the result of calcula-
tions in such cases would present fractional
slope, which may sizeably exceed the fractal
dimension, leading to misleading conclusion.

Separating the coastline of the island Cres
into parts, and determining the fractal dimen-
sion of each part from the slope of log-log
graph in the selfsimilar region as before, par-
tial fractal dimensions may differ sizeably
between different parts of the coastline.

It would be interesting to investigate how
the same selfsimilar section of log-log diagram
extrapolates towards lower values of mesh size
and whether a truncation appears at the low
side of mesh sizes. At this low mesh size limit
the effects of tides and of technical interven-
tions in changing the coastline should be taken
into account. On the other hand, such system-
atic investigations should be extended to larger
sections of the coastline, for example to the
total Adriatic coastline. Furthermore, an in-
teresting problem is related to correlations
between fractality of the coastline at different
scales, i.e., between the fractal dimension of
the coastline and its constituent parts at suc-
cessively increasing scales.

It would be interesting to interpret these
results in light of general theoretical investi-
gations of how the fractalities on the earth’s
relief can be created by water erosion, with
water as a medium which transmits the infor-
mation about the surrounding structures to the
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local growth point, being a crucial factor for

local growth characterized by long-range cor-
relations (INaokA & Takavasu, 1993) and by

tectonic movements which are also character-
ized by fractality (HiraBAvasI, ITO, & YoOsHil,
1992).
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Sazetak
FRAKTALNA DIMENZIJA OBALNE CRTE HRVATSKOG
OTOKA CRESA

VLADIMIR PAAR, MARO CVITAN, NENAD OCELIC i MIROSLAYV JOSIPOVIC

U ovom radu istrazuje se osjetljivost
fraktalne dimenzije obalne crte izraCunate
metodom kutija o intervalu duljina kutije.
Nadalje, istrazuju se parcijalne fraktalne
dimenzije za pojedine dijelove obalne crte. Za
te ratune izraden je skup kompjutorskih
programa koji ukljucuje potprograme za
digitalizaciju podataka iz geografske karte, za
¢itanje podataka s diska, za obradu podataka
te za povezivanje potprograma za Citanje i
obradu,

Ova kompjutorska metoda je primijenjena
na slucaj obalne crte otoka Cresa. Glavni
rezultati ovih istraZivanja su sljede¢i.

Log-log dijagram koji prikazuje broj
nepraznih kutija N(s) u ovisnosti o recipro¢noj
vrijednosti duljine kutije razlaze se na dva

dijela: nesamosli¢ni i samosli¢ni. Nesa-
mosliéni dio, koji leZi na strani velikih duljina
kutije, karakteriziran je velikim fluktuacijama
frakcijskog nagiba log-log grafa, koji rastu s
duljinom kutije. S druge strane, u samosli¢nom
dijelu log-log dijagrama koji leZi ispod odre-
dene kriti¢ne vrijednosti duljine kutije i proteze
se prema manjim vrijednostima sve do donje
granice odredene mjerilom geografske karte,
tocke log-log grafa leze vrlo priblizno na
pravcu. Nagib tog pravea pridruzuje se uku-
pnoj fraktalnoj dimenziji obalne crte. U naSem
racunu za otok Cres interval duljine kutije
proteze se od kriti¢ne vrijednosti s = 2,5 km
prema manjim vrijednostima sve do donje
granice 0,125 km, koja je odredena skalom
geografske karte.
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Nadalje, obalna crta otoka Cresa
podijeljena je na dijelove i fraktalna dimenzija
svakog dijela odredena je kao nagib log-log
grafa u samoslicnom segmentu. Ovako
dobivene parcijalne fraktalne dimenzije mogu
se medusobno znatno razlikovati za razlicite
dijelove obale.

Zanimljivo pitanje za daljnja istraZivanja
je kako se samosli¢éni segment log-log grafa
ekstrapolira prema jo§ manjim vrijednostima
duljine kutije i pojavljuje li se rezanje fraktalne
strukture na strani malih duljina kutije. U
istraZivanju ovisnosti log-log dijagrama na toj
vrlo preciznoj skali trebalo bi takoder uzeti u
obzir ovisnost o razini plime i oseke (trebalo
bi razmatrati obalnu crtu za neku odredenu
visinu morske razine) kao i tehnicke interven-
cije u obalnu crtu koje mijenjaju njezinu
prirodnu fraktalnost. S druge strane, sistemat-
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ska istraZivanja bi trebalo proSiriti prema
veé¢im segmentima obalne crte, na primjer na
ukupnu obalnu crtu Jadranskog mora. Nadalje,
zanimljiv je problem korelacija izmedu frak-
talnosti obalne crte na razli¢itoj skali, kao na
primjer izmedu ukupne fraktalne dimenzije
obalne crte i fraktalnih dimenzija njezinih sas-
tavnih dijelova na uzastopno rastucoj ljestvici.
Takoder bi bilo zanimljivo da se ovi
rezultati interpretiraju u svijetlu opc¢ih
teorijskih istrazivanja kako fraktalnost reljefa
nastaje djelovanjem erozije, pri ¢emu voda
djeluje kao medij za prijenos informacije o
okolnoj strukturi na tocku rasta kao kljucni
¢imbenik lokalnog rasta, kojeg karakteriziraju
korelacije dugoga dosega (INnaoka &
Takavasu, 1993) i tektonskih pomicanja koja
su takoder karakterizirana fraktalnoscu
(HiraBAYASI, ITO, & YosHu, 1992).
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