
Vol. 3 No.1. / June 2012

14

Business Systems Research

Performance analysis of the partial use of a local
optimization operator on the genetic algorithm for
the Travelling Salesman Problem
Milan Djordjevic, Marko Grgurovič and Andrej Brodnik
Department of Information Science and Technology, University of Primorska, Koper, Slovenia

Background: The Travelling Salesman Problem is an NP-hard problem in combinatorial optimization
with a number of practical implications. There are many heuristic algorithms and exact methods for
solving the problem. Objectives: In this paper we study the influence of hybridization of a genetic
algorithm with a local optimizer on solving instances of the Travelling Salesman Problem. Methods/
Approach: Our algorithm uses hybridization that occurs at various percentages of generations of a
genetic algorithm. Moreover, we have also studied at which generations to apply the hybridization
and hence applied it at random generations, at the initial generations, and at the last ones. Results:
We tested our algorithm on instances with sizes ranging from 76 to 439 cities. On the one hand, the
less frequent application of hybridization decreased the average running time of the algorithm from
14.62 sec to 2.78 sec at 100% and 10% hybridization respectively, while on the other hand, the quality
of the solution on average deteriorated only from 0.21% till 1.40% worse than the optimal solution.
Conclusions: In the paper we have shown that even a small hybridization substantially improves the
quality of the result. Moreover, the hybridization in fact does not deteriorate the running time too
much. Finally, our experiments show that the best results are obtained when hybridization occurs in
the last generations of the genetic algorithm.

Keywords: genetic algorithm, travelling salesman problem, hybridization, optimization, grafted
genetic algorithm
JEL classification: C61
Paper type: Research article

Recieved: 28, April, 2012
Revised: 30, May, 2012
Accepted: 29, June, 2012

Citation: Djorjevic, M., Grgurović, M., Brodnik, A. (2012). “Performance analysis of the partial use of a
local optimization operator on the genetic algorithm for the Travelling Salesman Problem”, Business
Systems Research, Vol. 3, No. 1, pp. 14-22.
DOI: 10.2478/v10305-012-0002-4

Introduction
Genetic Algorithms (GA) use mechanisms inspired by biological evolution (Holland, 1975; Haupt and Haupt,
2004). They are applied on a finite set of individuals called population. Each individual in a population
represents one of feasible solutions in a search space. Mapping between genetic codes and the search
space is called encoding and can be binary or over some alphabet of higher cardinality. Good choice
of encoding is a prime condition for successful application of a genetic algorithm. Each individual in the
population is assigned a value called fitness. Fitness represents a relative indicator of quality of an individual
compared to other individuals in the population. Selection operator chooses individuals from the current
population and takes the ones that are transferred to the next generation. Thereby, individuals with better
fitness are more likely to survive in the next generation. The recombination operator combines parts of
genetic code of the individuals (parents) into codes of new individuals (offspring).

The components (operators) of the genetic algorithm software system are: Genotype, Fitness function,
Recombinator, Selector, Mater, Replacer, Terminator, and in our system (Local) Optimizer which is a new
extended component.

Abstract

Business Systems Research Vol. 3 No.1. / June 2012

15

In this paper we study a well-defined problem of a Travelling Salesman Problem (TSP). The TSP is a
combinatorial optimization problem on a set of cities {c1, c2, ..., cn} where for each pair {ci, cj} of distinct
cities a distance d(ci ,cj) is given. The goal is to find an ordering π of the cities that minimizes the quantity

 (1)

This quantity is referred to as the minimum tour length since it is the length of the tour a salesman would
make to visit the cities in the order specified by the permutation π, returning at the end to the initial city. In
this paper we will concentrate on a symmetric TSP in which the distances satisfy property d(ci, cj)=d(cj, ci)
for 1 ≤ i, j ≤ n. More precisely, in tests we will consider the Euclidean distance version of TSP. In Euclidean TSP
we have a complete graph on n cities that are defined by coordinates and the distance between cities is
defined as an Euclidean distance.

TSP is frequently met in areas like logistic, scheduling, route planning, sequencing, and cellular
manufacturing (Gutin and Punnen, 2002). Consequently, there is a high need for solution of practical
instances of TSP. However, since the TSP is known to be NP-hard (Garey and Johnson, 1979) even under
substantial restrictions, we are restricted to compute approximate solutions. There were proposed various
greedy heuristics for solving TSP including nearest neighbor (Hoos and Stützle, 2005) and 2-opt. We will use
the later in our algorithm as a hybridization component of a canonical GA. The main idea behind the
2-opt heuristic is to take a route that crosses itself and reorder it so that it does not cross itself any more and
simultaneously reduce the tour length. An exchange step consists of removing two edges from the current
tour and reconnecting the resulting two paths in the best possible way, as shown in Figure 1.

Figure 1
Elimination of crossing in 2-opt heuristic.

Source: Author’s illustration

Although the 2-opt algorithm (Helsgaun, 2000; Engels and Manthey, 2009) performs well and can
be applied to TSP with many cities, it finds only a local minimum. Furthermore, for the general (i.e. non-
Euclidean) version of TSP it is known that there is no upper bound on a quality of a heuristic algorithms unless
P=NP (Garey and Johnson, 1979). Nevertheless, we will be interested in relative quality of our algorithm on
a given set of samples.

In practice one of the most frequently used programs for solving TSP is Concorde (Applegate, Bixby,
Chvátal and Cook, 2001). It is based on the branch and cut method (Hahsler and Hornik, 2007). Besides it
there is a range of solutions based on meta-heuristics including life-inspired approaches like ant colonies
(Dorigo and Gambardella, 1997) and GA (Freisleben and Merz, 1996). Our algorithm is based on the later.

Business Systems Research Vol. 3 No.1. / June 2012

16

Although there are known approaches that tried to combine canonical GA with local optimization (cf.
Memetic Algorithms in (Merz and Freisleben, 2001), or hybridization of GA in (Sels and Vanhoucke, 2011)),
our solution is novel in two respects. First, we include local optimization as one of the operators of GA and
secondly we do not use it in all generations.

The rest of the paper is organized as follows. First we introduce the general framework of our algorithm
including the principle of methodology and present the procedure of hybridization of TSP solving genetic
algorithm. The third section describes two experiments and instances of TSP used in the experiments.
The section is followed by experimental results, their analysis and discussion. The paper concludes by
summarizing the results, conclusion and suggestions for further research.

Methodology
Grafting in botany is when the tissues of one plant are affixed to the tissues of another. Grafting can reduce
the time to flowering; shorten the breeding program, etc. Similarly we introduced into a canonical GA a
local optimizer – we grafted GA or we hybridized it. This way we (locally) optimize each genome in an
evolution process. There exist a number of local optimizers, which can be used on their own as a greedy
solution to NP-hard problems – e.g. (Freisleben and Merz, 1996) used a k-opt heuristics. There exists even its
hardware implementation (Hoos and Stützle, 2005).

The pseudo-code of our Grafted Genetic Algorithm (GGA) is:

1. t=0
2. p(t):=Initialize()
3. q(t):= Evaluate(P(t))
4. While (q(t) < qexpected) and (t < tmax)
5. sel:= Select(P(t))
6. mat:= Mate(sel)
7. rec:= for each pair m Є mat do Recombine(m)
8. loc:= for each genome r Є rec do Optimize(r)
9. P(t+1):= Replace(loc, P(t))
10. q(t+1):= Evaluate(P(t+1))
11. t:=t+1
12. EndWhile

As usual, our algorithm stops either when the expected quality of solution is reached or when the
maximum number of generations tmax is passed. The former can be measured in various terms starting from
the absolute quality value to the relative diversification of population (e.g. standard deviation). On the
other hand the later is measured either in the number of generations or in the total time elapsed.

We studied two versions of recombination (line 7 in the algorithm). The first, Edge map crossover, emx
for short (Merz and Freisleben, 2001), uses a so-called edge map EM[*] that contains a list of neighbouring
cities for each city. First the operator for each edge (u, v) in a parent genomes A and B, adds v to the
edge-map list EM[u] and u to EM[v] for a symmetric version of TSP. Then the operator works as follows:

1. Pick a random city to be the current location u.
2. Remove the current location u from all edge map lists EM[*].
3. If the current location EM[u] still has remaining edges, go to step 4, otherwise go to step 5.
4. Choose the new current location u’ from the edge map list EM[u] as the one with the shortest edge

map list EM[u’]. Set u:= u’ and go to step 2.
5. If there are left any locations, choose as the new current location u’ the one with the shortest edge

map list EM[u’]. Set u:= u’ and go to step 2.

The second recombination operator we studied was a distance preserving crossover, dpx for short
(Freisleben and Merz, 1996). It creates a new tour (offspring) preserving the same distance in the number of
edges to both parents. In detail, the operator dpx creates an offspring C from parents A and B as follows:

1. Pick at random parent (wlog. A) and copy it to C.
2. If (u, v) Є C and (u, v) € B delete it from C. At this point C contains fragments of connected cities (u1

→ v1), …, (uk → vk), where in some fragments ui = vi. We call set of ui and vi the end-points of C, EPC.
3. Pick at random a city x from EPC and delete it from EPC.

Business Systems Research Vol. 3 No.1. / June 2012

17

4. Pick from EPC the closest city y to x so that there is edge (x, y) neither in A nor in B. Delete y from EPC.
5. Merge fragments (ui → y) and (x → vj) into (ui → vj).
6. If EPC is not empty, go to step 3.

Although both recombination operators produced offsprings from valid parents, they produced them
in a random way. Because of randomization, the selection and mating (lines 5 and 6 respectively) lost their
role. Moreover, the randomization is a very good source of diversification. However, we are missing in our
meta-heuristic the process of specialization.

This was the reason to extend our algorithm with a specialization step – we grafted a canonical genetic
algorithm with a local optimizer and obtained a grafted genetic algorithm, GGA (Djordjevic and Brodnik,
2011; Djordjevic, Tuba and Djordjevic, 2009). We did not use a k-opt heuristics due to its complexity, but
rather its simpler version 2-opt explained in the previous section (see Figure 1). The hybridization occurs in
line 8 of the pseudocode of our algorithm given above.

Experiment
For testing our strategy and comparing it to other solutions we used the instances of Euclidean distance
based symmetric travelling salesman problem found in TSPLIB (Reinelt, 1991). We used relatively small
instances, for which best solutions are known. The goal of this research was not to find a better algorithm,
but rather to study on a controlled environment the impact of grafting of genetic algorithm.

In the first experiment we used 20 instances, with different sizes in a range from 14 to 150 cities per
instance (look in Table 1). We studied our method (GGA) using two different recombination operators: an
edge map crossover (GGAemx) and a distance preserving crossover (GGAdpx). As the upper and lower
limits on the quality of solution we used nearest neighbour greedy heuristic and Concorde respectively. For
the sake of completeness we compared our method also with 2-opt heuristic itself and with a canonical
genetic algorithm. The main difference between our method and canonical genetic algorithm is that we
use local optimizer in every generation of the algorithm.

In the second experiment we studied what happens if we do not use local optimization in all generations
— in test we used it only in 10, 20, 30, 40, 50, 60, 70, 80 and 90 percents of generations. Furthermore, for each
percentage we applied local optimization in three different ways: at random generations, at the initial
generations and at the ending ones.

All experiments were conducted on a computer with Pentium® 2.8 GHz CPU and Windows 7 operating
system. In our results we cannot directly compare the running times of different solutions as they were
implemented in different programming languages. On one hand we used as a development environment
for GGA the Java written EA Visualizer (Bosman and Thierens, 1999), while Concorde is an AnsiC application.
However, we can compare running times of GGA for different instances and cases explained above.

Table 1
Results of five techniques for solving Euclidean TSP

Name
Greedy 2-opt GAemx GAdpx GGAemx GGAdpx Concorde

quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time

burma14 8,32% 5,71% 0% 74 3,4 0% 81 3,5 0% 7 0,6 0% 6 0,5 3323 0,1

ulysses16 10,42% 7,15% 0% 136 4,1 0% 125 4,4 0% 9 0,7 0% 9 0,7 6859 0,2

ulysses22 12,54% 7,87% 0% 1267 14,7 0% 1328 16,4 0% 8 0,6 0% 8 0,7 7013 0,2

bayg29 13,37% 6,38% 0% 1345 19,4 0% 1137 17,6 0% 13 1,3 0% 14 1,4 1610 0,3

bays29 12,87% 5,37% 0% 2185 29,2 0% 2643 34,1 0% 12 1,2 0% 12 1,2 2020 0,3

dantzig42 14,06% 7,11% 0% 4704 79,8 0% 4232 74,6 0% 10 1,3 0% 9 1,3 699 0,5

att48 13,98% 8,47% 0% 4807 85,2 0% 5213 91,3 0% 22 2,2 0% 23 2,3 33522 0,6

eil51 15,24% 7,67% 4,21% 5482 100.0+ 5,23% 5489 100.0+ 0% 33 3,9 0% 30 3,8 426 0,3

berlin52 14,82% 7,45% 0% 2037 33,7 4,92% 5021 100.0+ 0% 15 1,7 0% 15 1,7 7542 0,4

st70 13,17% 7,84% 5,12% 5259 100.0+ 5,72% 5198 100.0+ 0% 20 4,1 0% 19 4,1 675 0,5

eil76 14,47% 8,15% 6,56% 5347 100.0+ 7,24% 5298 100.0+ 0% 53 4,5 0,19% 49 4,4 538 1,3

pr76 13,96% 9,95% 4,18% 5218 100.0+ 5,36% 5191 100.0+ 0% 42 4,1 0% 43 4,2 108159 1,2

gr96 16,32% 7,14% 4,98% 5191 100.0+ 5,71% 5090 100.0+ 0% 73 8,4 0,13% 73 8,4 55209 1,6

rat99 14,79% 7,41% 5,31% 5114 100.0+ 7,12% 5011 100.0+ 0% 74 11,9 0,17% 70 11,7 1211 1,7

kroA100 12,37% 8,07% 5,12% 5072 100.0+ 6,58% 4971 100.0+ 0% 24 3,6 0,18% 22 3,5 21282 1,7

kroB100 16,58% 7,19% 6,14% 5041 100.0+ 5,92% 4816 100.0+ 0% 39 5,8 0,21% 36 5,7 22141 1,7

kroC100 10,47% 11,19% 4,87% 5121 100.0+ 6,78% 4923 100.0+ 0,10% 34 5,3 0,19% 28 5,1 20749 1,8

kroD100 14,81% 7,74% 5,07% 4976 100.0+ 8,12% 4951 100.0+ 0% 31 5,6 0,29% 25 5,3 21294 1,5

lin105 16,60% 9,85% 6,72% 4756 100.0+ 6,51% 4803 100.0+ 0,01% 26 4,6 0,17% 25 4,6 14379 1,3

ch150 19,62% 11,72% 7,22% 4512 100.0+ 8,77% 4460 100.0+ 0,22% 88 15,2 0,32% 86 15,1 6528 7

Business Systems Research Vol. 3 No.1. / June 2012

18

Results
We present results separately for the first and for the second experiment. In both experiments we used
instances of TSP from TSPLIB of various sizes. The name of the instance also contains its size (the number of
cities, cf. the first columns of Table 1). Next, in the experiments we measured three quantities: the wall clock
time, the number of generations and the quality of the result. The later was measured against the optimal
solution obtained by Concorde. The quality of algorithm A is defined as

 (2)

where lC is a path length obtained by Concorde and lA is a path length obtained by A. We express the
quality always in percents, where, for example, 4% means 4% worse than Concorde.

Let us first look at the results of the first experiment (cf. Table 1), in which we compared our GGA against
greedy algorithm and Concorde. We also compared it against canonical genetic algorithm (GA). The
termination condition in all genetic algorithms was: either standard deviation of genomes was 0 (local
minimum was reached) or 100 seconds time limit expired.

We first look at the quality of results, then at the running time and finally comment on a trade-off between
the quality and the running time. The last column of Table 1 gives results of Concorde and actual path
length in opt column. On the other side of the table is a greedy nearest neighbour approach, whose quality
(column quality is computed using Equation 2) is mostly in the range between 10% and 20%. However,
application of a simple 2-opt heuristic on a randomly generated tour improves the quality to approximately
10% or even better. On the other hand use of GA further improves the quality to approximately 5%. Note,
that runs in cases with 70 or more cities terminated due to time limit and hence minimum was not reached.
All these results were expected.

The long running time of GA was a reason to graft (or hybridize) the GA with local optimization. The
result was substantial decrease in running time. In all cases for GGAemx and for GGdpx the runs were
terminated upon reaching the minimum. The reached minimum was, however, the local one. Nonetheless,
we showed, that the combination of two methods improved the quality of results in a synergy. The quality
of result was below 1% off the optimum.

The running times in Table 1 are given for all algorithms but greedy nearest neighbour and simple 2-opt
heuristics. The later ones had running time in the range between half a second and a second and a half.
However, since all algorithms but Concorde were programmed in Java, their running times are not directly
comparable. Nonetheless, the relative increase in time as function of a problem size can be compared,
and this shows us approximately 25 times increase for GGAemx, 30 times increase for GGAdpx and even
70 times increase for Concorde.

Note also, that GGAemx and GGAdpx performed approximately the same, which shows that the
recombination operator has no major influence on a final result.

In the second experiment we studied the influence of grafting (hybridization) on running time and
quality of solution. In this experiment we used only grafted GA with edge map crossover (GGAemx) and
only eleven cases from TSPLIB (cf. Table 2).

In the experiment we were increasing the number of generations in which we applied hybridization by
10 percents: from 0% — column GAemx in Table 2 till 100% — column GGAemx. Moreover, we also varied
the generations in which we applied the hybridization: either at random generations (column rnd), at
the beginning ones (begin) or at the ending ones (end). The column f.a. gives the running time, while the
numbers in columns q give the quality computed using Equation 2.

We first observe, that application of grafting in the last generations gives the best results. This is
reasonable, as in general in this phase of meta-heuristics we apply mostly specialization and not that
much diversification any more. On the other hand it is interesting that the worst results were obtained when
grafting was applied in random generations. Nonetheless, since in practice the algorithm does not know
which are the last generations, we would need to simulate the behavior. There are two possibilities how
to do it: either, when time limit is reached run the algorithm for some more runs and apply hybridization or
apply hybridization more and more frequently as the number of generations increases. The later approach
is also in line with other meta-heuristics like simulated annealing.

The running time obviously linearly increases as we increase the amount of hybridization (see Figure 2).

Business Systems Research Vol. 3 No.1. / June 2012

19

Table 2
Partial grafting of a genetic algorithm.

Name
GAemx

10 20 30 40 50
rnd begin end f.a rnd begin end f.a rnd begin end f.a rnd begin end f.a rnd begin end f.a

q t q q q t q q q t q q q t q q q t q q q t
eil76 8,93% 0,8 2,46% 2,13% 1,25% 1,2 1,80% 0,99% 0,96% 1,5 1,62% 0,92% 0,77% 1,8 1,58% 0,44% 0,22% 2,2 1,14% 0,37% 0,18% 2,6
pr76 5,39% 0,9 0,60% 0,41% 0,34% 1,3 0,32% 0,24% 0,19% 1,7 0,25% 0,17% 0,10% 2,1 0,20% 0,16% 0,09% 2,4 0,17% 0,11% 0,07% 2,7
gr96 6,46% 1,7 1,68% 0,78% 0,70% 2,3 1,37% 0,59% 0,55% 2,9 0,94% 0,59% 0,55% 3,6 0,78% 0,59% 0,55% 4,2 0,82% 0,55% 0,47% 4,9
rat99 6,14% 1,9 2,53% 1,82% 1,62% 2,6 2,67% 0,90% 0,71% 3,3 2,81% 0,62% 0,56% 4,1 2,13% 0,53% 0,39% 5,2 1,28% 0,43% 0,38% 6,3

kroA100 6,67% 0,6 1,09% 0,73% 0,38% 0,9 0,84% 0,38% 0,33% 1,2 0,19% 0,22% 0,12% 1,5 0,18% 0,08% 0,03% 1,8 0,16% 0,03% 0,02% 2,1
kroB100 7,02% 0,8 1,61% 1,15% 1,02% 1,3 1,26% 0,70% 0,53% 1,8 0,72% 0,70% 0,42% 2,3 0,71% 0,47% 0,35% 2,8 0,76% 0,40% 0,38% 3,3
kroC100 6,61% 0,7 2,20% 1,05% 0,99% 1,2 1,19% 0,90% 0,75% 1,6 0,97% 0,63% 0,52% 2,1 0,79% 0,44% 0,37% 2,5 0,74% 0,38% 0,36% 2,9
kroD100 7,67% 0,8 2,20% 1,87% 2,11% 1,3 2,39% 2,02% 1,47% 1,8 1,44% 1,17% 0,97% 2,3 1,26% 0,89% 0,67% 2,8 0,97% 0,54% 0,46% 3,3

lin105 8,54% 0,5 1,50% 1,11% 1,19% 0,9 0,89% 0,70% 0,50% 1,4 0,83% 0,40% 0,41% 1,8 0,71% 0,37% 0,29% 2,2 0,46% 0,23% 0,23% 2,6
ch150 8,69% 5,4 2,94% 2,52% 2,34% 6,2 2,17% 1,89% 1,83% 6,9 1,77% 1,58% 1,37% 7,8 1,63% 1,46% 1,36% 8,7 1,31% 1,19% 0,92% 9,6
*pr439 10,45% 3,7 4,92% 4,35% 3,48% 11 4,59% 3,43% 2,96% 18 4,04% 3,16% 2,81% 25 3,34% 2,92% 2,56% 36,8 3,62% 3,13% 2,45% 45

 Name

GGAemx
90 80 70 60

rnd begin end f.a rnd begin end f.a rnd begin end f.a rnd begin end f.a
q t q q q t q q q t q q q t q q q t

eil76 0,04% 4,5 0,15% 0,04% 0,04% 4,1 0,18% 0,07% 0,04% 3,7 0,44% 0,15% 0,11% 3,3 1,07% 0,22% 0,11% 2,9
pr76 0,04% 4,1 0,07% 0,04% 0,04% 3,8 0,12% 0,10% 0,05% 3,5 0,11% 0,10% 0,06% 3,2 0,15% 0,11% 0,06% 2,9
gr96 0,12% 8,4 0,23% 0,16% 0,12% 7,7 0,27% 0,23% 0,20% 7 0,39% 0,35% 0,27% 6,3 0,74% 0,35% 0,31% 5,6
rat99 0,00% 11,9 0,07% 0,00% 0,00% 10,8 0,56% 0,05% 0,02% 9,7 0,61% 0,16% 0,05% 8,5 1,13% 0,30% 0,25% 7,4

kroA100 0,00% 3,6 0,00% 0,00% 0,00% 3,3 0,00% 0,00% 0,00% 3 0,01% 0,00% 0,00% 2,7 0,05% 0,00% 0,00% 2,4
kroB100 0,10% 5,8 0,22% 0,12% 0,09% 5,3 0,31% 0,37% 0,22% 4,9 0,52% 0,20% 0,24% 4,3 0,81% 0,30% 0,29% 3,7
kroC100 0,23% 5,3 0,37% 0,32% 0,23% 4,8 0,57% 0,56% 0,22% 4,3 0,52% 0,34% 0,29% 3,7 0,55% 0,32% 0,32% 3,3
kroD100 0,08% 5,6 0,32% 0,28% 0,08% 5,2 0,58% 0,31% 0,26% 4,7 0,61% 0,45% 0,40% 4,3 0,88% 0,53% 0,45% 3,8

lin105 0,10% 4,6 0,12% 0,09% 0,10% 4,2 0,11% 0,15% 0,10% 3,8 0,13% 0,12% 0,09% 3,4 0,21% 0,17% 0,12% 3,0
ch150 0,30% 15,2 0,81% 0,35% 0,30% 14,1 0,86% 0,42% 0,37% 13 0,96% 0,69% 0,54% 12 1,16% 0,97% 0,84% 10,7
*pr439 1,30% 91,8 1,72% 1,66% 1,34% 78,9 2,28% 2,14% 1,97% 70 2,78% 2,18% 2,03% 62 3,26% 2,91% 2,31% 52,4

Figure 2
The running time as a function of amount of hybridization.

Source: Author’s illustration

Business Systems Research Vol. 3 No.1. / June 2012

20

Figure 3
Quality results for case pr439 as the amount of hybridization increases.

Source: Author’s illustration

Similarly the quality of solution also improves as we increase the hybridization. In Figure 3 we see that
for the case pr439 with 439 cities the quality of solution improved from over 10% at no hybridization to
approximately 3% at half hybridization and to 1.3% off the optimal at total hybridization. Similar behaviour
can be observed at other cases (cf. Figure 4).

Figure 4
Quality results for all cases using an end-hybridization.

Source: Author’s illustration

Business Systems Research Vol. 3 No.1. / June 2012

21

Note, that even small hybridization of 10% drastically improves solution — e.g. for the pr439 case to only
about 4% off the optimal. On the other hand, further hybridization keeps improving the result and it is up to
the user to decide how much hybridization she wants to employ.

Probably the decision on the amount of hybridization should be made considering the running time. As
seen in Figure 2 the number of cities increases the steepness of the function. Therefore high hybridization at
large cases would probably increase the running time substantially. However, from our experiments seems
to follow that also lower amounts of hybridization give satisfactory results (see Figure 4).

Conclusion
In the paper we studied the hybridization of a genetic algorithm with a simple local optimization algorithm.
We showed that even a small hybridization substantially improves the quality of the result. Moreover, the
hybridization in fact does not deteriorate the running time too much.

Our experiments further show that the best results are obtained when hybridization occurs in the last
generations of the genetic algorithms. This seems to be in line with classical meta-heuristic algorithms like
simulated annealing, which stop their diversification in the last iterations.

The paper opens a number of interesting questions for future research. The first one is related to the size
of the problem. Namely, how does our GGA behave in cases, where Concorde can no longer compute
the optimal solution? Next, can we use some other local optimization techniques instead of 2-opt and how
would our GGA behave then? A very interesting question is also how to apply our technique to other NP-
hard problems (e.g. 3-SAT or CLIQUE).

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W. (2001), “TSP cuts which do not conform to the template
paradigm”, in Jünger, M., Naddef, D., (Eds), Computational Combinatorial Optimization, Springer,
London, pp. 261-303.

2. Bosman, P., Thierens, D. (1999), “On the modelling of evolutionary algorithms”, in Postma, E., Gyssens,
M. (Eds), Proceedings of the 11th Belgium-Netherlands Conference on Artificial Intelligence, BNAIC,
Vaeshartelt, pp. 67-74.

3. Djordjevic, M., Brodnik, A. (2011), “Quantitative analysis of separate and combined performance
of local searcher and genetic algorithm”, in Proceedings of the 33rd International Conference on
Information Technology Interfaces, ITI2011, Faculty of Mathematics, Natural Sciences & Information
Technologies, University of Primorska, Koper, pp. 515-520.

4. Djordjevic, M., Tuba, M., Djordjevic, B. (2009), “Impact of Grafting a 2-opt Algorithm Based Local
Searcher Into the Genetic Algorithm”, in Proceedings of the 9th WSEAS international conference on
Applied informatics and communications, World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point, pp. 485-490.

5. Dorigo, M., Gambardella, L. M. (1997), “Ant colony system: A cooperative learning approach to the
traveling salesman problem”, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66.

6. Engels, C., Manthey, B. (2009), “Average-case approximation ratio of the 2-opt algorithm for the TSP”,
Operations Research Letters, Vol. 37, No. 2, pp. 83-84.

7. Freisleben, B., Merz, P. (1996), “New genetic local search operators for the traveling salesman problem”,
in Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, Springer,
London, pp. 890-899.

8. Garey, M. R., Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
completeness, New York: WH Freeman & Co.

9. Gutin, G., Punnen, A. P. (2002). The Traveling Salesman Problem and Its Variations, Dordrecht: Kluwer
Academic Publishers.

10. Hahsler, M., Hornik, K. (2007), “TSP-Infrastructure for the traveling salesperson problem”, Journal of
Statistical Software, Vol. 23, No. 2, pp. 1-21.

11. Haupt, R. L., Haupt, S. E. (2004). Practical Genetic Algorithms, 2nd ed., New York: John Wiley & Sons.
12. Helsgaun, K. (2000), “An effective implementation of the Lin-Kernighan traveling salesman heuristic”,

European Journal of Operational Research, Vol. 126, No. 1, pp. 106-130.
13. Holland, J. (1975). Adaptation in natural and artificial systems, Ann Arbor: The University of Michigan

Press.
14. Hoos, H. H., Stützle, T. (2005). Stochastic local search: Foundations and applications, Waltham: Morgan

Kaufmann.

Business Systems Research Vol. 3 No.1. / June 2012

22

15. Merz, P., Freisleben, B. (2001), “Memetic algorithms for the traveling salesman problem”, Complex
Systems, Vol. 13, No. 4, pp. 297-345.

16. Reinelt, G. (1991), “TSPLIB – A traveling salesman problem library”, ORSA Journal on Computing, Vol. 3,
No. 4, pp. 376-384.

17. Sels, V., Vanhoucke, M. (2011), “A hybrid dual-population genetic algorithm for the single machine
maximum lateness problem”, in Merz, P., Hao, J. K., (Eds), Evolutionary Computation in Combinatorial
Optimization, Springer, Berlin, pp. 14-25.

About the authors
Milan Djordjevic is a PhD student in Computer Science at the Faculty of Mathematics, Natural Sciences and
Information Technologies in Koper, Slovenia. Mine research interests lie in theoretical computer science and
operational research, particularly the combinatorial optimization and meta-heuristic algorithms. Author
can be contacted at milan.djordjevic@student.upr.si

Marko Grgurovič is a Master’s student in Computer Science at the Faculty of Mathematics, Natural Sciences
and Information Technologies in Koper, Slovenia. His research interests lie in theoretical computer science,
particularly the design and analysis of algorithms. Author can be contacted at marko.grgurovic@student.
upr.si

Andrej Brodnik got his PhD from the University of Waterloo, Ontario, Canada. In 2002 he moved to University
of Primorska. During the same time he also worked as a researcher and adjoined professor with the University
of Technology in Luleå, Sweden. Andrej authored several tens of various scientific papers. He is also author
and co-author of patents in Sweden and USA. The CiteSeer and ACM Digital Library lists over 200 citations
of his works. Currently Prof. Brodnik holds positions with the University of Ljubljana and the University of
Primorska. Author can be contacted at andrej.brodnik@upr.si

mailto:milan.djordjevic%40student.upr.si?subject=
mailto:marko.grgurovic%40student.upr.si%20?subject=
mailto:marko.grgurovic%40student.upr.si%20?subject=
mailto:andrej.brodnik%40upr.si%20?subject=

