Variational inequality and complementarity problem in locally convex Hausdorff topological vector space

SUDARSAN NANDA*

Abstract. The purpose of this paper is to study variational inequality and complementarity problem in a locally convex Hausdorff topological vector space.

Key words: variational inequality, Hausdorff topological vector space

AMS subject classifications: 47J20

Received January 20, 2004

Accepted February 19, 2005

Let X be a real locally convex Hausdorff topological vector space (lc Htvs) with a continuous seminorm p and let X^* be its dual. Let K be a closed convex subset of X and $T: X \to X^*$ a mapping. Let $\eta: K \times K \to X$.

Definition 1. T is said to be

- (i) η -monotone if $(Tx Ty, \eta(x, y)) \ge 0, \forall x, y \in K$,
- (ii) strictly η -monotone if $(Tx Ty, \eta(x, y)) > 0, \forall x, y \in K, x \neq y$,
- (iii) strongly η -monotone if there exists a constant C>0 such that

$$(Tx - Ty, \eta(x, y)) \ge C[p(\eta(x, y))]^2,$$

(iv) η -coercive if $(Tx,Ty)/p(\eta(x,x)) \to \infty$ as $p(\eta(x,x)) \to \infty$.

We consider the nonlinear variational inequality (NVI) which is defined as follows:

$$x \in K : (Tx, \eta(y, x)) \ge 0 \forall y \in K. \tag{1}$$

Another NVI can be stated as follows:

$$x \in K : (Ty, \eta(y, x)) \ge 0 \forall y \in K. \tag{2}$$

Let S_1 and S_2 denote the solutions of (1) and (2) respectively. These can be generalized as follows:

$$x \in K : (Tx - Sx, \eta(y, x)) \ge 0 \forall y \in K \tag{3}$$

^{*}Department of Mathematics, IIT Kharagpur, Kharagpur-721302, India, e-mail: nanda@maths.iitkgp.ernet.in

102 S. NANDA

$$x \in K : (Ty - Sy, \eta(y, x)) \ge 0 \forall y \in K. \tag{4}$$

We have

Theorem 1. If η is antisymetric and T is strictly η -monotone, then S_1 is empty or singleton.

Proof. Assume that $x_1, x_2 \in S_1$. Then

$$(Tx, \eta(x_2, x_1)) \ge 0, \tag{5}$$

and $(Tx_2, \eta(x_1, x_2)) \ge 0$. From (1), η is antisymmetric. We have $(Tx_1, \eta(x_1, x_2)) \le 0$. Hence $(Tx_1 - Tx_2, \eta(x_1, x_2)) \le 0$. Because T is strictly η -monotone, this is impossible unless $x_1 = x_2$ and this completes the proof.

Theorem 2. Let T be η -monotone and semicontinuous, $\eta(x,x) = 0, \eta$ positive homogeneous. Then $S_1 = S_2$.

Proof. Let $x \in S_1$. Since T is η -monotone, $(Ty, \eta(y, x)) \geq (Tx, \eta(y, x)) \geq 0 \Rightarrow x \in S_2$. Let $x \in S_2$. Let $y \in K$. Since K is convex, for 0 < t < 1, $y_t = (1-t)x + ty = x - t(y - x) \in K$. Hence $(Ty_t, \eta(Y_t, x)) \geq 0$. But $\eta(y_t, x) = -t\eta(y, x)$. Now letting $t \to 0$ we get $(Tx, -t\eta(y, x)) \geq 0$. Thus $x \in S_1$ and this completes the proof.

We introduce the concept of the complementarity problem(CP) in real lcHtvs. Let K be a closed convex cone in X. Let K^* be the subset of X^* defined by $K^* = \{y \in X^* : (y, \eta(y, x)) \geq 0 \forall x \in K\}$. Then $x \in K, Tx \in K^*, (Tx, \eta(x, x)) = 0$ will be called the generalised complementarity problem (GCP). Let C denote the set of all solutions of GCP.

Theorem 3. Let K be a closed convex cone, η is antisymmetric, then $S_1 = C$. **Proof.** Let $x \in S_1$. Take y = x. Then $(Tx, \eta(x, x)) \ge 0$. Since η is antisymmetric $(Tx, \eta(x, x)) \le 0 \Rightarrow (Tx, \eta(x, x)) = 0$. Thus $x \in C$ and hence $S_1 \subset C$. Clearly $C \subset S_1$ and this completes the proof.

We shall now prove the existence theorem for variational inequality in lcHtvs. For this purpose we need the following results which are due to Tarafdar[2].

Lemma 1. Let K be a nonempty compact and convex subset of a Hausdorff tvs X and $S: K \rightarrow P(K)$ be a multivalued mapping such that

- (i) for each $x \in K$, Sx is a nonempty convex subset of K,
- (ii) for each $y \in K$, $S_y^{-1} = \{x \in K : y \in Sx\}$ contains an open subset U_y of K where U_y may be empty.
- (iii) $\bigcup \{U_y : y \in K\} = K$.

Then there exists an element $x_0 \in K$ such that x_0 belongs to Sx_0 .

Theorem 4. Let K be a nonempty compact convex subset of lcHtvs X and let $T: K \to X^*$ be strongly η -monotone. Let η be continuous. Suppose η satisfies $\eta(y,x) = \eta(y,z) + \eta(z,x)$. Then NVI(1) has a solution in K.

Proof. Suppose NVI has no solution in K. Then for each $x \in K$, there exists a $y \in K$ such that $(Tx, \eta(y, x)) < 0$. Define a multivalued map $F : K \to P(K)$ by $F(x) = \{y \in K : (Tx, \eta(y, x)) < 0\}$. Clearly F(x) is nonempty and convex for each $x \in K$. It follows that $F^{-1}(y) = x \in K : (Tx, \eta(y, x)) < 0$. Since T is strongly η -monotone, for each $y \in K$, the complement of $F^{-1}(y)$ is in K, i.e.

$$(F^{-1}(y))^{c} = K - F^{-1}(y) = \{x \in K : (Tx, \eta(y, x)) \ge 0\}$$

$$\subseteq \{x \in K : (Ty, \eta(y, x)) \ge C[(p(\eta)(y, x))^{2}]\} = H(y).$$

It is easy to show that H(y) is convex. We now show that H(y) is relatively closed in K. For this purpose, let $\{x_{\alpha}\}$ be a Moore-Smith sequence in H(y). Then $(Ty, \eta(y, x_{\alpha})) \geq C[p(\eta(y, x_{\alpha}))]^2$. Let $x_{\alpha} \to x \in K$. We claim that $x \in H(y)$. Since η is continuous, $\eta(X \times X)$ is dense in X, p is a continuous seminorm. We have

$$(Ty, \eta(y, x)) = (Ty, \eta(y, x_{\alpha})) + (Ty, \eta(x_{\alpha}, x))$$

$$\geq C[p(\eta(y, x_{\alpha}))]^{2} + (Ty, \eta(x_{\alpha}, x))$$

$$\geq C[p(\eta(y, x_{\alpha}))]^{2}$$

 $\Longrightarrow x \in H(y).$ Now

$$K - H(y) = \{x \in K : (Ty, \eta(y, x)) < C(p(\eta(y, x)))^2\}$$

$$\subseteq \{x \in K : (Tx, \eta(y, x)) < 0\}$$

$$= F^{-1}(y).$$

This implies for each $y \in K$ there is an element $x \in K$ such that $\bigcup (K-H(y))=K$. But by Lemma 1, there exists an element $x \in K$ such that $x \in F(x)$, which means $0 > (Tx, \eta(x, x)) = 0$. This contradiction completes the proof.

Let D be a nonempty compact, convex subset of X and $F: D \to Y = X^*$. The following existence theorem on variational inequality was established by Karamardian [1].

Proposition 1. Let the mapping $(u,v) \to (u,F(v))$ be continuous on $D \times D$. Then there exists a point $\bar{x} \in D$ such that for all $x \in D$, $(x - \bar{x}, F(\bar{x})) \geq 0$.

We now obtain the following theorem on the complementarity problem, by using the results of Karamardian stated above.

Theorem 5. Let K be a closed and convex cone in X and let $F: K \to Y = X^*$ be such that

- (i) the mapping $(u, v) \rightarrow (u, F(v))$ is continuous on $K \times K$,
- (ii) there exists $\bar{x} \in K$ such that $F(x) \in intK^*$.

Then there exists $x \in X$ such that $\bar{x} \in K$, $F(\bar{x}) \in K^*$ and $(\bar{x}, F(\bar{x})) = 0$.

Proof. For any $u \in K$ define

$$D_{u} = \{x \in D : \langle x, Fx \rangle \le \langle u, Fx \rangle \}$$

$$D_{u}^{0} = \{x \in D : \langle x, Fx \rangle < \langle u, Fx \rangle \}$$

$$S_{u} = \{x \in D : \langle x, Fx \rangle = \langle u, Fx \rangle \}.$$

For each $u \in K$, D_u is convex. From the continuity assumption it follows that D_u is a closed subset of the compact convex set D for each $u \in K$ and hence is compact. Thus for each $u \in K$, D_U is a nonempty, compact, convex set in X, therefore by Proposition 1 it follows that for each $u \in K$, there is $x_u \in D_u$ such that

$$\langle y - x_u, Fx_u \rangle \ge 0,$$
 for all $y \in D_u$. (6)

104 S. Nanda

Since $0 \in D_u$, $\langle x_u, Fx_u \rangle \leq 0$.

Case1: Let $x_u \in D_u^{-0}$. Then there is a $\lambda > 1$ such that $\lambda x_u \in S_u \subset D_u$. Then we have $\langle x_u, Fx_u \rangle \leq \langle \lambda x_u, Fx_u \rangle = \lambda \langle x_u, Fx_u \rangle$. Since $\langle x_u, Fx_u \rangle \leq 0$, it is impossible unless $\langle x_u, Fx_u \rangle = 0$. Thus (6) holds.

Case2. Let $x_u \in S_u$ for all $u \in K$. Let $u \in K$ be such that $Fx_u \in intK^*$. Then $\langle u, Fx_u \rangle > 0$. By the hypothesis there is $x \in K$ such that $Fx \in intK^*$. Thus for this x we have $\langle x, Fx \rangle > 0$. Choose u such that $\langle u, Fx \rangle > \langle x, Fx \rangle > 0$. Thus $x \in D_u^0$. Now $x_u \in S_u$. Hence $\langle x_u, Fx_u \rangle > = \langle u, Fx_u \rangle > 0$. This contradicts $\langle x_u, Fx_u \rangle \leq 0$ and thus case 2 cannot occur and this completes the proof. \square

Remark 1. Observe that in the above theorem Du is convex and (compact) if D is convex and (compact): Du need not be convex if D is any compact (non-convex)set. For example, take $F: R^+ \to R$, $F(x) = \sin x$, $D = \left[\frac{\pi}{4}, 2\pi\right]$. Then

$$Du = \{x \in D : (x, Fx) \le (u, Fx)\} = \{x : x \sin x \le u \sin x\}.$$

For $u = \pi/2$, $Du = [\pi/4, \pi/2] \bigcup [\pi, 2\pi]$ which is not convex.

References

- [1] S. Karamardian, Generalised complementarity problem, J. Optm Theory Appl. 8(1971),161-168.
- [2] E. TARAFDAR, On nonlinear variational inequalities, Proc. Amer. Math. Soc 67(1977), 95-98.