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Fixed points of asymptotically regular mappings

Ljubomir Ćirić∗

Abstract. Two general fixed point theorems for asymptotically
regular self-mappings on a metric space X which satisfy the contractive
condition (1) below are proved. Our results extend and generalize results
of Sharma and Yuel [4] and Guay and Singh [3].
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1. Introduction

Banach fixed point theorem and its applications are well known. Many authors have
extended this theorem, introducing more general contractive conditions, which im-
ply the existence of a fixed point. Almost all of conditions imply the asymptotic
regularity of the mappings under consideration. So the investigation of the asymp-
totically regular maps plays an important role in fixed point theory.

Sharma and Yuel [4] and Guay and Singh [3] were among the first who used the
concept of asymptotic regularity to prove fixed point theorems for a wider class of
mappings than a class of mappings introduced and studied by Ćirić [2].

The purpose of this short paper is to study a wide class of asymptotically reg-
ular mappings which possess fixed points in complete metric spaces. Our results
generalize and unify the results of Sharma and [4] and Guay and Singh [3].

2. Main Results

Browder and Petryshyn [1] defined the following notion.
Definition 1. A selfmapping T on a metric space (X, d) is said to be asymp-

totically regular at a point x in X, if

d(T nx, T nTx) → 0 as n → ∞, (1)

where T nx denotes the n-th iterate of T at x.
Let R+ be the set of nonnegative reals and let Fi : R+ → R+ be functions

such that Fi(0) = 0 and Fi is continuous at 0 (i = 1, 2).
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Our main result is the following theorem.
Theorem 1. Let (X, d) be a complete metric space and T a selfmapping on X

satisfying the following condition:

d(Tx, T y) ≤ a1F1[min{d(x, Tx), d(y, T y)}] + a2F2[d(x, Tx) · d(y, T y)]
+a3d(x, y) + a4[d(x, Tx) + d(y, T y)] + a5[d(x, T y) + d(y, Tx)] (2)

for all x, y in X, where ai = ai(x, y) (i = 1, 2, 3, 4, 5) are nonnegative functions
such that for arbitrarily fixed K > 0 and 0 < λ1 < 1, 0 < λ2 < 1:

a1(x, y), a2(x, y) ≤ K, (3)
a4(x, y) + a5(x, y) ≤ λ1, (4)

a3(x, y) + 2a5(x, y) ≤ λ2. (5)

If T is asymptotically regular at some x0 in X, then T has a unique fixed point in
X and at this point T is continuous.

Proof. We show that {xn} is a Cauchy sequence, where xn = T nx0. Denote

dn = d(xn, xn+1). (6)

Using the triangle inequality, from (2) we have

d(xn, xm) ≤ dn + d(Txn, Txm) + dm ≤ dn + dm

+a1F1[min{dn, dm}] + a2F2(dn · dm)
+a3d(xn, xm) + a4(dn + dm) + a5[d(xn, Txm) + d(xm, Txn)],

where ai = ai(xn, xm). Using again the triangle inequality, we get

d(xn, xm) ≤ (a3 + 2a5)d(xn, xm) + (1 + a4 + a5)(dn + dm)
+a1F1[min{dn, dm}] + a2F2(dn · dm).

Hence, because of (3), (4) and (5), we obtain

(1 − λ2)d(xn, xm) ≤ (1 + λ1)(dn + dm) + KF1[min{dn, dm}] + KF2(dn · dm). (7)

Since T is asymptotically regular and F1 and F2 are continuous at zero, taking the
limit as m tends to infinity we obtain

(1 − λ2) lim
n>m→∞ d(xn, xm) ≤ 0, (8)

which implies that {xn} is a Cauchy sequence.
Since X is complete, there is some u in X such that

limxn = u. (9)

Now we show that u is a unique fixed point of T . Suppose that d(u, Tu) > 0. From
(2) we have

d(u, Tu) ≤ d(u, Txn) + d(Txn, Tu) ≤ d(u, xn+1)
+a1F1[min{dn, d(u, Tu)}] + a2F2[dn · d(u, Tu)]
+a3d(xn, u) + a4[dn + d(u, Tu)] + a5[d(xn, Tu) + d(u, xn+1)],
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where ai = ai(xn, u). Using the triangle inequality we get

d(u, Tu) ≤ (1 + a5)d(u, xn+1) + a1F1[min{dn, d(u, Tu)}]
+a2F2[dn · d(u, Tu)] + (a3 + a5)d(xn, u) + a4dn + (a4 + a5)d(u, Tu).

Therefore, from (3), (4) and (5),

d(u, Tu) ≤ λ1d(u, Tu) + (1 + λ2)d(u, xn+1) + λ2d(u, xn)
+K · F1[min{dn, d(u, Tu)}] + KF2[dn · d(u, Tu)].

Taking the limit we get d(u, Tu) ≤ λ1d(u, Tu) < d(u, Tu), a contradiction. There-
fore, d(u, Tu) = 0; hence Tu = u.

To prove the uniqueness of u, let us suppose that u and v are two fixed points
of T . From (2), with ai = ai(u, v),

d(u, v) = d(Tu, T v) ≤ a1F1(0) + a2F2(0) + a3d(u, v) + a4 · 0 + 2a5d(u, v)
= (a3 + 2a5)d(u, v).

Hence, because of (5),
(1 − λ2)d(u, v) ≤ 0, (10)

which implies v = u.
To prove that T is continuous at u, suppose that xn → u = Tu. Then from (2),

d(Txn, u) = d(Txn, Tu) ≤ a1 · F1(0) + a2F2(0)
+a3d(xn, u) + a4d(xn, Txn)
+a5[d(xn, u) + d(Txn, u)]

≤ (a3 + a4 + a5)d(xn, u) + (a4 + a5)d(u, Txn),

where ai = ai(xn, u). Hence, using (4) and (5),

(1 − λ1)d(Txn, u) ≤ (λ1 + λ2)d(xn, u). (11)

Letting n go to infinity, we obtain

(1 − λ1) lim
n→∞ d(Txn, u) ≤ 0, (12)

which implies that limn→∞ Txn = u. ✷

Remark 1. The contractive condition considered by Sharma and Yuel [4] is
defined as follows:

d(Tx, T y) ≤ α
d(y, T y)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y), (13)

where α, β are nonnegative reals, satisfying

α < 1, β < 1. (14)
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By symmetry of d, it is clear that (13) implies

d(Tx, T y) ≤ α
min{d(x, Tx), d(y, T y)} + d(x, Tx) · d(y, T y)

1 + d(x, y)
+ βd(x, y). (15)

Our condition (2) becomes (15) if

a1(x, y) = a2(x, y) =
1

1 + d(x, y)
, F1(t) = F1(t) = α · t,

a3(x, y) = β, a4(x, y) = a5(x, y) = 0,

and clearly (3) and (5) becomes a1 = a2 ≤ 1 and β < 1, respectively.

Remark 2. The contractive condition, introduced and considered by Guay and
Singh [3], is defined as follows:

d(Tx, T y) ≤ pd(x, y) + q[d(x, Tx) + d(y, T y)] + r[d(x, Tx) + d(y, T y)], (16)

where p, q and r are fixed real numbers such that q + r < 1, p + 2r < 1. It is clear
that our condition (2) becomes (16), if a1 = 0, a2 = 0 and a3 = p, a4 = q and
a5 = r.

Remark 3. The example of Sharma and Yuel [4] shows that the assumption of
asymptotically regularity in the above theorems cannot be dropped.

The following theorem generalizes Theorem 2 of Sharma and Yuel [4].
Theorem 2. Let (X, d) be a metric space, not necessarily complete, and let T

be as in Theorem 1. If the sequence of iterates {T nx0} at some x0 has a subsequence
converging to a point u in X, then u is the unique fixed point of T , and {T nx0}
also converges to u and T is continuous at u.

Proof. As shown in the proof of Theorem 1, {T nx0} is a Cauchy sequence.
Since it contains a subsequence converging to u, limT nx0 = u. The rest of the
result follows by the same method of proof as in Theorem 1. ✷
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