GS-deltoids in GS-quasigroups

Zdenka Kolar-Begović* and Vladimir Volenec ${ }^{\dagger}$

Abstract

A "geometric" concept of the GS-deltoid is introduced and investigated in the general GS-quasigroup and geometrical interpretation in the GS-quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ is given. The connection of GS-deltoids with parallelograms, GS-trapezoids, DGS-trapezoids and affine regular pentagons in the general GS-quasigroup is obtained.

Key words: GS-quasigroup, GS-deltoid
AMS subject classifications: 20N05
Received April 20, 2004
Accepted September 30, 2005
In [1] the concept of a GS-quasigroup is defined. A quasigroup (Q, \cdot) is said to be a GS-quasigroup if it is idempotent and if it satisfies the (mutually equivalent) identities

$$
\begin{equation*}
a(a b \cdot c) \cdot c=b, \quad a \cdot(a \cdot b c) c=b \tag{1}
\end{equation*}
$$

The considered GS-quasigroup (Q, \cdot) satisfies the identitites of mediality, elasticity, left and right distributivity, i.e. we have the identities

$$
\begin{align*}
a b \cdot c d & =a c \cdot b d \tag{2}\\
a \cdot b a & =a b \cdot a \tag{3}
\end{align*}
$$

$$
\begin{equation*}
a \cdot b c=a b \cdot a c, \quad a b \cdot c=a c \cdot b c \tag{4}
\end{equation*}
$$

Further, the identities

$$
\begin{equation*}
a(a b \cdot b)=b, \quad(b \cdot b a) a=b \tag{5}
\end{equation*}
$$

$$
\begin{array}{ll}
a(a b \cdot c)=b \cdot b c, & (c \cdot b a) a=c b \cdot b \\
a(a \cdot b c)=b(b \cdot a c), & (c b \cdot a) a=(c a \cdot b) b
\end{array}
$$

and equivalencies
(8) $a b=c \Leftrightarrow a=c \cdot c b, \quad a b=c \Leftrightarrow b=a c \cdot c$.
*Department of Mathematics, University of Osijek, Gajev $\operatorname{trg} 6$, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr
${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr
also hold.
Let C be the set of points of the Euclidean plane. For any two different points a, b we define $a b=c$ if the point b divides the pair a, c in the golden section ratio. In [1] it is proved that (C, \cdot) is a GS-quasigroup. We shall denote that quasigroup by $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ because we have $c=\frac{1}{2}(1+\sqrt{5})$ if $a=0$ and $b=1$. Figures in this quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ can be used for illustration of "geometrical" relations in any GS-quasigroup.

From now on let (Q, \cdot) be any GS-quasigroup. The elements of the set Q are said to be points. Points a, b, c, d are said to be the vertices of a parallelogram and we write $\operatorname{Par}(a, b, c, d)$ if the identity $a \cdot b(c a \cdot a)=d$ holds. In [1] numerous properties of the quaternary relation Par on the set Q are proved. Let us mention just the following characterization which we shall use afterwards.

Lemma 1. If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a), then $\operatorname{Par}(a, b, c, d)$ implies $\operatorname{Par}(e, f, g, h)$.

We shall say that b is the midpoint of the pair of points a, c and write $M(a, b, c)$ iff $\operatorname{Par}(a, b, c, b)$. In [1] it is proved that the statement $M(a, b, c)$ holds iff $c=b a \cdot b$.

In [2] the concept of the GS-trapezoid is defined. Points a, b, c, d are said to be the vertices of the golden section trapezoid and it is denoted by $\operatorname{GST}(a, b, c, d)$ if the identity $a \cdot a b=d \cdot d c$ holds. Because of (8), this identity is equivalent with the identity $d=(a \cdot a b) c$.
In [2] it is proved that any two of the five statements
(9) $\operatorname{GST}(a, b, c, d), G S T(b, c, d, e), G S T(c, d, e, a), G S T(d, e, a, b), G S T(e, a, b, c)$
imply the remaining statement.
In [4] the concept of an affine regular pentagon is defined. Points a, b, c, d, e are said to be the vertices of the affine regular pentagon and it is denoted by $A R P(a, b, c, d, e)$ if any two (and then all five) of the five statements (9) are valid.

The concept of the DGS-trapezoid is introduced in [3]. Points a, b, c, d are said to be the vertices of the double golden section trapezoid or shorter a DGS-trapezoid and we write $\operatorname{DGST}(a, b, c, d)$ if the equality $a b=d c$ holds.

GS-deltoids in GS-quasigroups

Points o, a, b, c are said to be the vertices of a golden section deltoid and we write $\operatorname{GSD}(o, a, b, c)$ if and only if the identity

$$
c=o a \cdot b
$$

is valid (Figure 1).

Figure 1.

Obviously the following theorem holds.
Theorem 1. $G S D(o, a, b, c) \Rightarrow G S D(o, c, b, a)$ (Figure 1).
Proof. From $c=o a \cdot b$ it follows $o c \cdot b=o(o a \cdot b) \cdot b \stackrel{(1)}{=} a$.
Theorem 2. Any two of the three statements $\operatorname{GSD}(o, a, b, c), \operatorname{GSD}\left(o^{\prime}, a^{\prime}, b^{\prime}, c^{\prime}\right)$ and $G S D\left(o o^{\prime}, a a^{\prime}, b b^{\prime}, c c^{\prime}\right)$ imply the remaining statement (Figure 2).

Figure 2.
Proof. Because of (2) we have successively

$$
\left(o o^{\prime} \cdot a a^{\prime}\right) \cdot b b^{\prime}=\left(o a \cdot o^{\prime} a^{\prime}\right) \cdot b b^{\prime}=(o a \cdot b)\left(o^{\prime} a^{\prime} \cdot b^{\prime}\right)
$$

and then it is obvious that any two of the three equalities $o a \cdot b=c, o^{\prime} a^{\prime} \cdot b^{\prime}=c^{\prime}$ and $\left(o o^{\prime} \cdot a a^{\prime}\right) \cdot b b^{\prime}=c c^{\prime}$ imply the remaining equality.

For any point p we have obviously $\operatorname{GSD}(p, p, p, p)$ and from Theorem 2 it follows further:

Corollary 1. For any point p the statements $\operatorname{GSD}(o, a, b, c), G S D(p o, p a, p b, p c)$ and $G S D(o p, a p, b p, c p)$ are equivalent.

Theorem 3. If the statements $G S D(o, a, b, c), G S D(o, b, c, d)$ hold, then $a b=$ $d c=e$, i.e. $\operatorname{DGST}(a, b, c, d)$ and $\operatorname{Par}(o, a, e, d)$ hold (Figure 3).

Figure 3.
Proof. From $c=o a \cdot b$ and $d=o b \cdot c$ there follows $d=o b \cdot(o a \cdot b) \stackrel{(4)^{\prime}}{=}(o \cdot o a) b$ which gives

$$
d c=(o b \cdot c) c \stackrel{(7)^{\prime}}{=}(o c \cdot b) b=[o(o a \cdot b) \cdot b] b \stackrel{(1)}{=} a b
$$

and the first statement is proved.
Because of

$$
\begin{aligned}
o \cdot d(e o \cdot o) & =o[(o \cdot o a) b \cdot(a b \cdot o) o] \stackrel{(2)}{=} o[(o \cdot o a)(a b \cdot o) \cdot b o] \\
& \stackrel{(2)}{=} o[(o \cdot a b)(o a \cdot o) \cdot b o] \stackrel{(3)}{=} o[(o \cdot a b)(o \cdot a o) \cdot b o] \\
& \stackrel{(4)}{=} o[o(a b \cdot a o) \cdot b o] \stackrel{(4)}{=} o[o(a \cdot b o) \cdot b o] \stackrel{(1)^{\prime}}{=} a
\end{aligned}
$$

we get the statement $\operatorname{Par}(o, d, e, a)$ out of which, according to Lemma 1, the second statement of the theorem follows.

Theorem 4.
(i) Any two of the three statements $\operatorname{GSD}(o, a, b, c), G S D(o, b, c, d), G S T(o, a, b, d)$ imply the remaining statement (Figure 4).
(ii) Any two of the three statements $G S D(o, a, b, c), G S D(o, b, c, d), G S T(o, d, c, a)$ imply the remaining statement (Figure 4).

Proof. (i) It is necessary to prove that any two of the three statements $o a \cdot b=c$, $o b \cdot c=d,(o \cdot o a) b=d$ imply the remaining statement. However, it becomes obvious because of (4) we have the equality $o b \cdot(o a \cdot b)=(o \cdot o a) b$.
(ii) The statement follows from (i) and Theorem 1.

Figure 4.
Corollary 2. From $G S D(o, a, b, c), G S D(o, b, c, d), G S D(o, c, d, e)$ it follows $A R P(o, a, b, d, e)$ (Figure 5).

Figure 5.

Proof. Because of Theorem 4 (i) and the definition of an affine regular pentagon the following implications are valid

$$
\begin{aligned}
G S D(o, a, b, c) G S D(o, b, c, d) & \Rightarrow G S T(o, a, b, d) \\
G S D(o, e, d, c) G S D(o, d, c, b) & \Rightarrow \operatorname{GST}(o, e, d, b) \\
G S T(o, a, b, d) G S T(o, e, d, b) & \Rightarrow \operatorname{ARP}(o, a, b, d, e)
\end{aligned}
$$

Theorem 5. Any two of the three statements $\operatorname{GST}(a, b, c, d), G S D(b, d, c, e)$, $M(a, b, e)$ imply the third statement (Figure 6).

Figure 6.
Proof. We must prove that any two of the three equalities

$$
(a \cdot a b) c=d, \quad b d \cdot c=e, \quad b a \cdot b=e
$$

imply the remaining equality. That holds because we get successively

$$
\begin{aligned}
{[b \cdot(a \cdot a b) c] c } & \stackrel{(6)^{\prime}}{=} b(a \cdot a b) \cdot(a \cdot a b) \stackrel{(2)}{=} b a \cdot(a \cdot a b)(a b) \\
& \stackrel{(4)}{=} b a \cdot a(a b \cdot b) \stackrel{(5)}{=} b a \cdot b .
\end{aligned}
$$

Theorem 6. Any two of the three statements $\operatorname{GSD}(o, a, b, c), G S D(o, c, d, e)$, $G S T(a, b, d, e)$ imply the third statement (Figure 7).

Figure 7.
Proof. Because of symmetry $a \leftrightarrow e, b \leftrightarrow d$, it is sufficient to prove that under assumption $\operatorname{GSD}(o, a, b, c)$, i.e. $c=o a \cdot b$, the statements $\operatorname{GST}(a, b, d, e)$ and $\operatorname{GSD}(o, e, d, c)$, i.e. $c=o e \cdot d$ i.e. $o a \cdot b=o e \cdot d$ are equivalent. However, this holds due to Theorem 6(i) from [2].

References

[1] V. Volenec, GS-quasigroups, Čas. pĕst. mat. 115(1990), 307-318.
[2] V. Volenec, Z. Kolar, GS-trapezoids in GS-quasigroups, Mathematical Communications 7 (2002), 143-158.
[3] Z. Kolar-Begović, V. Volenec, DGS-trapezoids in GS-quasigroups, Mathematical Communications 8 (2003), 215-218.
[4] V. Volenec, Z. Kolar-Begović, Affine regular pentagons in GSquasigroups, Quasigroups and related systems 12 (2004), 103-112.

