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GS–deltoids in GS–quasigroups

Zdenka Kolar–Begović∗ and Vladimir Volenec†

Abstract. A “geometric” concept of the GS–deltoid is introduced
and investigated in the general GS–quasigroup and geometrical interpre-
tation in the GS–quasigroup C(1

2 (1 +
√

5)) is given. The connection
of GS–deltoids with parallelograms, GS–trapezoids, DGS–trapezoids and
affine regular pentagons in the general GS–quasigroup is obtained.
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In [1] the concept of a GS–quasigroup is defined. A quasigroup (Q, ·) is said to
be a GS–quasigroup if it is idempotent and if it satisfies the (mutually equivalent)
identities

a(ab · c) · c = b, a · (a · bc)c = b. (1)
′

(1)

The considered GS–quasigroup (Q, ·) satisfies the identitites of mediality, elas-
ticity, left and right distributivity, i.e. we have the identities

ab · cd = ac · bd(2)

a · ba = ab · a(3)

a · bc = ab · ac, ab · c = ac · bc. (4)
′

(4)

Further, the identities

a(ab · b) = b, (b · ba)a = b (5)
′

(5)

a(ab · c) = b · bc, (c · ba)a = cb · b (6)
′

(6)

a(a · bc) = b(b · ac), (cb · a)a = (ca · b)b (7)
′

(7)

and equivalencies

ab = c ⇔ a = c · cb, ab = c ⇔ b = ac · c. (8)′(8)
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also hold.
Let C be the set of points of the Euclidean plane. For any two different points

a, b we define ab = c if the point b divides the pair a, c in the golden section ratio.
In [1] it is proved that (C, ·) is a GS–quasigroup. We shall denote that quasigroup
by C(1

2 (1 +
√

5))because we have c = 1
2 (1 +

√
5) if a = 0 and b = 1. Figures in this

quasigroup C(1
2 (1 +

√
5)) can be used for illustration of “geometrical” relations in

any GS–quasigroup.
From now on let (Q, ·) be any GS–quasigroup. The elements of the set Q are

said to be points. Points a, b, c, d are said to be the vertices of a parallelogram and we
write Par(a, b, c, d) if the identity a · b(ca · a) = d holds. In [1] numerous properties
of the quaternary relation Par on the set Q are proved. Let us mention just the
following characterization which we shall use afterwards.

Lemma 1. If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a),
then Par(a, b, c, d) implies Par(e, f, g, h).

We shall say that b is the midpoint of the pair of points a, c and write M(a, b, c)
iff Par(a, b, c, b). In [1] it is proved that the statement M(a, b, c) holds iff c = ba · b.

In [2] the concept of the GS–trapezoid is defined. Points a, b, c, d are said to be
the vertices of the golden section trapezoid and it is denoted by GST(a, b, c, d) if the
identity a · ab = d · dc holds. Because of (8), this identity is equivalent with the
identity d = (a · ab)c.
In [2] it is proved that any two of the five statements

GST (a, b, c, d), GST (b, c, d, e), GST (c, d, e, a), GST (d, e, a, b), GST (e, a, b, c)(9)

imply the remaining statement.
In [4] the concept of an affine regular pentagon is defined. Points a, b, c, d, e

are said to be the vertices of the affine regular pentagon and it is denoted by
ARP (a, b, c, d, e) if any two (and then all five) of the five statements (9) are valid.

The concept of the DGS–trapezoid is introduced in [3]. Points a, b, c, d are said
to be the vertices of the double golden section trapezoid or shorter a DGS–trapezoid
and we write DGST (a, b, c, d) if the equality ab = dc holds.

GS–deltoids in GS–quasigroups

Points o, a, b, c are said to be the vertices of a golden section deltoid and we write
GSD(o, a, b, c) if and only if the identity

c = oa · b
is valid (Figure 1).
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Obviously the following theorem holds.
Theorem 1. GSD(o, a, b, c) ⇒ GSD(o, c, b, a) (Figure 1).

Proof. From c = oa · b it follows oc · b = o(oa · b) · b (1)
= a. ✷

Theorem 2. Any two of the three statements GSD(o, a, b, c), GSD(o′, a′, b′, c′)
and GSD(oo′, aa′, bb′, cc′) imply the remaining statement (Figure 2).
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Figure 2.

Proof. Because of (2) we have successively

(oo′ · aa′) · bb′ = (oa · o′a′) · bb′ = (oa · b)(o′a′ · b′)

and then it is obvious that any two of the three equalities oa · b = c, o′a′ · b′ = c′

and (oo′ · aa′) · bb′ = cc′ imply the remaining equality. ✷

For any point p we have obviously GSD(p, p, p, p) and from Theorem 2 it follows
further:

Corollary 1. For any point p the statements GSD(o, a, b, c), GSD(po, pa, pb, pc)
and GSD(op, ap, bp, cp) are equivalent.

Theorem 3. If the statements GSD(o, a, b, c), GSD(o, b, c, d) hold, then ab =
dc = e, i.e. DGST(a, b, c, d) and Par(o, a, e, d) hold (Figure 3).
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Figure 3.

Proof. From c = oa · b and d = ob · c there follows d = ob · (oa · b) (4)′
= (o · oa)b

which gives

dc = (ob · c)c (7)′
= (oc · b)b = [o(oa · b) · b]b (1)

= ab
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and the first statement is proved.
Because of

o · d(eo · o) = o[(o · oa)b · (ab · o)o]
(2)
= o[(o · oa)(ab · o) · bo]

(2)
= o[(o · ab)(oa · o) · bo]

(3)
= o[(o · ab)(o · ao) · bo]

(4)
= o[o(ab · ao) · bo]

(4)
= o[o(a · bo) · bo]

(1)′
= a

we get the statement Par(o, d, e, a) out of which, according to Lemma 1, the second
statement of the theorem follows. ✷

Theorem 4.
(i) Any two of the three statements GSD(o, a, b, c), GSD(o, b, c, d), GST (o, a, b, d)

imply the remaining statement (Figure 4).

(ii) Any two of the three statements GSD(o, a, b, c), GSD(o, b, c, d), GST (o, d, c, a)
imply the remaining statement (Figure 4).

Proof. (i) It is necessary to prove that any two of the three statements oa·b = c,
ob ·c = d, (o ·oa)b = d imply the remaining statement. However, it becomes obvious
because of (4)′ we have the equality ob · (oa · b) = (o · oa)b.
(ii) The statement follows from (i) and Theorem 1. ✷
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Figure 4.

Corollary 2. From GSD(o, a, b, c), GSD(o, b, c, d), GSD(o, c, d, e) it follows
ARP (o, a, b, d, e) ( Figure 5).
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Proof. Because of Theorem 4 (i) and the definition of an affine regular pentagon
the following implications are valid

GSD(o, a, b, c) GSD(o, b, c, d) ⇒ GST (o, a, b, d)
GSD(o, e, d, c) GSD(o, d, c, b) ⇒ GST (o, e, d, b)
GST (o, a, b, d) GST (o, e, d, b) ⇒ ARP (o, a, b, d, e). ✷

Theorem 5. Any two of the three statements GST (a, b, c, d), GSD(b, d, c, e),
M(a, b, e) imply the third statement (Figure 6).
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Proof. We must prove that any two of the three equalities

(a · ab)c = d, bd · c = e, ba · b = e

imply the remaining equality. That holds because we get successively

[b · (a · ab)c]c
(6)′
= b(a · ab) · (a · ab)

(2)
= ba · (a · ab)(ab)

(4)
= ba · a(ab · b) (5)

= ba · b. ✷

Theorem 6. Any two of the three statements GSD(o, a, b, c), GSD(o, c, d, e),
GST (a, b, d, e) imply the third statement (Figure 7).
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Figure 7.

Proof. Because of symmetry a ↔ e, b ↔ d, it is sufficient to prove that un-
der assumption GSD(o, a, b, c), i.e. c = oa · b, the statements GST(a, b, d, e) and
GSD(o, e, d, c), i.e. c = oe · d i.e. oa · b = oe · d are equivalent. However, this holds
due to Theorem 6(i) from [2]. ✷
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