On the periodic solutions of certain fourth and fifth order vector differential equations

ERCAN TUNÇ

Abstract. The aim of the present paper is to establish some sufficient conditions which ensure that equations (1.1) and (1.2) have no periodic solution other than the trivial solution \(X = 0 \).

Key words: Nonlinear vector differential equation of fourth and fifth order, periodic solutions

AMS subject classifications: 34C25, 34A34

Received September 2, 2005 Accepted December 8, 2005

1. Introduction

The problems related to the periodic behaviour of solutions of a higher order nonlinear scalar differential equation have been treated by many investigators. The papers achieved in Ezeilo [4], Tiryaki [9], Bereketoğlu [2, 3] and Tejumola [8] can be given as good examples on this subject. However, with respect to our observations, only a few studies were carried out on the same topic for the solutions of ordinary nonlinear vector differential equations of higher orders. In this aspect studies fulfilled by Ezeilo [5] and Tunç [13] could be given as examples.

In this paper, taking into account the results obtained for the ordinary nonlinear scalar differential equations

\[
x^{(4)} + f_1(x) \dddot{x} + f_2(x) \ddddot{x} + f_3(x) + f_4(x) = 0
\]

and

\[
x^{(5)} + b_1 x^{(4)} + g_1(x, \dot{x}, \ddot{x}, x^{(4)}) \dddot{x} + g_2(x) \ddddot{x} + g_3(x, \dot{x}, \ddot{x}, x^{(4)}) + g_4(x) = 0,
\]

by Tiryaki [9], we establish two new results on the same topic for the nonlinear vector differential equations as follows:

\[
X^{(4)} + \Phi(X) \dddot{X} + \Psi(X) \ddddot{X} + F(X) + G(X) = 0 \quad (1.1)
\]

*Faculty of Arts and Sciences, Department of Mathematics, Gaziosmanpaşa University, 60240, Tokat, Turkey, e-mail: ercantunc72@yahoo.com
and

\[X^{(5)} + AX^{(4)} + \Phi(X, X, X, X^{(4)}) \dot{X} + \Psi(X) \dot{X} \]
\[+ \Omega(X, X, X, X^{(4)}) \dot{X} + \Theta(X) = 0. \]

(1.2)

in which \(X \in \mathbb{R}^n; A \) is a constant \(n \times n \)-symmetric matrix; \(\Phi, \Psi \) and \(\Omega \) are continuous \(n \times n \)-symmetric matrices depending, in each case, on the arguments shown; \(F, G, \Theta : \mathbb{R}^n \to \mathbb{R}^n \) are continuous \(n \)-vector functions. It will be assumed

\[F(0) = 0, \quad G(0) = 0 \]

(1.3)

and

\[\Omega(X, 0, Z, U, V) = 0, \quad \Theta(0) = 0. \]

(1.4)

for an arbitrary value of \(X, Z, U \) and \(V \). Let \(J_G(X) \) denote the Jacobian matrix corresponding to the function \(G(X) \), that is, \(J_G(X) = \frac{\partial g}{\partial x} \), \((i, j = 1, 2, ..., n) \) where \((x_1, x_2, ..., x_n) \) and \((g_1, g_2, ..., g_n) \) are the components of \(X \) and \(G \), respectively. Other than these, it will also be assumed that the Jacobian matrices \(J_G(X) \) exist and are symmetric and continuous. The symbol \(\langle X, Y \rangle \) is used to denote the usual scalar product in \(\mathbb{R}^n \) for given any \(X, Y \) in \(\mathbb{R}^n \), thus \(\|X\|^2 = \langle X, X \rangle \). The matrix \(A \) is said to be negative-definite, when \(\langle AX, X \rangle < 0 \) for all non-zero \(X \) in \(\mathbb{R}^n \), and \(\lambda_i(A) (i = 1, 2, ..., n) \) are the eigenvalues of the \(n \times n \)-matrix \(A \).

In what follows we use the following differential systems which are equivalent to the equations (1.1) and (1.2):

\[\dot{X} = Y, \quad \dot{Y} = Z, \quad \dot{Z} = U, \quad \dot{U} = -\Phi(Z)U - \Psi(Y)Z - F(Y) - G(X) \]

(1.5)

and

\[\dot{X} = Y, \quad \dot{Y} = Z, \quad \dot{Z} = U, \quad \dot{U} = V, \quad \dot{V} = -AV - \Phi(X, Y, Z, U, V)U - \Psi(Y)Z - \Omega(X, Y, Z, U, V)Y - \Theta(X), \]

(1.6)

respectively.

2. Main result

We shall establish here the following theorems.

Theorem 1. In addition to the basic assumptions on the \(\Phi, \Psi, F \) and \(G \), suppose that there are constants \(a_2 \) and \(a_4 \) with \(a_4 > \frac{1}{4}a_2^2 \) such that

(i) \(0 \leq \lambda_i(\Psi(Y)) \leq a_2 \) for all \(Y \in \mathbb{R}^n, (i = 1, 2, ..., n) \)
(ii) \(\lambda_i(J_G(X)) \geq a_4 \) for all \(X \in \mathbb{R}^n, (i = 1, 2, \ldots, n) \).

Then equation (1.1) has no periodic solution whatsoever other than \(X = 0 \) for all arbitrary \(\Phi \).

Theorem 2. In addition to the basic assumptions on the \(A, \Phi, \Psi, \Omega \) and \(\Theta \), suppose that

(i) \(\Theta(X) \neq 0 \) for \(X \neq 0 \)

(ii) \(\lambda_i(\Omega(X, Y, Z, U, V)) \geq \frac{1}{2} [\lambda_i(\Phi(X, Y, Z, U, V))]^2 \) for arbitrary \(X, Y, Z, U, V \) then the equation (1.2) has no periodic solution whatsoever other than \(X = 0 \) for all arbitrary \(A, \Psi \).

Now, we dispose of some well known algebraic results which will be required in the proof of theorems. The first of these is a quite standard one:

Lemma 1. Let \(A \) be a real symmetric \(n \times n \) matrix and

\[
a' \geq \lambda_i(A) \geq a > 0 \quad (i = 1, 2, \ldots, n), \text{ where } a', a \text{ are constants.}
\]

Then

\[
a'\langle X, X \rangle \geq \langle AX, X \rangle \geq a \langle X, X \rangle
\]

and

\[
a'^2 \langle X, X \rangle \geq \langle AX, AX \rangle \geq a^2 \langle X, X \rangle.
\]

Proof. See [7].

Lemma 2. Let \(Q, D \) be any two real \(n \times n \) commuting symmetric matrices.

Then

(i) The eigenvalues \(\lambda_i(QD) \) \((1, 2, \ldots, n) \) of the product matrix \(QD \) are real and satisfy

\[
\max_{1 \leq j, k \leq n} \lambda_j(Q)\lambda_k(D) \geq \lambda_i(QD) \geq \min_{1 \leq j, k \leq n} \lambda_j(Q)\lambda_k(D)
\]

(ii) The eigenvalues \(\lambda_i(Q + D) \) \((1, 2, \ldots, n) \) of the sum of matrices \(Q \) and \(D \) are real and satisfy

\[
\left\{ \max_{1 \leq j \leq n} \lambda_j(Q) + \max_{1 \leq k \leq n} \lambda_k(D) \right\} \geq \lambda_i(Q + D) \geq \left\{ \min_{1 \leq j \leq n} \lambda_j(Q) + \min_{1 \leq k \leq n} \lambda_k(D) \right\}.
\]

Proof. See [1].

Proof of the Theorem 1. Let \((X, Y, Z, U) = (X(t), Y(t), Z(t), U(t)) \) be an arbitrary \(\alpha \)-periodic solution of (1.5), that is

\[
(X(t), Y(t), Z(t), U(t)) = (X(t + \alpha), Y(t + \alpha), Z(t + \alpha), U(t + \alpha)) \quad (2.1)
\]
for some $\alpha > 0$. It will be shown that, subject to the conditions in Theorem 1,

$$X = Y = Z = U = 0.$$

Our main tool in the proof of Theorem 1 is the function $\Gamma = \Gamma(X, Y, Z, U)$ given by:

$$\Gamma = \int_0^1 \langle \sigma \Phi(\sigma Z), Z \rangle d\sigma + \int_0^1 \langle \Psi(\sigma Y), Z \rangle d\sigma + \langle U, Z \rangle$$

$$+ \langle Y, G(X) \rangle + \int_0^1 \langle F(\sigma Y), Y \rangle d\sigma.$$

(2.2)

Consider the function

$$\psi(t) = \Gamma(X(t), Y(t), Z(t), U(t)).$$

Since Γ is continuous and X, Y, Z, U are periodic in t, $\psi(t)$ is clearly bounded. An elementary differentiation will show that

$$\Gamma = \frac{d}{dt} \int_0^1 \langle \sigma \Phi(\sigma Z), Z \rangle d\sigma + \frac{d}{dt} \int_0^1 \langle \Psi(\sigma Y), Z \rangle d\sigma + \langle U, Z \rangle - \langle Z, \Phi(Z) \rangle$$

$$- \langle Z, \Psi(Y) \rangle - \langle Z, F(Y) \rangle + \langle Y, G(X) \rangle + \frac{d}{dt} \int_0^1 \langle F(\sigma Y), Y \rangle d\sigma.$$

(2.3)

But

$$\frac{d}{dt} \int_0^1 \langle F(\sigma Y), Y \rangle d\sigma = \int_0^1 \sigma \frac{d}{d\sigma} \langle F(\sigma Y), Z \rangle d\sigma + \int_0^1 \langle F(\sigma Y), Z \rangle d\sigma$$

$$= \sigma \langle F(\sigma Y), Z \rangle \bigg|_0^1 = \langle F(Y), Z \rangle,$$

(2.4)

and similarly we have

$$\frac{d}{dt} \int_0^1 \langle \sigma \Phi(\sigma Z), Z \rangle d\sigma = \int_0^1 \langle \sigma \Phi(\sigma Z), Z \rangle d\sigma + \int_0^1 \sigma^2 \langle \Phi(\sigma Z) U, Z \rangle d\sigma$$

$$+ \int_0^1 \langle \sigma \Phi(\sigma Z), U \rangle d\sigma$$

$$= \int_0^1 \sigma \frac{d}{d\sigma} \langle \sigma \Phi(\sigma Z), U \rangle d\sigma + \int_0^1 \langle \sigma \Phi(\sigma Z), U \rangle d\sigma$$

$$= \sigma^2 \langle \Phi(\sigma Z) U, Z \rangle \bigg|_0^1 = \langle \Phi(Z) U, Z \rangle.$$

(2.5)

and similarly we have

$$\frac{d}{dt} \int_0^1 \langle \Psi(\sigma Y), Y \rangle Z d\sigma = \langle \Psi(Y), Z \rangle + \int_0^1 \langle \Psi(\sigma Y), Y \rangle d\sigma.$$

(2.6)
Upon gathering the estimates (2.4), (2.5) and (2.6) into (2.3) we obtain
\[
\Gamma = \langle U, U \rangle + \int_0^1 \langle \Psi(\sigma Y) Y, U \rangle d\sigma + \langle Y, J_G(X) Y \rangle
\]
\[
\geq \|U\|^2 - a_2 \|Y\| \|U\| + a_4 \|Y\|^2
\]
\[
= \left(\|U\|^2 - \frac{1}{4}a_2 \|Y\|^2\right) + a_4 \|Y\|^2 - \frac{1}{4}a_2 \|Y\|^2
\]
\[
= \left(\|U\|^2 - \frac{1}{4}a_2 \|Y\|^2\right) + \left(a_4 - \frac{1}{4}a_2\right) \|Y\|^2 \geq 0.
\]
Hence \(\dot{\psi}(t) \geq 0 \), so that \(\psi(t) \) is monotone in \(t \), and therefore, being bounded, tends to a limit, \(\psi_0 \) say, as \(t \to \infty \). It is readily checked that
\[
\psi(t) \equiv \psi_0 \text{ for all } t. \tag{2.8}
\]
From by (2.1),
\[
\psi(t) = \psi(t + m\alpha) \tag{2.9}
\]
for any arbitrary fixed \(t \) an for arbitrary integer \(m \), and then letting \(m \to \infty \) in the right-hand side of (2.9) leads to (2.8).

The result (2.8) itself implies that
\[
\dot{\psi}(t) = 0 \text{ for all } t
\]
from which, by (2.7), it follows from assumptions on \(\Psi \) and \(G \), that
\[
Y = 0 \text{ for all } t, \tag{2.10}
\]
which in turn implies that
\[
X = \xi \text{ (constant), } Y = 0 = Z = U \text{ for all } t. \tag{2.11}
\]
Since \((X, Y, Z, U) \) is a solution of (1.5), it is evident from (2.10) and (2.11) that \(G(\xi) = 0 \), so that \(\xi = 0 \), by (1.3). Hence
\[
(X, Y, Z, U) = (0, 0, 0, 0)
\]
This completes the proof of Theorem 1.

Proof of Theorem 2. Let \((X, Y, Z, U, V) = (X(t), Y(t), Z(t), U(t), V(t))\) be an arbitrary \(\omega \)-periodic solution of (1.6), that is
\[
(X(t), Y(t), Z(t), U(t), V(t)) = (X(t + \omega), Y(t + \omega), Z(t + \omega), U(t + \omega), V(t + \omega))
\]
for some \(\omega > 0 \).

Consider the function \(W = W(X, Y, Z, U, V) \) defined by
\[
W = \frac{1}{2} \langle AZ, Z \rangle + \langle Z, U \rangle - \langle Y, V \rangle - \langle Y, AU \rangle
\]
\[
- \int \langle \sigma \Psi(\sigma Y) Y, Y \rangle d\sigma - \int \langle \Theta(\sigma X), X \rangle d\sigma. \tag{2.12}
\]
It is clear that W is bounded. An elementary differentiation from (1.6) and (2.12) yields

$$W = \langle U, U \rangle + \langle Y, \Phi(X, Y, Z, U, V)U \rangle + \langle Y, \Omega(X, Y, Z, U, V)Y \rangle + \langle Y, \Theta(X) \rangle + \langle Y, \Psi(Y) \rangle Z - \frac{d}{dt} \int_0^1 \langle \sigma \Psi(\sigma Y)Y, Y \rangle d\sigma - \frac{d}{dt} \int_0^1 \langle \Theta(\sigma X), X \rangle d\sigma. \quad (2.13)$$

But

$$\frac{d}{dt} \int_0^1 \langle \sigma \Psi(\sigma Y)Y, Y \rangle d\sigma = \langle \Psi(Y)Z, Y \rangle \quad (2.14)$$

and

$$\frac{d}{dt} \int_0^1 \langle \Theta(\sigma X), X \rangle d\sigma = \langle \Theta(X), Y \rangle. \quad (2.15)$$

Using the estimates (2.14) and (2.15) in (2.13) we obtain

$$W = \langle U, U \rangle + \langle Y, \Phi(X, Y, Z, U, V)U \rangle + \langle Y, \Omega(X, Y, Z, U, V)Y \rangle - \frac{1}{4} \langle \Phi(X, Y, Z, U, V)Y, \Phi(X, Y, Z, U, V)Y \rangle \geq \langle Y, \Omega(X, Y, Z, U, V)Y \rangle - \frac{1}{4} \langle \Phi(X, Y, Z, U, V)Y, \Phi(X, Y, Z, U, V)Y \rangle \geq 0$$

Therefore, the rest of the proof, can be shown in the same way as the proof of Theorem 1, which gives

$$X = Y = Z = U = V = 0.$$

References

On the periodic solutions of fourth and fifth order

