## On the periodic solutions of certain fourth and fifth order vector differential equations

Ercan Tunç*


#### Abstract

The aim of the present paper is to establish some sufficient conditions which ensure that equations (1.1) and (1.2) have no periodic solution other than the trivial solution $X=0$.


Key words: Nonlinear vector differential equation of fourth and fifth order, periodic solutions

AMS subject classifications: $34 \mathrm{C} 25,34 \mathrm{~A} 34$
Received September 2, 2005
Accepted December 8, 2005

## 1. Introduction

The problems related to the periodic behaviour of solutions of a higher order nonlinear scalar differential equation have been treated by many investigators. The papers achieved in Ezeilo [4], Tiryaki [9], Bereketoğlu [2, 3] and Tejumola [8] can be given as good examples on this subject. However, with respect to our observations, only a few studies were carried out on the same topic for the solutions of ordinary nonlinear vector differential equations of higher orders. In this aspect studies fulfilled by Ezeilo [5] and Tunç [13] could be given as examples.

In this paper, taking into account the results obtained for the ordinary nonlinear scalar differential equations

$$
x^{(4)}+f_{1}(\ddot{x}) \dddot{x}+f_{2}(\dot{x}) \ddot{x}+f_{3}(\dot{x})+f_{4}(x)=0
$$

and

$$
\begin{aligned}
x^{(5)}+b_{1} x^{(4)} & +g_{1}\left(x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right) \dddot{x}+g_{2}(\dot{x}) \ddot{x} \\
& +g_{3}\left(x, \dot{x}, \ddot{x}, \dddot{x}, x^{(4)}\right)+g_{4}(x)=0
\end{aligned}
$$

by Tiryaki [9], we establish two new results on the same topic for the nonlinear vector differential equations as follows:

$$
\begin{equation*}
X^{(4)}+\Phi(\ddot{X}) \dddot{X}+\Psi(\dot{X}) \ddot{X}+F(\dot{X})+G(X)=0 \tag{1.1}
\end{equation*}
$$

[^0] Tokat, Turkey, e-mail: ercantunc72@yahoo.com
and
\[

$$
\begin{align*}
X^{(5)}+A X^{(4)} & +\Phi\left(X, \dot{X}, \ddot{X}, \dddot{X}, X^{(4)}\right) \dddot{X}+\Psi(\dot{X}) \ddot{X}  \tag{1.2}\\
& +\Omega\left(X, \dot{X}, \ddot{X}, \dddot{X}, X^{(4)}\right) \dot{X}+\Theta(X)=0 .
\end{align*}
$$
\]

in which $X \in R^{n} ; A$ is a constant $n \times n$-symmetric matrix; $\Phi, \Psi$ and $\Omega$ are continuous $n \times n$-symmetric matrices depending, in each case, on the arguments shown; $F, G, \Theta: R^{n} \rightarrow R^{n}$ are continuous $n$-vector functions. It will be assumed

$$
\begin{equation*}
F(0)=0, \quad G(0)=0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega(X, 0, Z, U, V)=0, \quad \Theta(0)=0 \tag{1.4}
\end{equation*}
$$

for an arbitrary value of $X, Z, U$ and $V$. Let $J_{G}(X)$ denote the Jacobian matrix corresponding to the function $G(X)$, that is, $J_{G}(X)=\left(\frac{\partial g_{i}}{\partial x_{j}}\right),(i, j=1,2, \ldots, n)$ where $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ are the components of $X$ and $G$, respectively. Other than these, it will also be assumed that the Jacobian matrices $J_{G}(X)$ exist and are symmetric and continuous. The symbol $\langle X, Y\rangle$ is used to denote the usual scalar product in $R^{n}$ for given any $X, Y$ in $R^{n}$, that is, $\langle X, Y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$; thus $\|X\|^{2}=\langle X, X\rangle$. The matrix $A$ is said to be negative-definite, when $\langle A X, X\rangle<0$ for all non-zero $X$ in $R^{n}$, and $\lambda_{i}(A)(i=1,2, \ldots, n)$ are the eigenvalues of the $n \times n$-matrix $A$.

In what follows we use the following differential systems which are equivalent to the equations (1.1) and (1.2):

$$
\begin{gather*}
\dot{X}=Y, \dot{Y}=Z, \dot{Z}=U \\
\dot{U}=-\Phi(Z) U-\Psi(Y) Z-F(Y)-G(X) \tag{1.5}
\end{gather*}
$$

and

$$
\begin{gather*}
\dot{X}=Y, \dot{Y}=Z, \dot{Z}=U, \dot{U}=V  \tag{1.6}\\
\dot{V}=-A V-\Phi(X, Y, Z, U, V) U-\Psi(Y) Z-\Omega(X, Y, Z, U, V) Y-\Theta(X),
\end{gather*}
$$

respectively.

## 2. Main result

We shall establish here the following theorems.
Theorem 1. In addition to the basic assumptions on the $\Phi, \Psi, F$ and $G$, suppose that there are constants $a_{2}$ and $a_{4}$ with $a_{4}>\frac{1}{4} a_{2}^{2}$ such that
(i) $0 \leq \lambda_{i}(\Psi(Y)) \leq a_{2}$ for all $Y \in R^{n},(i=1,2, \ldots, n)$
(ii) $\lambda_{i}\left(J_{G}(X)\right) \geq a_{4}$ for all $X \in R^{n},(i=1,2, \ldots, n)$.

Then equation (1.1) has no periodic solution whatsoever other than $X=0$ for all arbitrary $\Phi$.

Theorem 2. In addition to the basic assumptions on the $A, \Phi, \Psi, \Omega$ and $\Theta$, suppose that
(i) $\Theta(X) \neq 0$ for $X \neq 0$
(ii) $\lambda_{i}(\Omega(X, Y, Z, U, V)) \geq \frac{1}{4}\left[\lambda_{i}(\Phi(X, Y, Z, U, V))\right]^{2}$ for arbitrary $X, Y, Z, U, V$ then the equation (1.2) has no periodic solution whatsoever other than $X=0$ for all arbitrary $A, \Psi$.

Now, we dispose of some well known algebraic results which will be required in the proof of theorems. The first of these is a quite standard one:

Lemma 1. Let $A$ be a real symmetric $n \times n$ matrix and

$$
a^{\prime} \geq \lambda_{i}(A) \geq a>0 \quad(i=1,2, \ldots, n), \text { where } a^{\prime}, a \text { are constants. }
$$

Then

$$
a^{\prime}\langle X, X\rangle \geq\langle A X, X\rangle \geq a\langle X, X\rangle
$$

and

$$
a^{\prime^{2}}\langle X, X\rangle \geq\langle A X, A X\rangle \geq a^{2}\langle X, X\rangle
$$

Proof. See [7].
Lemma 2. Let $Q, D$ be any two real $n \times n$ commuting symmetric matrices. Then
(i) The eigenvalues $\lambda_{i}(Q D)(1,2, \ldots, n)$ of the product matrix $Q D$ are real and satisfy

$$
\max _{1 \leq j, k \leq n} \lambda_{j}(Q) \lambda_{k}(D) \geq \lambda_{i}(Q D) \geq \min _{1 \leq j, k \leq n} \lambda_{j}(Q) \lambda_{k}(D)
$$

(ii) The eigenvalues $\lambda_{i}(Q+D)(1,2, \ldots, n)$ of the sum of matrices $Q$ and $D$ are real and satisfy

$$
\left\{\max _{1 \leq j \leq n} \lambda_{j}(Q)+\max _{1 \leq k \leq n} \lambda_{k}(D)\right\} \geq \lambda_{i}(Q+D) \geq\left\{\min _{1 \leq j \leq n} \lambda_{j}(Q)+\min _{1 \leq k \leq n} \lambda_{k}(D)\right\}
$$

Proof. See [1].
Proof of the Theorem 1. Let $(X, Y, Z, U)=(X(t), Y(t), Z(t), U(t))$ be an arbitrary $\alpha$-periodic solution of (1.5), that is

$$
\begin{equation*}
(X(t), Y(t), Z(t), U(t))=(X(t+\alpha), Y(t+\alpha), Z(t+\alpha), U(t+\alpha)) \tag{2.1}
\end{equation*}
$$

for some $\alpha>0$. It will be shown that, subject to the conditions in Theorem 1,

$$
X=Y=Z=U=0
$$

Our main tool in the proof of Theorem 1 is the function $\Gamma=\Gamma(X, Y, Z, U)$ given by:

$$
\begin{align*}
\Gamma= & \int_{0}^{1}\langle\sigma \Phi(\sigma Z) Z, Z\rangle d \sigma+\int_{0}^{1}\langle\Psi(\sigma Y) Y, Z\rangle d \sigma+\langle U, Z\rangle  \tag{2.2}\\
& +\langle Y, G(X)\rangle+\int_{0}^{1}\langle F(\sigma Y), Y\rangle d \sigma
\end{align*}
$$

Consider the function

$$
\psi(t) \equiv \Gamma(X(t), Y(t), Z(t), U(t))
$$

Since $\Gamma$ is continuous and $X, Y, Z, U$ are periodic in $t, \psi(t)$ is clearly bounded. An elementary differentiation will show that

$$
\begin{align*}
\dot{\Gamma}= & \frac{d}{d t} \int_{0}^{1}\langle\sigma \Phi(\sigma Z) Z, Z\rangle d \sigma+\frac{d}{d t} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Z\rangle d \sigma+\langle U, U\rangle-\langle Z, \Phi(Z) U\rangle \\
& -\langle Z, \Psi(Y) Z\rangle-\langle Z, F(Y)\rangle+\left\langle Y, J_{G}(X) Y\right\rangle+\frac{d}{d t} \int_{0}^{1}\langle F(\sigma Y), Y\rangle d \sigma . \tag{2.3}
\end{align*}
$$

But

$$
\begin{align*}
\frac{d}{d t} \int_{0}^{1}\langle F(\sigma Y), Y\rangle d \sigma & =\int_{0}^{1} \sigma\left\langle J_{F}(\sigma Y) Z, Y\right\rangle d \sigma+\int_{0}^{1}\langle F(\sigma Y), Z\rangle d \sigma \\
& =\int_{0}^{1} \sigma \frac{\partial}{\partial \sigma}\langle F(\sigma Y), Z\rangle d \sigma+\int_{0}^{1}\langle F(\sigma Y), Z\rangle d \sigma  \tag{2.4}\\
& =\left.\sigma\langle F(\sigma Y), Z\rangle\right|_{0} ^{1}=\langle F(Y), Z\rangle \\
\frac{d}{d t} \int_{0}^{1}\langle\sigma \Phi(\sigma Z) Z, Z\rangle d \sigma= & \int_{0}^{1}\langle\sigma \Phi(\sigma Z) U, Z\rangle d \sigma+\int_{0}^{1} \sigma^{2}\left\langle J_{\Phi}(\sigma Z) Z U, Z\right\rangle d \sigma \\
& +\int_{0}^{1}\langle\sigma \Phi(\sigma Z) Z, U\rangle d \sigma \\
= & \int_{0}^{1} \sigma \frac{\partial}{\partial \sigma}\langle\sigma \Phi(\sigma Z) U, Z\rangle d \sigma+\int_{0}^{1}\langle\sigma \Phi(\sigma Z) U, Z\rangle d \sigma  \tag{2.5}\\
= & \sigma^{2}\langle\Phi(\sigma Z) U, Z\rangle{ }_{0}^{1}=\langle\Phi(Z) U, Z\rangle
\end{align*}
$$

and similarly we have

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{1}\langle\Psi(\sigma Y) Y, Z\rangle d \sigma=\langle\Psi(Y) Z, Z\rangle+\int_{0}^{1}\langle\Psi(\sigma Y) Y, U\rangle d \sigma \tag{2.6}
\end{equation*}
$$

Upon gathering the estimates $(2.4),(2.5)$ and (2.6) into (2.3) we obtain

$$
\begin{align*}
\dot{\Gamma} & =\langle U, U\rangle+\int_{0}^{1}\langle\Psi(\sigma Y) Y, U\rangle d \sigma+\left\langle Y, J_{G}(X) Y\right\rangle \\
& \geq\|U\|^{2}-a_{2}\|Y\|\|U\|+a_{4}\|Y\|^{2}  \tag{2.7}\\
& =\left(\|U\|-\frac{1}{2} a_{2}\|Y\|\right)^{2}+a_{4}\|Y\|^{2}-\frac{1}{4} a_{2}^{2}\|Y\|^{2} \\
& =\left(\|U\|-\frac{1}{2} a_{2}\|Y\|\right)^{2}+\left(a_{4}-\frac{1}{4} a_{2}^{2}\right)\|Y\|^{2} \geq 0
\end{align*}
$$

Hence $\dot{\psi}(t) \geq 0$, so that $\psi(t)$ is monotone in $t$, and therefore, being bounded, tends to a limit, $\psi_{0}$ say, as $t \rightarrow \infty$. It is readily checked that

$$
\begin{equation*}
\psi(t) \equiv \psi_{0} \quad \text { for all } t \tag{2.8}
\end{equation*}
$$

From by (2.1),

$$
\begin{equation*}
\psi(t)=\psi(t+m \alpha) \tag{2.9}
\end{equation*}
$$

for any arbitrary fixed $t$ an for arbitrary integer $m$, and then letting $m \rightarrow \infty$ in the right-hand side of (2.9) leads to (2.8).

The result (2.8) itself implies that

$$
\dot{\psi}(t)=0 \text { for all } t
$$

from which, by (2.7), it follows from assumptions on $\Psi$ and $G$, that

$$
\begin{equation*}
Y=0 \text { for all } t \tag{2.10}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
X=\xi(\text { constant }), Y=0=Z=U \text { for all } t \tag{2.11}
\end{equation*}
$$

Since $(X, Y, Z, U)$ is a solution of (1.5), it is evident from (2.10) and (2.11) that $G(\xi)=0$, so that $\xi=0$, by (1.3). Hence

$$
(X, Y, Z, U)=(0,0,0,0)
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. Let $(X, Y, Z, U, V)=(X(t), Y(t), Z(t), U(t), V(t))$ be an arbitrary $\omega$-periodic solution of (1.6), that is

$$
(X(t), Y(t), Z(t), U(t), V(t))=(X(t+\omega), Y(t+\omega), Z(t+\omega), U(t+\omega), V(t+\omega))
$$

for some $\omega>0$.
Consider the function $W=W(X, Y, Z, U, V)$ defined by

$$
\begin{align*}
W= & \frac{1}{2}\langle A Z, Z\rangle+\langle Z, U\rangle-\langle Y, V\rangle-\langle Y, A U\rangle \\
& -\int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma-\int_{0}^{1}\langle\Theta(\sigma X), X\rangle d \sigma . \tag{2.12}
\end{align*}
$$

It is clear that $W$ is bounded. An elementary differentiation from (1.6) and (2.12) yields

$$
\begin{align*}
\dot{W}= & \langle U, U\rangle+\langle Y, \Phi(X, Y, Z, U, V) U\rangle+\langle Y, \Omega(X, Y, Z, U, V) Y\rangle+\langle Y, \Theta(X)\rangle \\
& +\langle Y, \Psi(Y) Z\rangle-\frac{d}{d t} \int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma-\frac{d}{d t} \int_{0}^{1}\langle\Theta(\sigma X), X\rangle d \sigma . \tag{2.13}
\end{align*}
$$

But

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{1}\langle\sigma \Psi(\sigma Y) Y, Y\rangle d \sigma=\langle\Psi(Y) Z, Y\rangle \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} \int_{0}^{1}\langle\Theta(\sigma X), X\rangle d \sigma=\langle\Theta(X), Y\rangle \tag{2.15}
\end{equation*}
$$

Using the estimates (2.14) and (2.15) in (2.13) we obtain

$$
\begin{aligned}
\dot{W}= & \langle U, U\rangle+\langle Y, \Phi(X, Y, Z, U, V) U\rangle+\langle Y, \Omega(X, Y, Z, U, V) Y\rangle \\
= & \left\|U+\frac{1}{2} \Phi(X, Y, Z, U, V) Y\right\|^{2}+\langle Y, \Omega(X, Y, Z, U, V) Y\rangle \\
& -\frac{1}{4}\langle\Phi(X, Y, Z, U, V) Y, \Phi(X, Y, Z, U, V) Y\rangle \\
\geq & \langle Y, \Omega(X, Y, Z, U, V) Y\rangle-\frac{1}{4}\langle\Phi(X, Y, Z, U, V) Y, \Phi(X, Y, Z, U, V) Y\rangle \geq 0
\end{aligned}
$$

Therefore, the rest of the proof, can be shown in the same way as the proof of Theorem 1, which gives

$$
X=Y=Z=U=V=0
$$

## References

[1] A. U. Afuwape, Ultimate boundedness results for a certain system of thirdorder nonlinear differential equations, J. Math. Anal. App. 97(1983), 140-150.
[2] H. BereketoğLu, On the periodic solutions of certain class of seventh-order differential equations, Periodica Mathematica Hungarica 24(1992), 13-22.
[3] H. BereketoğLu, On the periodic solutions of certain class of eighth-order differential equations, Commun. Fac. Sci. Univ. Ank. Series A 41(1992), 55-65.
[4] J. O. C. Ezeilo, Periodic solutions of a certain fourth order differential equation, Atti. Accad. Naz. Lincei CI. Sci. Fis. Mat. Natur. LXVI(1979), 344-350.
[5] J. O. C. Ezeilo, Uniquenesss theorems for periodic solutions of certain fourth and fifth order differential systems, Journal of the Nigerian mathematical Society 2(1983), 55-59.
[6] J. O. C. Ezeilo, A further instability theorem for a certain fifth-order differential equation, Math. Proc. Cambridge Philos. Soc. 86(1979), 491-493.
[7] L. Mirsky, An Introduction to the Linear Algebra, Dover Publications, Inc., New York, 1990.
[8] H. O. Tejumola, Instability and periodic solutions of certain nonlinear differential equations of orders six and seven, in: Ordinary differential equations (Abuja, 2000), 56-65, Proc. Natl. Math. Cent. Abuja Niger., 1.1, Natl. Math. Cent. Abuja, 2000.
[9] A. Tiryaki, On the periodic solutions of certain fourth and fifth order differential equations, Pure and Applied Mathematika Sciences, Vol. XXXII, No. 1-2, 1990.
[10] A. Tiryaki, Extension of an instability theorem for a certain fourth order differential equation, Bull. Inst. Math. Acad. Sinica. 16(1988), 163-165.
[11] A. Tiryaki, Extension of an instability theorem for a certain fifth order differential equation, J. Karadeniz Tech. Univ. Fac. Arts Sci. Ser. Math. Phys. 11 (1988), 225-227.
[12] E. Tunç, Instability of solutions of certain nonlinear vector differential equations of third order, Electronic Journal of Differential Equations 2005(2005), 1-6.
[13] E. TunÇ, On the periodic solutions of a certain vector differential equation of eighth-order, Advanced Studies in Contemporary Mathematics 11(2005), 61-66.


[^0]:    *Faculty of Arts and Sciences, Department of Mathematics, Gaziosmanpaşa University, 60240,

