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On the periodic solutions of certain fourth and

fifth order vector differential equations
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Abstract. The aim of the present paper is to establish some suf-
ficient conditions which ensure that equations (1.1) and (1.2) have no
periodic solution other than the trivial solution X = 0.
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1. Introduction

The problems related to the periodic behaviour of solutions of a higher order non-
linear scalar differential equation have been treated by many investigators. The
papers achieved in Ezeilo [4], Tiryaki [9], Bereketoğlu [2, 3] and Tejumola [8] can
be given as good examples on this subject. However, with respect to our obser-
vations, only a few studies were carried out on the same topic for the solutions
of ordinary nonlinear vector differential equations of higher orders. In this aspect
studies fulfilled by Ezeilo [5] and Tunç [13] could be given as examples.

In this paper, taking into account the results obtained for the ordinary nonlinear
scalar differential equations
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by Tiryaki [9], we establish two new results on the same topic for the nonlinear
vector differential equations as follows:
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in which X ∈ Rn; A is a constant n × n-symmetric matrix; Φ,Ψ and Ω are
continuous n × n-symmetric matrices depending, in each case, on the arguments
shown; F,G,Θ : Rn → Rn are continuous n-vector functions. It will be assumed

F (0) = 0, G(0) = 0 (1.3)

and

Ω(X, 0, Z, U, V ) = 0, Θ(0) = 0 (1.4)

for an arbitrary value of X,Z,U and V. Let JG(X) denote the Jacobian matrix
corresponding to the function G(X), that is, JG(X) =

(
∂gi

∂xj

)
, (i, j = 1, 2, ..., n)

where (x1, x2, ..., xn) and (g1, g2, ..., gn) are the components of X and G, respec-
tively. Other than these, it will also be assumed that the Jacobian matrices JG(X)
exist and are symmetric and continuous. The symbol 〈X,Y 〉 is used to denote the

usual scalar product in Rn for given any X,Y in Rn, that is, 〈X,Y 〉 =
n∑

i=1

xiyi; thus

‖X‖2 = 〈X,X〉 . The matrix A is said to be negative-definite, when 〈AX,X〉 < 0
for all non-zero X in Rn, and λi(A) (i = 1, 2, ..., n) are the eigenvalues of the
n× n-matrix A.

In what follows we use the following differential systems which are equivalent to
the equations (1.1) and (1.2):

.

X= Y,
.

Y= Z,
.

Z= U
.

U= −Φ(Z)U − Ψ(Y )Z − F (Y ) −G(X)
(1.5)

and
.

X= Y,
.

Y= Z,
.

Z= U,
.

U= V,

.

V= −AV − Φ(X,Y, Z, U, V )U − Ψ(Y )Z − Ω(X,Y, Z, U, V )Y − Θ(X),
(1.6)

respectively.

2. Main result

We shall establish here the following theorems.

Theorem 1. In addition to the basic assumptions on the Φ,Ψ, F and G, suppose
that there are constants a2 and a4 with a4 > 1

4a
2
2 such that

(i) 0 ≤ λi(Ψ(Y )) ≤ a2 for all Y ∈ Rn, (i = 1, 2, ..., n)
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(ii) λi(JG(X)) ≥ a4 for all X ∈ Rn, (i = 1, 2, ..., n).

Then equation (1.1) has no periodic solution whatsoever other than X = 0 for all
arbitrary Φ.

Theorem 2. In addition to the basic assumptions on the A,Φ,Ψ,Ω and Θ,
suppose that

(i) Θ(X) 
= 0 for X 
= 0

(ii) λi(Ω(X,Y, Z, U, V )) ≥ 1
4 [λi(Φ(X,Y, Z, U, V ))]2 for arbitrary X,Y, Z, U, V then

the equation (1.2) has no periodic solution whatsoever other than X = 0 for
all arbitrary A,Ψ.

Now, we dispose of some well known algebraic results which will be required in
the proof of theorems. The first of these is a quite standard one:

Lemma 1. Let A be a real symmetric n× n matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, ..., n), where a′, a are constants.

Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′
2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See [7]. ✷

Lemma 2. Let Q,D be any two real n × n commuting symmetric matrices.
Then

(i) The eigenvalues λi(QD) (1, 2, ..., n) of the product matrix QD are real and
satisfy

max
1≤j,k≤n

λj(Q)λk(D) ≥ λi(QD) ≥ min
1≤j,k≤n

λj(Q)λk(D)

(ii) The eigenvalues λi(Q + D) (1, 2, ..., n) of the sum of matrices Q and D are
real and satisfy
{

max
1≤j≤n

λj(Q) + max
1≤k≤n

λk(D)
}

≥ λi(Q+D) ≥
{

min
1≤j≤n

λj(Q) + min
1≤k≤n

λk(D)
}
.

Proof. See [1]. ✷

Proof of the Theorem 1. Let (X,Y, Z, U) = (X(t), Y (t), Z(t), U(t)) be an
arbitrary α-periodic solution of (1.5), that is

(X(t), Y (t), Z(t), U(t)) = (X(t+ α), Y (t+ α), Z(t+ α), U(t+ α)) (2.1)
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for some α > 0. It will be shown that, subject to the conditions in Theorem 1,

X = Y = Z = U = 0.

Our main tool in the proof of Theorem 1 is the function Γ = Γ(X,Y, Z, U) given
by:

Γ =
1∫
0

〈σΦ(σZ)Z,Z〉 dσ +
1∫
0

〈Ψ(σY )Y, Z〉 dσ + 〈U,Z〉

+ 〈Y,G(X)〉 +
1∫
0

〈F (σY ), Y 〉 dσ.
(2.2)

Consider the function

ψ(t) ≡ Γ(X(t), Y (t), Z(t), U(t)).

Since Γ is continuous and X,Y, Z, U are periodic in t, ψ(t) is clearly bounded. An
elementary differentiation will show that

.

Γ= d
dt

1∫
0

〈σΦ(σZ)Z,Z〉 dσ + d
dt

1∫
0

〈Ψ(σY )Y, Z〉 dσ + 〈U,U〉 − 〈Z,Φ(Z)U〉

− 〈Z,Ψ(Y )Z〉 − 〈Z,F (Y )〉 + 〈Y, JG(X)Y 〉 + d
dt

1∫
0

〈F (σY ), Y 〉 dσ.
(2.3)

But

d
dt

1∫
0

〈F (σY ), Y 〉 dσ =
1∫
0

σ 〈JF (σY )Z, Y 〉 dσ +
1∫
0

〈F (σY ), Z〉 dσ

=
1∫
0

σ ∂
∂σ 〈F (σY ), Z〉 dσ +

1∫
0

〈F (σY ), Z〉 dσ

= σ 〈F (σY ), Z〉
1

|
0
= 〈F (Y ), Z〉 ,

(2.4)

d
dt

1∫
0

〈σΦ(σZ)Z,Z〉 dσ =
1∫
0

〈σΦ(σZ)U,Z〉 dσ +
1∫
0

σ2 〈JΦ(σZ)ZU,Z〉 dσ

+
1∫
0

〈σΦ(σZ)Z,U〉 dσ

=
1∫
0

σ ∂
∂σ 〈σΦ(σZ)U,Z〉 dσ +

1∫
0

〈σΦ(σZ)U,Z〉 dσ

= σ2 〈Φ(σZ)U,Z〉
1

|
0
= 〈Φ(Z)U,Z〉

(2.5)

and similarly we have

d

dt

1∫
0

〈Ψ(σY )Y, Z〉dσ = 〈Ψ(Y )Z,Z〉 +

1∫
0

〈Ψ(σY )Y, U〉 dσ. (2.6)
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Upon gathering the estimates (2.4), (2.5) and (2.6) into (2.3) we obtain

.

Γ = 〈U,U〉 +
1∫
0

〈Ψ(σY )Y, U〉 dσ + 〈Y, JG(X)Y 〉
≥ ‖U‖2 − a2 ‖Y ‖ ‖U‖ + a4 ‖Y ‖2

=
(‖U‖ − 1

2a2 ‖Y ‖
)2 + a4 ‖Y ‖2 − 1

4a
2
2 ‖Y ‖2

=
(‖U‖ − 1

2a2 ‖Y ‖
)2 +

(
a4 − 1

4a
2
2

) ‖Y ‖2 ≥ 0.

(2.7)

Hence
.

ψ (t) ≥ 0, so that ψ(t) is monotone in t, and therefore, being bounded, tends
to a limit, ψ0 say, as t→ ∞. It is readily checked that

ψ(t) ≡ ψ0 for all t. (2.8)

From by (2.1),

ψ(t) = ψ(t+mα) (2.9)

for any arbitrary fixed t an for arbitrary integer m, and then letting m→ ∞ in the
right-hand side of (2.9) leads to (2.8).

The result (2.8) itself implies that
.

ψ (t) = 0 for all t

from which, by (2.7), it follows from assumptions onΨ and G , that

Y = 0 for all t, (2.10)

which in turn implies that

X = ξ (constant), Y = 0 = Z = U for all t. (2.11)

Since (X,Y, Z, U) is a solution of (1.5), it is evident from (2.10) and (2.11) that
G(ξ) = 0, so that ξ = 0, by (1.3). Hence

(X,Y, Z, U) = (0, 0, 0, 0)

This completes the proof of Theorem 1. ✷

Proof of Theorem 2. Let (X,Y, Z, U, V ) = (X(t), Y (t), Z(t), U(t), V (t)) be
an arbitrary ω-periodic solution of (1.6), that is

(X(t), Y (t), Z(t), U(t), V (t)) = (X(t+ ω), Y (t+ ω), Z(t+ ω), U(t+ ω), V (t+ ω))

for some ω > 0.
Consider the function W =W (X,Y, Z, U, V ) defined by

W = 1
2 〈AZ,Z〉 + 〈Z,U〉 − 〈Y, V 〉 − 〈Y,AU〉

−
1∫
0

〈σΨ(σY )Y, Y 〉 dσ −
1∫
0

〈Θ(σX), X〉 dσ. (2.12)
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It is clear that W is bounded. An elementary differentiation from (1.6) and (2.12)
yields

.

W= 〈U,U〉 + 〈Y,Φ(X,Y, Z, U, V )U〉 + 〈Y,Ω(X,Y, Z, U, V )Y 〉 + 〈Y,Θ(X)〉
+ 〈Y,Ψ(Y )Z〉 − d

dt

1∫
0

〈σΨ(σY )Y, Y 〉 dσ − d
dt

1∫
0

〈Θ(σX), X〉 dσ. (2.13)

But

d

dt

1∫
0

〈σΨ(σY )Y, Y 〉 dσ = 〈Ψ(Y )Z, Y 〉 (2.14)

and

d

dt

1∫
0

〈Θ(σX), X〉dσ = 〈Θ(X), Y 〉 . (2.15)

Using the estimates (2.14) and (2.15) in (2.13) we obtain
.

W= 〈U,U〉 + 〈Y,Φ(X,Y, Z, U, V )U〉 + 〈Y,Ω(X,Y, Z, U, V )Y 〉
=

∥∥U + 1
2Φ(X,Y, Z, U, V )Y

∥∥2 + 〈Y,Ω(X,Y, Z, U, V )Y 〉
− 1

4 〈Φ(X,Y, Z, U, V )Y,Φ(X,Y, Z, U, V )Y 〉
≥ 〈Y,Ω(X,Y, Z, U, V )Y 〉 − 1

4 〈Φ(X,Y, Z, U, V )Y,Φ(X,Y, Z, U, V )Y 〉 ≥ 0

Therefore, the rest of the proof, can be shown in the same way as the proof of
Theorem 1, which gives

X = Y = Z = U = V = 0.
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