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Metrical relationships in a standard triangle in an

isotropic plane

R. Kolar–Šuper∗, Z. Kolar–Begović†, V. Volenec‡ and J. Beban–Brkić§

Abstract. Each allowable triangle of an isotropic plane can be
set in a standard position, in which it is possible to prove geometric
properties analytically in a simplified and easier way by means of the
algebraic theory developed in this paper.
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1. Terms of elementary geometry in I2

Let P2(R) be a real projective plane, f a real line in P2, and A2 = P2 \ f the
associated affine plane. The isotropic plane I2(R) is a real affine plane A2 where
the metric is introduced with a real line f ⊂ P2 and a real point F incidental with
it. The main facts about the isotropic plane can be found in [1], [2], [3].
We will first define some terms and point out some properties of triangles and circles
in I2 that are going to be used further on.

All straight lines through the point F are called isotropic straight lines (isotropic
lines). All other straight lines are simply called straight lines. Two points A, B (A �=
B) are called parallel if they lie on the same isotropic line. For two non-parallel
points A = (a1, a2), B = (b1, b2), the isotropic distance is defined by d(A, B) =
b1 − a1. Note that the isotropic distance is directed. For two parallel points A =
(a1, a2), B = (b1, b2), a1 = b1, the quantity known as an isotropic span is defined by
s(A, B) = b2−a2. A straight line P through two points A and B will be denoted by
P = AB. Furthermore, it will be recognized from the context whether, for example
BC, refers to the straight line passing through points B and C or to the length of
the line segment with endpoints B, C.
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Each non-isotropic straight line G ⊂ I2 can be written in the normal form
y = ux + v, that is, in line coordinates, G = (u, v). For two straight lines
G1 = (u1, v1), G2 = (u2, v2) the isotropic angle is defined by ϕ = ∠(G1,G2) = u2−u1.
Note that the isotropic angle is directed as well. The Euclidean meaning of the
isotropic angle can be understood from the affine model given in Figure 1.

For two parallel straight lines G1 = (u1, v1), G2 = (u2, v2) there exists an
isotropic invariant defined by ϕ∗(G1,G2) = v2 − v1 (see Figure 2).

Figure 1. Figure 2. Figure 3.

An isotropic normal to the straight line G = (u, v) from the point P = (p1, p2),
P /∈ G is an isotropic line through P . The inverse holds as well, i.e. each straight
line G ⊂ I2 is a normal for each isotropic straight line.

Denoting by S = (s1, s2) the point of intersection of the isotropic normal from
the point P with the straight line G, the isotropic span of the point P from the line
G is given by s(S, P ) = p2 − s2 = p2 − up1 − v (see Figure 3).

2. Triangle in a standard position

Under a triangle in I2 an ordered set of three non-collinear points (A, B, C) is
understood. A, B, C are called vertices, and BC, CA, AB sides of a triangle. A
triangle is called allowable if none of its sides is isotropic. In an allowable triangle
the lengths of the sides are defined by BC = d(B, C), CA = d(C, A), AB = d(A, B),
with BC �= 0, CA �= 0, AB �= 0, BC + CA + AB = 0. For the directed angles we
have ∠A = ∠(AB, AC), ∠B = ∠(BC, BA), ∠C = ∠(CA, CB), ∠A+∠B +∠C = 0
(see Figure 4).

Isotropic altitudes HBC , HCA, HAB associated with sides BC, CA and AB are
isotropic straight lines passing through vertices A, B, C, i.e. normals to sides BC,
CA and AB. Their lengths are defined by ha = s(Ah, A) where Ah = BC ∩ HBC ,
etc. The Euclidean meaning is given in Figure 5.
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Figure 4. Figure 5.

According to [1], to any allowable triangle in I2 exactly one circle can be cir-
cumscribed. The equation of the circumcircle is of the form

y = ux2 + vx + w, u �= 0.

The coordinate system can be moved to the position that reduces above equation
to the form y = ux2. Without loss of generality, by using the substitution y

u → y,
we will assume that the equation of this circle is given by

Kc . . . y = x2. (1)

Excepting as arranged, vertices of a given allowable triangle �ABC are

A = (a, a2), B = (b, b2), C = (c, c2), (2)

a, b, c being mutually different numbers. In writing relations, equations, etc., the
following abbreviations will be useful:

a + b + c = s, abc = p, ab + bc + ca = q. (3)

Besides, by choosing without loss of generality, that

s = a + b + c = 0 (4)

is fulfilled, it follows that the y–axis coincides with the diameter of the circle passing
through the centroid

G =
(

a + b + c

3
,
a2 + b2 + c2

3

)
=

(
0,−2

3
q

)
(5)

of �ABC, while the x–axis is a tangent line of the circumscribed circle at the
endpoint of the diameter through G.

For each allowable triangle ABC it can be achieved in the described way, that
its circumscribed circle has equation (1) and its vertices are of the form (2) while
equalities (3) and (4) are satisfied. We shall say that this triangle is in the standard
position or shorter triangle ABC is a standard triangle. To prove geometric facts
for each allowable triangle it is sufficient to give a proof for a standard triangle.
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3. Algebraic relationships in the standard triangle

For the systematic studying of the triangle in an isotropic plane various conse-
quences of equations (3) and (4) will be useful.

First of all, the following equalities

a2 = bc − q, b2 = ca − q, c2 = ab − q (6)

are valid, because of e.g.
a2 = −a(b + c) = bc − q,

so it follows
a2 + b2 + c2 = −2q, (7)

and it implies that q < 0. Equality (7) is used in (5). Then we have

q = −(b2 + bc + c2) = −(c2 + ca + a2) = −(a2 + ab + b2) (8)

because of e.g.
b2 + bc + c2 = (b + c)2 − bc = a2 − bc = −q

is valid according to (6).
The formula

BC2 + CA2 + AB2 = (b − c)2 + (c − a)2 + (a − b)2 = −6q (9)

is also valid because of

2(a2 + b2 + c2)− 2(bc + ca + ab) = −4q − 2q = −6q.

The following equalities are also interesting

(b − c)2 = −(q + 3bc), (c − a)2 = −(q + 3ca), (a − b)2 = −(q + 3ab), (10)

(c−a)(a−b) = 2q−3bc, (a−b)(b−c) = 2q−3ca, (b−c)(c−a) = 2q−3ab, (11)

and they are obtained for example in this way

(b − c)2 = (b + c)2 − 4bc = a2 − 4bc = bc − q − 4bc = −(q + 3bc),
(c − a)(a − b) = −a2 − bc + ca + ab = −(bc − q) + q − 2bc = 2q − 3bc.

By means of (10), the equality

(b − c)2(c − a)2(a − b)2 = −(27p2 + 4q3) (12)

follows, and therefore the inequality 27p2 + 4q3 < 0 is valid. Indeed, the left-hand
side of (12) is equal to

−(q + 3bc)(q + 3ca)(q + 3ab)=−q3−3q2(bc + ca + ab)− 9qabc(a + b + c)−27a2b2c2

= −27p2 − 4q3.
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4. Elements of the standard triangle

The standard triangle ABC has vertices given by equalities (2). The sides of that
triangle have the equations

BC . . . y = −ax − bc,

CA . . . y = −bx − ca, (13)
AB . . . y = −cx − ab,

since, for example, for the point B = (b, b2) and the first line (13) owing to (4) the
equality b2 = −ab − bc is valid.

With x = a from the equation of the line BC owing to (6) it follows

y = −a2 − bc = q − 2bc,

and we obtain the first of the three feet of altitudes

Ah = (a, q − 2bc), Bh = (b, q − 2ca), Ch = (c, q − 2ab) (14)

of the triangle ABC, and the remaining two are obtained analogously. Now, because
of (6) and (11), we obtain, for example, for the altitude ha

ha = s(Ah, A) = a2 − (q − 2bc) = 3bc − 2q = −(c − a)(a − b),

then equalities

ha = −(c − a)(a − b), hb = −(a − b)(b − c), hc = −(b − c)(c − a) (15)

are valid. Triangle ABC with vertices (2) has the (oriented) area �, for which we
obtain

2� =

∣∣∣∣∣∣
a a2 1
b b2 1
c c2 1

∣∣∣∣∣∣ = (b − c)(c − a)(a − b) = −BC · CA · AB, (16)

because of BC = c− b, CA = a− c, AB = b − a. From (15) and (16) the following
equalities, analogous to those in Euclidean geometry, follow immediately

2� = BC · ha = CA · hb = AB · hc. (17)

If we want the equality 4�R = −BC ·CA ·AB to be as in Euclidean geometry, we
have to arrange that the radius of the circumscribed circle of the standard triangle
is equal to R = 1

2 , i.e. this is the radius of the circle with equation (1). (In [1]
the arrangement is slightly different; it is arranged that circle (1) has radius 1.)
In various metric formulae, which are not seemingly homogenous, i.e. all members
are not of the same dimension, it is necessary to replace factor 1 with 2R at some
places so that the formula becomes homogenous. So, for example the first equation
(15) should be written in the form 2Rha = −CA · AB.

As the absolute point F has the role of the orthocenter and the center of the
circumscribed circle too, then the isotropic line through the centroid G of that
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triangle will be called an Euler line of that triangle (Figure 6). Because of (5), the
standard triangle ABC has Euler line E with the equation x = 0.

The line with the equation

y = 2ax + 2bc − q

passes through points Bh and Ch from (14) since e.g. for the point Bh the equality
2ab+2bc− q = q− 2ca is valid. For that reason it is the equation of the line BhCh.
Triangle AhBhCh is called an orthic triangle of triangle ABC. Its sides have the
equations

BhCh . . . y = 2ax + 2bc − q,

ChAh . . . y = 2bx + 2ca − q, (18)
AhBh . . . y = 2cx + 2ab − q.

Theorem 1. The corresponding sides of the triangle and its orthic triangle
intersect at three points which lie on the same line (Figure 6).

Proof. If we add to the first equation in (18) the first equation from (13)
multiplied by 2, we obtain the equation of the line 3y = −q on which the point
BC ∩BhCh lies, and the same is valid for the points CA ∩ChAh and AB ∩ AhBh.
✷

The line from Theorem 1 is called, by the analogy with the Euclidean case,
orthic axis of the observed triangle.

Corollary 1. The orthic axis H of the standard triangle ABC has the equation

H . . . y = − q

3
. (19)

The orthic axis of the triangle has one more interesting property.
Theorem 2. The centroid of three points at which an arbitrary isotropic straight

line intersects sides of an allowable triangle lies on the orthic axis of this triangle.
Proof. Really, the arithmetic mean of the right-hand sides of equalities (13) is

equal to − q
3 for each x, because of (4). ✷

In some way, the next theorem is related to Theorem 2.
Theorem 3. The sum of the spans from vertices of the triangle to the line G

is equal to zero if and only if that line passes through the centroid of that triangle.
Proof. The line G with equation y = ux+v passes through the centroid G from

(5) of the standard triangle ABC under the assumption v = − 2
3q. Spans of points

A, B, C from (2) to the line G are, respectively, equal to

a2 − au − v, b2 − bu − v, c2 − cu − v

and because of (4) and (7) we have the sum −2q− 3v, which is equal to zero under
the same assumption v = − 2

3q. ✷

Out of all the lines through the centroid of the triangle the one which is parallel
to its orthic axis is specially interesting (Figure 6). That line will be called inertial
axis of triangle.

Corollary 2. The inertial axis Gof the standard triangle has the equation

G . . . y = −2
3
q. (20)
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5. Complementarity and anticomplementarity

If G is the centroid of the allowable triangle ABC, then the homothecy (G,− 1
2 )

and its inverse homothecy (G,−2), by analogy with the Euclidean case, will be
called complementarity resp. anticomplementarity with regard to triangle ABC.
The image of the point T (or the curve K) by these homothecies will be called a
complementary resp. anticomplementary point (curve) of the point T (of the curve
K, respectively).

Theorem 4. The point (−x
2 ,− y

2 − q) is a complementary point and the point
(−2x,−2y − 2q) is an anticomplementary point to the point T = (x, y), with regard
to triangle ABC.

Proof. If the point T ′ = (x′, y′) is complementary to the point T = (x, y)
then the equality T + 2T ′ = 3G is valid, i.e. because of (5) we have equalities
x + 2x′ = 0 and y + 2y′ = −2q, wherefrom x′ = −x

2 , y′ = − y
2 − q follows. If the

point T ′′ = (x′′, y′′) is anticomplementary to the point T = (x, y), then the equality
2T +T ′′ = 3G is valid, i.e. we have equalities 2x+x′′ = 0 and 2y + y′′ = −2q, from
which x′′ = −2x and y′′ = −2y − 2q follow. ✷

Theorem 5. If the curve K has the equation K(x, y) = 0, then its complemen-
tary and anticomplementary curve, with regard to the standard triangle ABC, have
successively the equations

K(−2x,−2y − 2q) = 0 and K
(
−x

2
,−y

2
− q

)
= 0. (21)

Proof. If the point T ′ = (x′, y′) is complementary to the point T = (x, y) on
the curve K, then x = −2x′ and y = −2y′ − 2q is valid according to the proof of
Theorem 4, K(−2x′,−2y′−2q) = 0 is the equation of the curve which is described by
the point T ′. If we write x and y instead of x′ and y′, then we get the first equation
(21). If the point T ′′ is anticomplementary to the point T = (x, y) then we obtain
x = −x′′

2 , y = − y′′

2 −q by the proof of Theorem 4 hence K(−x′′
2 ,− y′′

2 −q) = 0 is the
equation of the curve which is described by the point T ′′. With the substitutions
x′′ → x, y′′ → y we obtain the second equation (21). ✷

The complementary point to the point A = (a, a2), because of

−a2

2
− q = −1

2
(bc − q) − q = − q

2
− bc

2

and according to Theorem 4, is the first of the three analogous points

Am = (−a

2
,− q

2
− bc

2
), Bm = (− b

2
,− q

2
− ca

2
), Cm = (− c

2
,− q

2
− ab

2
). (22)

Anticomplementary point to the same point is the first one of the three points

An = (−2a,−2bc), Bn = (−2b,−2ca), Cn = (−2c,−2ab) (23)

because of −2a2 − 2q = −2bc. Triangles AmBmCm and AnBnCn are complemen-
tary and anticomplementary triangles of the standard triangle ABC. The points
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Am, Bm, Cm are in fact the midpoints of the sides BC, CA, AB of triangle ABC.
Really, points B and C from (2) have the midpoint Am because of

1
2
(b + c) = −a

2
,

1
2
(b2 + c2) =

1
2
(−q − bc)

which is valid according to (4) and (8).
A complementary resp. anticomplementary line to the line BC with the first

equation (13) has the equation −2y−2q = −a(−2x)−bc and − y
2 −q = −a(−x

2 )−bc
according to Theorem 4, and this is the first of the three analogous equations of the
sides of the triangle AmBmCm and AnBnCn in the form

BmCm . . . y = −ax − q +
bc

2
,

CmAm . . . y = −bx − q +
ca

2
, (24)

AmBm . . . y = −cx − q +
ab

2
,

respectively

BnCn . . . y = −ax + 2a2,

CnAn . . . y = −bx + 2b2, (25)
AnBn . . . y = −cx + 2c2,

because of bc − q = a2. The lines (25) are the middle lines of the triangle ABC,
and the lines (26) are parallels with the lines BC, CA, AB, which obviously pass
successively through the points A, B, C from (2).

A complementary resp. anticomplementary circle to the circumscribed circle of
triangle ABC with the equation (1) is the circle with the equation −2y − 2q =
(−2x)2 resp. − y

2 − q = (−x
2 )

2, i.e. y = −2x2 − q respectively y = − 1
2x2 − 2q. Thus

we have proved these two theorems.
Theorem 6. The complementary triangle AmBmCm to the standard triangle

ABC has vertices (22), sides with equations (24) and the circumscribed circle with
the equation

y = −2x2 − q. (26)

Theorem 7. The anticomplementary triangle AnBnCn to the standard triangle
ABC has vertices (23), sides with equations (25) and the circumscribed circle with
the equation

y = −1
2
x2 − 2q. (27)

As midpoints Am, Bm, Cm of the sides of triangle ABC have the abscissas −a
2 ,

− b
2 , − c

2 , then the perpendicular bisectors of sides BC, CA, AB have successively
the equations

x = −a

2
, x = − b

2
, x = − c

2
. (28)
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Figure 6.
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