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Some new Menon designs with parameters
(196, 91, 42)

Dean Crnković
∗

Abstract. There are exactly 54 symmetric (196,91,42) designs
admitting an automorphism group isomorphic to Frob13·6 × Z3 act-
ing with orbit size distribution (1,13,13,13,39,39,39,39) for blocks and
points. For 50 of these designs the full automorphism group has order
234 and is isomorphic to Frob13·6 × Z3. The remaining four designs
have Frob13·6×Frob7·3 as a full automorphism group. Among these de-
signs there are 18 self-dual designs and 18 pairs of mutually dual ones.
The derived designs (with respect to the fixed block) of the four designs
with a full automorphism group of order 1638 are cyclic.
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1. Introduction

A 2-(v, k, λ) design is a finite incidence structure (P ,B, I), where P and B are
disjoint sets and I ⊆ P × B, with the following properties:

1. |P| = v;

2. every element of B is incident with exactly k elements of P ;
3. every pair of distinct elements of P is incident with exactly λ elements of B.

The elements of the set P are called points and the elements of the set B are called
blocks. If |P| = |B| = v and 2 ≤ k ≤ v − 2, then a 2-(v, k, λ) design is called a
symmetric design.

Given two designs D1 = (P1,B1, I1) and D2 = (P2,B2, I2), an isomorphism from
D1 onto D2 is a bijection which maps points onto points and blocks onto blocks
preserving the incidence relation. An isomorphism from a symmetric design D onto
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itself is called an automorphism of D. The set of all automorphisms of the design D
forms a group; it is called the full automorphism group of D and denoted by AutD.

Let D = (P ,B, I) be a symmetric (v, k, λ) design and G a subgroup of AutD.
The action of G produces the same number of point and block orbits (see [5, The-
orem 3.3, p. 79]). We denote that number by t, the point orbits by P1, . . . ,Pt, the
block orbits by B1, . . . ,Bt, and put |Pr| = ωr and |Bi| = Ωi. We shall denote the
points of the orbit Pr by r0, . . . , rωr−1, (i.e. Pr = {r0, . . . , rωr−1}). Further, we
denote by γir the number of points of Pr which are incident with a representative
of the block orbit Bi. The numbers γir are independent of the choice of the repre-
sentative of the block orbit Bi. For those numbers the following equalities hold (see
[4]):

t∑
r=1

γir = k , (1)

t∑
r=1

Ωj

ωr
γirγjr = λΩj + δij · (k − λ) . (2)

Definition 1. Let (D) be a symmetric (v, k, λ) design and G ≤ Aut D.
Further, let P1, . . . ,Pt be the point orbits and B1, . . . ,Bt the block orbits with
respect to G, and let ω1, . . . , ωt and Ω1, . . . ,Ωt be the respective orbit lengths.
We call (P1, . . . ,Pt) and (B1, . . . ,Bt) the orbit distributions, and (ω1, . . . , ωt) and
(Ω1, . . . ,Ωt) the orbit size distributions for the design and the group G. A (t× t)-
matrix (γir) with entries satisfying conditions (1) and (2) is called an orbit structure
for the parameters (v, k, λ) and orbit distributions (P1, . . . ,Pt) and (B1, . . . ,Bt).

The first step – when constructing designs for given parameters and orbit dis-
tributions – is to find all compatible orbit structures (γir). The next step, called
indexing, consists of determining exactly which points from the point orbit Pr are
incident with a chosen representative of the block orbit Bi for each number γir. Be-
cause of a large number of possibilities, it is often necessary to involve a computer
in both steps of construction.

Definition 2. The set of all indices of points of the orbit Pr which are incident
with a fixed representative of the block orbit Bi is called the index set for the position
(i, r) of the orbit structure and the given representative.

A Hadamard matrix of order m is an (m×m)-matrix H = (hi,j), hi,j ∈ {−1, 1},
satisfying HHT = HTH = mI, where I is the unit matrix. A Hadamard matrix
is regular if the row and column sums are constant. It is well known that the
existence of a symmetric design with parameters (4u2, 2u2−u, u2−u) is equivalent
to the existence of a regular Hadamard matrix of order 4u2 (see [10, Theorem 1.4
p. 280]). Such symmetric designs are called Menon designs. If 2u+1 and 2u−1 are
prime powers, there exists a symmetric Hadamard matrix with constant diagonal
of order 4u2 (see [10, Corollary 5.12 p. 342]). Symmetric (196,91,42) designs are
the smallest Menon designs that do not belong to that family of Menon designs,
since 15 is not a prime power. A.E. Brower and J.H. van Lint constructed the first
symmetric (196,91,42) design on 1983 (see [9]). Another symmetric (196,91,42)
design has been constructed recently as a member of a series of Menon designs (see
[2]). As far as we know, these are the only known symmetric (196,91,42) designs.
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2. Symmetric (196,91,42) designs

Lemma 1. Let ρ be an automorphism of a symmetric (196, 91, 42) design D. If
|〈ρ〉| = 13, then ρ fixes exactly one point and one block of D.

Proof. By [5, Theorem 3.1 p. 78], 〈ρ〉 fixes the same number of points and
blocks. Denote that number by f . Obviously, f ≡ 1 (mod 13). Using the formula
f ≤ v−2(k−λ) (see [5, Corollary 3.7 p. 82]) we get f ∈ {1, 14, 27, 40, 53, 66, 79, 92}.
Suppose that f = 14. Since a fixed block must be a union of 〈ρ〉-orbits of points,
every fixed block contains 0 or 13 fixed points. Two fixed blocks must intersect
at 3 fixed points, since λ = 42. Therefore each fixed block contains 13 fixed
points, and the fixed structure must be a symmetric (14,13,3) design, which is
impossible. This is impossible, so f �= 14. In a similar way one can prove that
f �∈ {27, 40, 53, 66, 79, 92}. ✷

We shall assume that an automorphism group isomorphic to Frob13·6 ×Z3 acts
on the symmetric (196,191,42) designs to be constructed with orbit size distribution
(1,13,13,13,39,39,39,39) for blocks and points. That means that the permutation of
order six has precisely 16 fixed points and 16 fixed blocks, and a direct factor Z3

fixes precisely 40 points and 40 blocks.

Lemma 2. Let the group Frob13·6 act as an automorphism group of a symmetric
(196, 91, 42) design D in such a way that the permutation of order six fixes exactly
16 points of D. Then Frob13·6 acts on the design D semistandardly with one fixed
block and point and 15 orbits of length 13, with the orbit structure OS1 or OS2
shown below:

OS1 =




0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0
1 0 7 7 7 7 7 7 6 6 6 6 6 6 6 6
1 7 0 7 7 7 7 7 6 6 6 6 6 6 6 6
1 7 7 0 7 7 7 7 6 6 6 6 6 6 6 6
1 7 7 7 0 7 7 7 6 6 6 6 6 6 6 6
1 7 7 7 7 0 7 7 6 6 6 6 6 6 6 6
1 7 7 7 7 7 0 7 6 6 6 6 6 6 6 6
1 7 7 7 7 7 7 0 6 6 6 6 6 6 6 6
0 6 6 6 6 6 6 6 0 7 7 7 7 7 7 7
0 6 6 6 6 6 6 6 7 0 7 7 7 7 7 7
0 6 6 6 6 6 6 6 7 7 0 7 7 7 7 7
0 6 6 6 6 6 6 6 7 7 7 0 7 7 7 7
0 6 6 6 6 6 6 6 7 7 7 7 0 7 7 7
0 6 6 6 6 6 6 6 7 7 7 7 7 0 7 7
0 6 6 6 6 6 6 6 7 7 7 7 7 7 0 7
0 6 6 6 6 6 6 6 7 7 7 7 7 7 7 0



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OS2 =




0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0
1 6 6 6 6 6 6 6 6 0 7 7 7 7 7 7
1 6 6 6 6 6 6 6 6 7 0 7 7 7 7 7
1 6 6 6 6 6 6 6 6 7 7 0 7 7 7 7
1 6 6 6 6 6 6 6 6 7 7 7 0 7 7 7
1 6 6 6 6 6 6 6 6 7 7 7 7 0 7 7
1 6 6 6 6 6 6 6 6 7 7 7 7 7 0 7
1 6 6 6 6 6 6 6 6 7 7 7 7 7 7 0
0 6 6 6 6 6 6 6 0 7 7 7 7 7 7 7
0 0 7 7 7 7 7 7 7 6 6 6 6 6 6 6
0 7 0 7 7 7 7 7 7 6 6 6 6 6 6 6
0 7 7 0 7 7 7 7 7 6 6 6 6 6 6 6
0 7 7 7 0 7 7 7 7 6 6 6 6 6 6 6
0 7 7 7 7 0 7 7 7 6 6 6 6 6 6 6
0 7 7 7 7 7 0 7 7 6 6 6 6 6 6 6
0 7 7 7 7 7 7 0 7 6 6 6 6 6 6 6




where the first row and column correspond to the fixed block and point, respectively.
Proof. Let the group G be isomorphic to the Frobenius group Frob13·6. Since

there is only one isomorphism class of such groups of order 78 we may write

G = 〈ρ, σ| ρ13 = 1, σ6 = 1, ρσ = ρ4〉.
The Frobenius kernel 〈ρ〉 of order 13 acts on D semistandardly with one fixed block
and point and 15 orbits of length 13. Since 〈ρ〉 � G, the element σ of order 6 maps
〈ρ〉-orbits onto 〈ρ〉-orbits. The permutation σ fixes exactly 16 points, so G acts on
D with one fixed block and point and 15 orbits of length 13 for blocks and points.

The stabilizer of each block from a block orbit of length 13 is conjugate to 〈σ〉.
Therefore, the entries of the orbit structures corresponding to point and block orbits
of length 13 must satisfy the condition γir ≡ 0, 1 (mod 6). Solving equations (1)
and (2), we get – up to isomorphism – exactly two solutions, the orbit structures
OS1 and OS2. ✷

Let G1 be isomorphic to the group Frob13·6 × Z3. We may write

G1 = 〈ρ, σ, τ | ρ13 = 1, σ6 = 1, τ3 = 1, ρσ = ρ4, ρτ = ρ, στ = σ〉.
Theorem 1. There are exactly 54 symmetric (196, 91, 42) designs admitting an

automorphism group isomorphic to Frob13·6 ×Z3 acting with orbit size distribution
(1, 13, 13, 13, 39, 39, 39, 39) for blocks and points. For 50 of these designs the full
automorphism group has order 234 and is isomorphic to Frob13·6 × Z3. The re-
maining four designs have Frob13·6 × Frob7·3 as full automorphism group. Among
these designs there are 18 self-dual designs and 18 pairs of mutually dual ones.

Proof. The designs have been constructed by the method described in [1] and
[3]. We denote the points by 10, 2i . . . , 16i, i = 0, 1, . . . , 12 and put G1 = 〈ρ, σ, τ〉
where the generators for G1 are permutations defined as follows:

ρ = (10)(I0I1 . . . I12), I = 2, . . . , 16,

σ = (10)(K0)(K1K4K3K12K9K10) (K2K8K6K11K5K7), K = 2, . . . , 16,
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τ = (10)(2i)(3i4i5i)(6i7i8i)(9i)(10i)(11i12i13i)(14i15i16i), i = 0, 1, . . . , 12.

Indexing the fixed part of an orbit stucture is a trivial task. Therefore, we shall
consider only the right-lower part of the orbit structure of order 15. To eliminate
isomorphic structures during the indexing process we have used the permutation
which – on each 〈ρ〉-point-orbit – acts as x �→ 2x (mod 13), and those automorphisms
of the orbit structures OS1 and OS2 which commute with τ .

As representatives for the block orbits we chose blocks fixed by 〈σ〉. Therefore,
the index sets – numbered from 0 to 4 – which could occur in the designs are among
the following:
0 = ∅, 1 = {1, 3, 4, 9, 10, 12}, 2 = {2, 5, 6, 7, 8, 11}, 3 = {0, 1, 3, 4, 9, 10, 12},
4 = {0, 2, 5, 6, 7, 8, 11}.

The indexing process of the orbit structure OS1 led to 18 designs denoted
by D1,D2, . . . ,D18. The orbit structure OS2 produces 36 designs denoted by
D19,D20, . . . ,D54. Comparing statistics of intersections of any three blocks and
using Nauty [6], we found out that the designs D1,D2, . . . ,D54 are mutually non-
isomorphic. The designs D1,D2, . . . ,D18 are self-dual, and the other designs are
dual in pairs.

We have determined the automorphism groups of the designs constructed using
GAP [7] and a program by V. D. Tonchev [8]. Self-dual designs D1 and D2, and
mutually dual designs D19 and D20, have the full automorphism group isomorphic
to Frob13·6 × Frob7·3. The other fifty designs have the full automorphic group
isomorphic to Frob13·6 × Z3.

We write down base blocks for designs D1, D2 and D19 in terms of the index
sets defined above:

D1

0 3 3 3 4 4 4 1 2 1 1 1 2 2 2
4 0 3 4 3 3 4 1 1 1 2 2 1 2 2
4 4 0 3 4 3 3 1 1 2 1 2 2 1 2
4 3 4 0 3 4 3 1 1 2 2 1 2 2 1
3 4 3 4 0 4 3 1 2 2 2 1 1 1 2
3 4 4 3 3 0 4 1 2 1 2 2 2 1 1
3 3 4 4 4 3 0 1 2 2 1 2 1 2 1
2 2 2 2 2 2 2 0 4 4 4 4 4 4 4
1 2 2 2 1 1 1 3 0 3 3 3 4 4 4
2 2 1 1 1 2 1 3 4 0 3 4 3 4 3
2 1 2 1 1 1 2 3 4 4 0 3 3 3 4
2 1 1 2 2 1 1 3 4 3 4 0 4 3 3
1 2 1 1 2 1 2 3 3 4 4 3 0 4 3
1 1 2 1 2 2 1 3 3 3 4 4 3 0 4
1 1 1 2 1 2 2 3 3 4 3 4 4 3 0

D2

0 3 3 3 4 4 4 1 2 1 1 1 2 2 2
4 0 3 4 3 3 4 1 2 1 2 2 1 1 2
4 4 0 3 4 3 3 1 2 2 1 2 2 1 1
4 3 4 0 3 4 3 1 2 2 2 1 1 2 1
3 4 3 4 0 4 3 1 1 1 2 2 2 2 1
3 4 4 3 3 0 4 1 1 2 1 2 1 2 2
3 3 4 4 4 3 0 1 1 2 2 1 2 1 2
2 2 2 2 2 2 2 0 4 4 4 4 4 4 4
1 1 1 1 2 2 2 3 0 4 4 4 3 3 3
2 2 1 1 2 1 1 3 3 0 4 3 3 4 4
2 1 2 1 1 2 1 3 3 3 0 4 4 3 4
2 1 1 2 1 1 2 3 3 4 3 0 4 4 3
1 2 1 2 1 2 1 3 4 4 3 3 0 3 4
1 2 2 1 1 1 2 3 4 3 4 3 4 0 3
1 1 2 2 2 1 1 3 4 3 3 4 3 4 0
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D19

1 1 1 1 2 2 2 2 0 3 3 3 4 4 4
1 1 2 2 1 1 2 2 4 0 3 4 3 3 4
1 2 1 2 2 1 1 2 4 4 0 3 4 3 3
1 2 2 1 1 2 1 2 4 3 4 0 3 4 3
2 2 1 1 1 1 2 2 3 4 3 4 0 4 3
2 1 2 1 2 1 1 2 3 4 4 3 3 0 4
2 1 1 2 1 2 1 2 3 3 4 4 4 3 0
2 2 2 2 2 2 2 0 4 4 4 4 4 4 4
0 3 3 3 4 4 4 4 2 2 2 2 1 1 1
4 0 3 4 3 4 3 4 2 2 1 1 1 2 2
4 4 0 3 3 3 4 4 2 1 2 1 2 1 2
4 3 4 0 4 3 3 4 2 1 1 2 2 2 1
3 4 4 3 0 4 3 4 1 2 1 2 2 1 2
3 3 4 4 3 0 4 4 1 2 2 1 2 2 1
3 4 3 4 4 3 0 4 1 1 2 2 1 2 2

From these “small” incidence matrices it is easy to obtain incidence matrices in
the ordinary form. ✷

The design D1 is isomorphic to a member of the series of Menon designs de-
scribed in [2].

Let D be a symmetric (v, k, λ) design and let x be a block of D. Remove x and
all points that do not belong to x from other blocks. The result is a 2-(k, λ, λ− 1)
design, a derived design of D with respect to the block x.

A 2-(v, k, λ) design with an automorphism group G is called cyclic if G contains
a cycle of length v. The derived design of D1, D2, D19 and D20 with respect to the
first block are cyclic 2-(91,42,41) designs.

References
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