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Summary 

This paper presents a novel technique for structural stiffness optimization with respect 
to vibration response. Assuming the regularity of the structure mass matrix and the asymptotic 
stability of the state space system representing the structure, optimization criteria are defined 
in terms of the H  norm of the system. In doing so, a special structure of system matrices is 
utilized to eliminate some of optimization variables. To overcome the high computational cost 
of the algorithm and make it applicable for optimization of large-scale structures, a novel re-
duced-order optimization algorithm is proposed. A numerical example which clearly illus-
trates the applicability and efficiency of the proposed optimization procedure is presented. 
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1. Introduction 

High demands in modern structural engineering, notably higher demands for reliability, 
durability and safety, decreased noise, high power/weight ratio, longer operational life, higher 
operating speeds, and so on, have resulted in higher importance of vibration attenuation 
strategies. If high performance is needed, active vibration control comprising sensors, 
controllers and actuators may be utilized [1,2,3,4,5]. The use of passive vibration control, 
however, may be preferred in many instances due to its effectiveness, low cost, reliability and 
robustness. Passive vibration attenuation encompasses a wide variety of methods which, by 
the use of passive devices, suppress structural vibrations and noise [6,7,3]. We may broadly 
classify such techniques into damping, isolation and stiffening, although numerous other 
(often non-exclusive) classifications are possible. Isolation and stiffening usually involve a 
sort of structural element stiffness optimization in order to prevent vibration propagation or to 
shift the structure resonant frequency beyond the excitation frequency band. Recently, an 
increasing interest in posing the problem of structural vibration optimization as an optimal 
control problem has been shown – see for instance [8,9]. Such an approach quantifies the 
structure vibration response in terms of suitably chosen system norms, and the resulting 
optimal control problem is subsequently solved using numerical techniques. 

The structural stiffness optimization framework proposed in this paper falls into this 
broad category of control-oriented methods, i.e. it is based on H  optimality condition for 
state-space systems. It is the modification of the algorithm presented in [10], originally 
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conceived as an algorithm for simultaneous optimization of mass, damping and stiffness 
parameters for multiple tuned mass damper devices. In contrast to the original algorithm, the 
proposed algorithm assumes the regularity of the structure mass matrix. A potential drawback 
of the algorithm is its increased computational cost, which is a common issue associated with 
control-oriented, as well as some other structural optimization methods. To overcome this 
drawback, a reduced-order optimization technique is proposed as well, thus adapting the 
original optimization framework to optimization for large-scale structures. 

In this paper, the following notation is used. Let R  denote the set of real numbers and 
I  the identity matrix. For a matrix A , TA , *A  and )(max A  denote its transpose, conjugate 

transpose and maximum singular value (spectral norm), respectively. We define )He(A  as an 

abbreviation for TAA  . For a vector v , v  denotes its Euclidean norm. We use BA   

( BA  ) and BA   ( BA  ) to denote, respectively, positive and negative (semi)definite 
ordering of symmetric matrices A  and B . A space of all signals )(tw  such that 




tt d)(
2

0
w  is denoted  ,0L . 

2. Optimization framework 

Consider the following second order linear time invariant system that represents the 
structure 
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where qqRM , qqRD  and qqR)(sS  are the mass, damping and stiffness matrices, 

respectively, mqR1B  is the input matrix and qpR1C  and qpR2C  are the velocity and 

displacement output matrices, respectively. Time-dependent vectors )(ty , )(ty , qt R)( y , 
mt R)( w  and pt R)( z  are the displacement, velocity, acceleration, input and output 

vectors, respectively. The input vector is the force or displacement excitation, and we assume 
that it is steady-state, periodic and that   ,0)( Ltw . 

Structure stiffness matrix is assumed to be the affine function of stiffness parameters 
 lisi ,,1| s , as follows: 
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In order to accommodate actual stiffness parameters constraints due to design, 
technology and other requirements, we introduce The following general equality and 
inequality constraints of stiffness parameters, imposed by design, technology and other 
requirements, are introduced: 

.0)(

,0)(


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sh
. (3) 

Obviously, such constraints define a feasible set for stiffness parameters, as well as for 
stiffness matrices. Furthermore, we assume that 0M   and 0sS )(  for all s  that satisfy the 
constraints (3). 

The system (1) may be rewritten as a state space system 
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where 
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are the system state-space matrices of appropriate dimensions, and 

 TTT )()()( ttt yyx   (6) 

is the system state vector comprised of velocity and displacement vectors. 

Assume that the system (1) is asymptotically stable for all s  that satisfy the constraints 
(3), i.e. all eigenvalues of )(sA  lie within the open left half of the complex plane. This 

implies that   ,0)( Ltz  for all   ,0)( Ltw . Furthermore, the stiffness parameter 

optimization problem may be considered as the H  optimal control problem, namely to find 
s  that minimizes a real scalar   such that input and output signals of the system (1) satisfy 
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for all   ,0)( Ltw . 

Frequency domain equivalent of the inequality (7), referred to as the bounded real 
lemma (BRL), is the system H  norm condition 


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R
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where BsAICG 1))(i()i(    is the system frequency response. Equivalently, (8) can be 
written as the matrix inequality 
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for all R . 

The scalar   essentially quantifies the worst-case gain of the system, or in other words, 
the largest ratio of Euclidean norms of output and input signal amplitudes for all steady-state 
sinusoidal input/output signals and all frequencies. 

2.1 Dissipativity inequalities and optimization criterion 

Kalman-Yakubovic-Popov lemma is the fundamental result in dynamical systems 
theory that establishes equivalence between frequency domain inequality (9) and a linear 
matrix inequality (LMI) for the system state space realization [11]. Thus, the condition for the 
bounded realness of the system (1) may be expressed in terms of LMI involving system 
matrices (5), rather than as infinitely many inequalities (9) parametrized by  , as follows. 

Condition (9) holds true if and only if there exists a matrix qq 22T R  XX  that 
satisfies the following LMI: 
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Due to the fact that we are dealing with the second order system, which yields the 
special structure of matrices (5), some of the variables in X  may be eliminated. We divide X  
according to the block structure of )(sA  into 

qqR 22

42
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and apply some LMI transformations (for details, please refer to [10]) to eliminate the blocks 
containing 4X . This results in the following LMIs: 

 
0

I0C

0IXBM

CBMXXDMX
T 




























1

11
1

T
11

1
12

1
1

)(

He

 (12) 

 
0

I0C

0IXBM

CBMXXsS





























2

2
T

1
1

T
21

1T
22

)(

)(He

 (13) 

Finally, the H  optimal control problem may be formulated as 


21,,

min
XXs

 (14) 

such that 

1. stiffness parameters s  satisfy the constraints (3), 

2. there exist qq R, 2
T

11 XXX  such that (12) and (13) hold true. 

2.1.1 Numerical optimization procedure 

Due to the fact that both )(sS  and 2X  in the top left block of (13) are variables, 
inequality (13) is a bilinear matrix inequality (BMI), which renders (14) a nonconvex 
optimization problem. Rather than applying a numerically very expensive global optimization 
procedure for tackling such problem, we opt for a local optimization using the readily 
available BMI optimization software [12]. Obviously, such a local optimization procedure 
yields a result that depends on the initial guess, as well as on the constraints (3). 

The motivation for such a choice, apart from avoiding extensive numerical calculations, 
is that a good initial guess as to stiffness parameters is usually available – for example, initial 
parameters may be tuned to some sub-optimal configuration by means of some readily-
available technique, or we may be dealing with some pre-existing sub-optimal design that 
needs further optimization. Additionally, stiffness parameters may be constrained to some 
small feasible set due to, for example, design requirement, in which case the local 
optimization hopefully results in finding the global optimum. 

3. Reduced-order optimization for large-scale structures 

Bounded realness condition, expressed in terms of inequalities (12) and (13), imposes 

the existence of matrices qq R, 2
T

11 XXX , whose dimensions q  are equal to the 

dimensions of the mass, damping and stiffness matrices. Thus, additional qq 22  variables 
are introduced. Furthermore, although M , D  and )(sS   may be sparse, there is no guarantee 

that 1X  and 2X  will be sparse as well – in fact, they are almost always dense. Obviously, for 
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large-scale case where 310q  or more, an optimization criteria based on inequalities (12) and 
(13) would be prohibitive from the computational point of view. Instead, we propose the 
following reduced-order optimization procedure: 

1. Determine the initial stiffness parameters s~  that satisfy constraints (3). 

2. For such constant s~ , calculate a matrix   rq
r R  vvvsVV 21)~( , such 

that qr   and rii ,,1| v  are generalized eigenvectors of the matrix pair 

))~(,( sSM  that represent the structure critical vibration modes. 

3. Apply a projection procedure to obtain reduced system matrices, as follows: 

MVVM Tr , DVVD Tr , 



l

i
ir

1

T
0

T VSVVSVS , 1
T

1 BVB r  VCC 11 r , 

VCC 22 r . (15) 

4. Find a solution ŝ  for the optimization problem (14) such that: 

a. stiffness parameters ŝ  satisfy constraints (3), 

b. there exist rr
rrr

 R, 2
T

11 XXX  such that (12) and (13) hold true for 
reduced system matrices (14). 

Note that the matrix V , which normally depends on the stiffness parameters s , is 
calculated for some initial s~  and kept constant throughout the rest of the optimization proce-
dure. This brings us to the crucial requirement for the proposed procedure: the matrix V  does 
not depend on the parameters s  significantly. More accurately, columns of )~(sV  span a sub-

space that is a sufficient approximation of the column subspace of )ˆ(sV . This requirement, 
although not valid for the most general case, appears to be fulfilled for the vast majority of 
stiffness optimization problems we have encountered. We further clarify this, as follows. 

Let sss ˆ~   denote the differences in initial and optimal stiffness parameters, 
respectively, and assume that sss ˆ~   is sufficiently small, i.e. the initial and optimal 
stiffness parameters are sufficiently close and/or constraints (3) keep the parameters within 
some sufficiently small set. Consequently, the columns of  rvvvsV ˆˆˆ)ˆ( 21   may be 
viewed as perturbed generalized eigenvectors 

j
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where )ˆ()~( sSsSS   is the stiffness matrix perturbation due to s , and qii ,,1|   are 

the generalized eigenvalues that correspond to the generalized eigenvectors qii ,,1| v , as 

detailed in [13]. According to (16), columns of )~(sV  and )ˆ(sV  span the same subspace if the 
summation index q  in (16) is replaced by r , or in other words, if the influence of the 

generalized eigenvectors qrjj ,,1| v  on the perturbed generalized eigenvectors 

qii ,,1|ˆ v  is neglected. Such influence is quantified by the constants 

ji

i
T

j
j 







vSv )(
, (17) 

for qrj ,,1 , which are small if S  is small and ji    is large, i.e. for the generalized 

eigenvalue/eigenvector pairs that are further away from the eigenvector/eigenvalue pairs that 
represent structure critical vibration modes. 
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Therefore, the assumption that )(sV  is (nearly) constant throughout the optimization 
procedure may be interpreted as follows: changes in stiffness parameters do not cause 
significant contribution of higher vibration forms to critical vibration forms of the system. 
This may be verified a posteriori by evaluating constants (17), or by checking the distance 
between )~(sV  and )ˆ(sV  by an appropriate measure, for example by calculating the 

maximum singular value ))ˆ()~((max sVsV  . If such a measure is significant, i.e. if )~(sV  and 

)ˆ(sV  are substantially different, one may simply choose a larger number of vibration forms 
for the order reduction. Another alternative, which is the research in progress, is a sort of 
iterative procedure that consists of several reduction and optimization sequences. 

4. Numerical example 

As an illustrative example of the applicability and efficiency of the proposed 
optimization framework, the following problem is studied. Consider a power plant comprising 
of a turbine and a generator connected by a shaft depicted in Fig. 1. The shaft is supported by 
two bearing blocks, referred to bearing 1 and bearing 2., with radial stiffness parameters 1s  

and 2s , respectively. Note that we have adopted a rather simple bearing model, reducing 
bearing block properties to a single parameter. This parameter, i.e. radial stiffness, will serve 
as the optimization variable. The parameters for the power plant are: shaft lengths  
a = 1938 mm, b = 7000 mm, c = 1310 mm, shaft diameter D = 900 mm, turbine mass  
mT = 64000 kg, turbine moments of inertia ITx = 68000 kg m2, ITz = 34000 kg m2, generator 
mass mG = 230000 kg, generator moments of inertia IGx = 2·106 kg m2, IGz = 106 kg m2, 
bearing stiffnesses s1 = 0.6667·109 N m-1, s2 = 0.6667·109 N m-1. Nominal power plant 
rotational speed is 187.5 revolutions per minute. 

Vibrations of the plant are excited by two harmonic forces tftf sin)( 101  , referred to 

as input 1, and tftf sin)( 202  , referred to as input 2, acting perpendicular to the shaft at the 

turbine (input 1) and the generator (input 2). For such a vibration model, two outputs are 
defined as well: vibration displacements at the turbine and generator are referred to as output 
1 and output 2, respectively. 

 

Fig. 1  Power plant vibration model 

For simulation and optimization purposes, a finite element model comprising 10 shear 
deformable beam elements is used to model the shaft. The turbine and the generator are con-
sidered to be discrete mass/inertia elements. Shaft material properties are as follows: modulus 
of elasticity E = 210 GPa, mass density ρ = 7850 kg m-3, the Poisson coefficient ν = 0.3. 
Damping is proportional to the Rayleigh damping coefficients α = 0.8319, β = 4.2716·10-4, 
which are determined in the way that the modal damping ratios are 2% for the first three 
vibration modes. 

Frequency response of such a model is shown as a dashed line in Fig. 2. Modal analysis 
of the structure is performed as well, and the results for modal frequencies and modal 
damping ratios for the first four vibration modes are presented in Table 1. Based on such 
results, we have identified the first three vibration modes as critical, i.e. the most contributory 
factors to the system vibration response. Therefore, we create a reduced order model using the 
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projection matrices comprised of eigenvectors for the first three vibration modes, as described 
in section 3. 

Table 1  Power plant natural frequencies and modal damping ratios 

Mode 1 2 3 4 
Frequency, Hz 4.85 8.78 10.62 1846 
Mod. damp., % 2.01 1.93 2.05 2.84 

In order to attenuate forced vibrations, we optimize turbine bearing stiffness parameters 

1s  and 2s , taking into the account the following constraints: 

.Nm101Nm103333.0

,Nm101Nm103333.0
19
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


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s

s
, (18) 

In other words, the allowed range of bearing stiffness parameters is between 50 % and 200 % 
of their initial values. 

 

Fig. 2  Frequency response for theoriginal and the optimized power plant vibration model 

After optimization, the following bearing stiffness parameters are obtained: s1 = 
0.93225·109 N m-1, s2 = 0.93131·109 N m-1. A frequency response for the optimized model is 
shown as a solid line in Fig. 2. As a result of optimization, the peak frequency response has 
been reduced from 10.2·10-8 to 9.13·10-8, or, in other words, by 10.49 %, for turbine 
vibrations (output 1) due to turbine excitation (input 1). This peak frequency response 
corresponds to the second vibration mode, which has shifted from 8.78 Hz to 9,57 Hz due to 
stiffer optimal bearings. The frequency response for generator vibrations (output 2) due to 
generator excitation (input 2) has been reduced from 6.11·10-8 to 4.89·10-8, or, in other words, 
by 19.97 %. This corresponds to the first vibration mode, which has shifted from 4.85 Hz to 
5.17 Hz. The frequency response for turbine vibrations (output 1) due to generator excitation 
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(input 2), as well as for generator vibrations (output 2) due to turbine excitation (input 1), has 
been reduced as well. 

5. Conclusions 

This paper presents a structural stiffness optimization framework based on the  H  
optimality condition. The proposed approach assumes a constant and regular structure mass 
matrix, as well as asymptotic stability of the structural system for all feasible stiffness 
parameters. This may be guaranteed a priori for the majority of structural vibration problems. 
The main idea behind the proposed technique is local optimization, and consequently, its 
results are significantly influenced by the initial guess, constraints of stiffness parameters, as 
well as by the specific optimization problem. We do not consider the local optimization to be 
a serious drawback since a good initial guess for stiffness parameters is often available. To 
overcome the high computational cost of the algorithm and make it applicable for 
optimization of large-scale structures, we propose a novel reduced-order optimization 
algorithm. It comprises a modal projection of parameterized system matrices, and it is 
designed assuming small sensitivity of the subspace that represents critical vibration modes 
with respect to changes in stiffness parameters throughout the optimization. Note that any 
other reduction technique may be used instead, as long as it satisfies the condition of assumed 
small sensitivity of the subspace and preserves the structure of the system matrices. 
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