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Two- and Three-dimensional Tilings Based
on a Model of the Six-dimensional Cube

Two- and Three-dimensional Tilings Based on a

Model of the Six-dimensional Cube

ABSTRACT

A central-symmetric three-dimensional model of the six-

dimensional cube can give us the idea of filling the space

with mosaics of zonotopes. This model yields also plane

tilings by its intersections. Using the parts of the model the

mosaic and the tiling can further be dissected by projec-

tions, associations and Boolean operations. Further con-

structions are also indicated in the paper.
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2-dimenzionalno i 3-dimenzionalno popločavanje

zasnovano na modelu 6-dimenzionalne kocke

SAŽETAK

Centralno simetrični 3-dimenzionalni model 6-

dimenzionalne kocke može nam dati ideju kako prostor

ispuniti s mozaicima zonotopa. Pomoću presjeka, ovaj

model vodi takod-er i ka ravninskom popločavanju.

Koristeći dijelove modela, mozaik i popločavanje mogu

biti razdijeljeni projekcijama, asocijacijama i Boolovim

operacijama. U članku se takoder navode i daljnje

konstrukcije.

Ključne riječi: 3-dimenzionalni model hiperkocke,

ravninsko popločavanje, prostorno popunjavanje

Lifting the vertices of ak sided regular polygon from their
plane perpendicularly by the same height and joining them
with the centre of the polygon, we get thek edges of the hy-
percube (k-cube) modelled in the three-dimensional space
(3-model). From these the 3-models or their polyhedral

surface (Fig. 1) can be generated as well in different pro-
cedures [3, 4, 5]. Each polyhedron from these will be a so
called zonotope [6], i.e. a “translational sum” (Minkowski-
sum) of some segments.

Figure 1
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Figure 2

Figure 3
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The 2-dimensional ortogonal projection of these 3-models
indicates the idea how to construct space-filling with this
model. However our 3-model of the 6-cube for exam-
ple does not fill the space. The projected grid of the 3-
cube joins our grid above and the cube fills the space well
known. The edges of the cube can be selected from the
conveniant lifted edges of the 6-cube’s 3-model. With the
selected four edges of the grid we can build the 3-model
of the 4-cube. The shell of this is a rhombic dodekahe-
dron which fills the space but this arrangement has not any
rotational symmetry without additional assumptions. We
can however replace a cube in the hole of the rotational-
symmetrically arranged rhombic dodekahedra and con-
tinue the filling in a sixfold polar array with a rhombic

triacontahedron which contains our 3-model of the 6-cube
(Fig. 2).

It can be seen, that we can fill the space with these
solids. The basic stones are to cut from a honeycomb by
symmetry-planes. If the cutting process has been com-
pleted, we have the basic stones from the three starting
solids (Fig. 3).

Another possibility is to rearrange our space-filling, as-
sembling the 3-models of thek- and j-cubes from lower-
dimensional cube 3-models. From the given 6 edges we
can combine the 3-models of 2< j < k cubes: 4 of the
3-cubes, 3 of the 4-cubes and 1 of the 5-cubes. Their addi-
tions (Fig. 4) can replace the 3-models of the abovek- and
j-cubes in our mosaic.

Figure 4
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Interpreting the starting construction of thek-cube 3-model
as a sequence of dispositions, the increasing dimensional
inner 2< j < k cube 3-models can “easily” be separated.
The edges of the 0,1, ...,k cube model-sequence are pa-
rallel to thek-segment chain approaching a starting helix,
and the disposition vectors are joining each other along this
segment chain. The model 0,1, ...,k−1 parts can also be
interpreted as intersections of two full models so that the
equal dimensional parts are positioned around the main di-
agonal of a full model, symmetrically to its centre point.
More on this full model (3-model of the n-cube) can be
read in [4], [5], [7], and on periodic and aperiodic tilings,
based on d-dimensional crystallographic space groups, you
find references in [1]. A further related topic might be: To
what extent are these 3-models certain axonometric pic-
tures of higher-dimensional cubes, created by a sequence
of parallel projections? The Pohlke-theorem has surely
limited validity in higher dimensions [2].

As it follows from our construction, the vertices lie in
planes parallel to the basic plane of the construction, there-

fore a plane-tiling appears on these horizontal intersections
of our space-filling solid-mosaics based on the 3-model of
the 6-cube (Fig. 5). This has rotational symmetries but the
diagonal intersections can be identical with the longitudi-
nal and cross-intersections (Fig. 6).

We can see in Fig. 7 the horizontal intersections alterna-
ting one another(0,1,2,3,2,1,0,1, ...) in the space-filling
mosaic based on the 3-model of the 6-cube. The tiling of
the intersections can further be dissected by the perpendi-
cular projected edges of the intersected solids (Fig. 8). A
similar phenomenon could be seen in the projection of the
inner edges of thej-cube 3-models.

Projecting the combination of the intersection grids, the
tiling can further be dissected (Fig. 9). The coloring here
is kept to one intersection and the grid of another one is
projected into this plane.

In Fig. 10 we have combined the grids of three and finally
of all four horizontal intersections. This is further dissected
by the projected edges of the intersected solids.

Figure 5 Figure 6

Figure 7 Figure 8
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Figure 9

Figure 10
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We can see in Fig. 11 the cross-intersections alternating
one another(0,1,2,1,0,1, ...) in the space-filling mosaic
based on the 3-model of the 6-cube. In the bottom row are
the intersections supplemented by the projected edges of
the intersected solids.

The alternating(0,1,2,3,4,5,6,5, ...) longitudinal inter-

sections of our mosaic are descripted in Fig. 12. The

methods of the further dissections could be applied here

similarly to the horizontal intersections.

Figure 11

Figure 12
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With the above methods two- and three-dimensional tilings
based on the 3-models ofk-cubes, can surely be made up to
k = 10 and probably furthermore, too. These cases are just
examined but not displayed yet in all details by the author.

The creation of the constructions and figures required for
the paper was aided by the AutoCAD program and the Au-
tolisp routines developed by the author.
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[3] V ÖRÖS L., Regul̈are Körper und mehrdimensionale
Würfel, KoG 9, Zagreb (2005), 21-27.
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