Generalization of $\alpha-$distance to $n-$dimensional Space

ABSTRACT

In this study, we generalize the concept of $\alpha-$distance which contains both of Taxicab distance and Chinese Checker distance as special cases to $n-$dimensional space.

Key words: Taxicab distance, CC-distance, $\alpha-$distance, metric, non-Euclidean geometry

MSC 2000: 51K05, 51K99

In the following definition, we introduce a family of distances in \mathbb{R}^n, which include Taxicab and Chinese Checker distances as special cases.

Definition:

Let $P_1 = (x_1, x_2, \ldots, x_n)$ and $P_2 = (y_1, y_2, \ldots, y_n)$ be two points in \mathbb{R}^n. If

\[
\Delta_{P_1 P_2} = \max \{ |x_1 - y_1|, |x_2 - y_2|, \ldots, |x_n - y_n| \} = |x_j - y_j|
\]

and

\[
\delta_{P_1 P_2} = \sum_{i \in J} |x_i - y_i|, \quad J = \{1, 2, \ldots, n\} \setminus \{j\},
\]

then the function $d_\alpha : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

\[
d_\alpha(P_1, P_2) = \Delta_{P_1 P_2} + (\sec \alpha - \tan \alpha) \delta_{P_1 P_2}, \quad \alpha \in [0, \pi/4],
\]

is called generalized $\alpha-$distance between points P_1 and P_2.

Generalized Taxicab and Chinese Checker distances between points P_1 and P_2 in \mathbb{R}^n are $d_T(P_1, P_2) = \Delta_{P_1 P_2} + \delta_{P_1 P_2}$ and $d_c(P_1, P_2) = \Delta_{P_1 P_2} + (\sqrt{2} - 1) \delta_{P_1 P_2}$, respectively.

(See [1], [2], [3], [4], [5], [8]).

Notice that

\[
d_0(P_1, P_2) = d_T(P_1, P_2) \quad \text{and} \quad d_\pi(P_1, P_2) = d_c(P_1, P_2).
\]

Also, if $\delta_{P_1 P_2} > 0$, then for all $\alpha \in (0, \pi/4)$,

\[
d_\alpha(P_1, P_2) \leq d_c(P_1, P_2),
\]

where d_E, d_c and d_T stand for the Euclidean, Chinese Checker and Taxicab distances, respectively.

Further, if $\delta_{P_1 P_2} = 0$, then P_1 and P_2 lie on a line which is parallel to one of coordinate axes, and for all $\alpha \in [0, \pi/4]$, $d_\alpha(P_1, P_2) = d_\alpha(P_1, P_2) = d_T(P_1, P_2) = d_E(P_1, P_2)$.

Let l be a line through P_1 and parallel to jth-coordinate axis and l_1, \ldots, l_n denote lines each of which is parallel to a coordinate axis distinct from jth-axis. Geometrically, the shortest way between the points P_1 and P_2 is the union of a line segment parallel to l_j and line segments each making α angle with one of l_1, \ldots, l_n, as shown in Figure 1.

Thus, the shortest distance d_α from P_1 to P_2 is sum of the Euclidean lengths of such n line segments.
Let \(P \) be two points in \(\mathbb{R} \). Let \(P_1 = (x_1, x_2, \ldots, x_n) \) and \(P_2 = (y_1, y_2, \ldots, y_n) \) be two points in \(\mathbb{R}^n \).

The following theorems show that generalized \(\alpha \)-distance is a metric.

Theorem 3.

For each \(\alpha \in [0, \pi/4] \), generalized \(\alpha \)-distance determines a metric for \(\mathbb{R}^n \).

Proof: We have to show that \(d_\alpha \) is positive definite and symmetric, and \(d_\alpha \) holds triangle inequality. Let \(P_1 = (x_1, x_2, \ldots, x_n) \), \(P_2 = (y_1, y_2, \ldots, y_n) \) and \(P_3 = (z_1, z_2, \ldots, z_n) \) be three points in \(\mathbb{R}^n \). Generalized \(\alpha \)-distance between points \(P_1 \) and \(P_2 \) is \(d_\alpha(P_1, P_2) = d_\alpha(P_2, P_1) \) follows from \(|x_i - y_i| = |y_i - x_i| \). That is, \(d_\alpha \) is symmetric.

Now, we try to prove that \(d_\alpha(P_1, P_2) \leq d_\alpha(P_1, P_3) + d_\alpha(P_3, P_2) \) for all \(P_1, P_2, P_3 \in \mathbb{R}^n \) and \(\alpha \in [0, \pi/4] \). For each \(\alpha \in [0, \pi/4] \), and \(I = \{1, 2, \ldots, n\} \setminus \{j\} \).

\[
\begin{align*}
\quad d_\alpha(P_1, P_2) &= |x_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |x_i - y_i| \\
&= |x_j - z_j + z_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |x_i - z_i + z_i - y_i| \\
&\leq |x_j - z_j| + |z_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} (|x_i - z_i| + |z_i - y_i|) \\
&= k.
\end{align*}
\]

One can easily see that \(d_\alpha \) satisfies the triangle inequality by examining the following cases:

Case I: If \(|x_j - z_j| \geq |x_i - z_i| \) and \(|z_j - y_j| \geq |z_i - y_i| \), \(i, j \in \{1, 2, \ldots, n\}, i \neq j \), then for each \(\alpha \in [0, \pi/4] \), and
\(I = \{1, 2, \ldots, n\} \setminus \{j\},\)
\[
d_\alpha(P_1, P_2) \leq k
\]
\[
= |x_j - z_j| + |z_j - y_j| + \\
+ (\sec \alpha - \tan \alpha) \sum_{i \in I} (|x_i - z_i| + |z_i - y_i|)
\]
\[
= |x_j - z_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |x_i - z_i| + \\
+ |z_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |z_i - y_i|
\]
\[
= d_\alpha(P_1, P_3) + d_\alpha(P_3, P_2).
\]

Case II: If \(|x_j - z_j| \geq |x_i - z_i|\) and \(|z_j - y_j| \leq |z_i - y_i|\), \(i, j \in \{1, 2, \ldots, n\}, i \neq j\), then there are two possible situations:

(i) Let \(|x_j - z_j| + |z_j - y_j| \geq |x_i - z_i| + |z_i - y_i|\). Then for each \(\alpha \in [0, \pi/4]\), and \(I = \{1, 2, \ldots, n\} \setminus \{j\}\),
\[
d_\alpha(P_1, P_2) \leq k
\]
\[
= |x_j - z_j| + |z_j - y_j| + \\
+ (\sec \alpha - \tan \alpha) \sum_{i \in I} (|x_i - z_i| + |z_i - y_i|)
\]
\[
= |x_j - z_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |x_i - z_i| + \\
+ |z_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |z_i - y_i|
\]
\[
= d_\alpha(P_1, P_3) + |z_j - y_j| + \\
+ (\sec \alpha - \tan \alpha) \sum_{i \in I} |z_i - y_i|
\]
\[
\leq d_\alpha(P_1, P_3) + d_\alpha(P_3, P_2),
\]
where \(|z_j - y_j| + (\sec \alpha - \tan \alpha) \sum_{i \in I} |z_i - y_i| \leq d_\alpha(P_3, P_2)\) because of Proposition 2.

(ii) Let \(|x_j - z_j| + |z_j - y_j| \leq |x_i - z_i| + |z_i - y_i|\). One can easily give a proof for the situation (ii) as in situation (i).

Case III: If \(|x_j - z_j| \leq |x_i - z_i|\) and \(|z_j - y_j| \geq |z_i - y_i|\), \(i, j \in \{1, 2, \ldots, n\}, i \neq j\), then there are two possible situations:

(i) Let \(|x_j - z_j| + |z_j - y_j| \geq |x_i - z_i| + |z_i - y_i|\).

(ii) Let \(|x_j - z_j| + |z_j - y_j| \leq |x_i - z_i| + |z_i - y_i|\).

One can easily give a proof for the Case III as in the Case II.

References

Özcan Gelişgen

e-mail: gelisgen@ogu.edu.tr

Rustem Kaya

e-mail: rkaya@ogu.edu.tr

Department of Mathematics
Faculty of Science and Arts
University of Eskişehir Osmangazi
Eskişehir, Türkiye