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A generalized q-numerical range
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Abstract. For a given q ∈ C with |q| ≤ 1, we study the C-
numerical range of a Hilbert space operator where C is an operator of
the form (

qIn

√
1− |q|2In

0n 0n

)
⊕ 0.

Some known results on the q-numerical range are extended to this set.
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1. Introduction

Throughout this paper H will denote a complex Hilbert space with an inner product
(· | ·). The algebra of all bounded linear operators on H and the ideal of all compact
operators on H will be denoted by B(H) and K(H), respectively.

The q-numerical range of A ∈ B(H) is, by definition, the set

Wq(A) = {(Ax|y) : (x|x) = (y|y) = 1, (x|y) = q}
where q ∈ C, |q| ≤ 1. When q = 1, this set reduces to the classical numerical range.
The q-numerical range is a useful tool for studying matrices and operators and it
has been investigated extensively (see [10], [12] or [18]).

For a fixed trace class operator C ∈ B(H), the C-numerical range of A ∈
B(H), denoted by WC(A), is defined as the set of all complex numbers of the form
tr(CU∗AU), where U ranges over all unitary operators in B(H). In the case of the
finite dimensional space H , the set WC(A) was introduced by M. Goldberg and E.
G. Straus [5] and it is a further generalization of the classical numerical range. It
is also a generalization of the q-numerical range of a Hilbert space operator which
can be obtained when C is chosen to be rank one operator of the form(

q
√

1− |q|2
0 0

)
⊕ 0.
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The C-numerical range is well-studied in the case of some special classes of operators
such as normal, block-shift or rank one operators, but less is known for general C.
For general properties of the C-numerical range the reader is referred to [3], [6], [8],
[9], [11] or [20].

The aim of this paper is to study the C-numerical range of a Hilbert space
operator for C = Cq ⊕ 0 where

Cq =
(
qIn

√
1− |q|2In

0n 0n

)

and In denotes the identity operator on the n-dimensional subspace of H . Since
WCq⊕0(A) is a natural generalization of the q-numerical range, it is not surprising
that some good results on the q-numerical range can be extended to this set. This
is done in Section 3. Section 4 is devoted to the set WC0⊕0(A).

It is interesting to note that the concept of the q-numerical range can also be
considered in a more general context than the Hilbert space. In Section 2 we
introduce it in the context of Hilbert C∗-modules over a C∗-subalgebra A of B(H)
containing K(H). It turns out that such a set can be interpreted as the Cq ⊕ 0-
numerical range of some Hilbert space operator. Thus, it was the motivation for
introducing the C-numerical range for such particular C.

2. The set W n
q (A)

In this section we introduce the concept of the q-numerical range in the context of
Hilbert C∗-modules.

Recall that a (left) Hilbert C∗-module X over a C∗-algebra A is a left A-module
X equipped with an A-valued inner product 〈· , ·〉 on X × X which is linear over
A in the first and conjugate-linear in the second variable, such that X is a Banach
space with respect to the norm ‖x‖ = ‖〈x, x〉‖ 1

2 . X is said to be a full Hilbert
A-module if the closure of the linear span of the set {〈x, y〉 : x, y ∈ X} coincides
with A. By B(X) we denote the C∗-algebra of all adjointable operators on X . (The
basic theory of Hilbert C∗-modules can be found in [7] and [19].)

Although our results are proved for a Hilbert C∗-module over an arbitrary C∗-
subalgebra A of B(H) containing K(H), for technical simplicity we first consider
the case of a Hilbert C∗-module over the C∗-algebra K(H).

Hence, in the sequel X will denote a full left Hilbert C∗-module over the C∗-
algebra K(H). One significant property of such modules is presence of an or-
thonormal basis ([1, Theorem 2]). (An orthonormal basis for X is by definition an
orthogonal system (xλ) that generates a dense submodule of X such that xλ are ba-
sic vectors in the sense that 〈xλ, xλ〉 are orthogonal projections in K(H) of rank 1).
The orthogonal dimension of X (i.e., the cardinal number of any of its orthonormal
bases) will be designated by dimK(H) X . Furthermore, X contains a Hilbert space
Xe with respect to the inner product (· , ·) = tr(〈· , ·〉) where ’tr’ means the trace.
More precisely, for a fixed orthogonal projection e in K(H) of rank 1, Xe is given
as the set of all ex, x ∈ X . Also, for all x, y ∈ Xe we obtain that 〈x, y〉 = (x, y)e
([1, Remark 4(c)]). It is known that X and the Hilbert space Xe have the same
dimension ([1, Remark 4(e)]). Moreover, Xe is an invariant subspace for each A
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in B(X) and the map A �→ A|Xe establishes an isomorphism between C∗-algebras
B(X) and B(Xe) where B(Xe) denotes the algebra of all bounded operators on Xe

([1, Remark 4(b), Theorem 5]).
Before stating the results we establish some more notations as follows. First,

a positive integer n is fixed and it is supposed that H has dimension greater than
or equal to n. Then let us fix an n-dimensional orthogonal projection p in K(H).
Hn will designate the n-dimensional range of p. We now choose an orthonormal
basis {ξ1, . . . , ξn} for Hn which is to be held fixed for the rest of this section. For
ξ, η ∈ H, eξ,η in B(H) is defined by eξ,η(ν) = (ν|η)ξ. From now on we denote
ei = eξi,ξi for i = 1, . . . , n. Evidently, p = e1 + · · · + en. In the rest of the section
let us also fix a unit vector ξ in H and denote by e the orthogonal projection eξ,ξ

to the one-dimensional subspace spanned by ξ.
Finally, we denote by S− and [S] the topological closure and the linear span of

a set S, respectively.
Definition 1. For any complex number q with |q| ≤ 1 and A ∈ B(X) we define

the set

pW
n
q (A) = { tr〈Ax, y〉 : x, y ∈ X, 〈x, x〉 = 〈y, y〉 = p, 〈x, y〉 = qp}.

Remark 1. Suppose that vectors x, y ∈ X satisfy 〈x, x〉 = 〈y, y〉 = p, 〈x, y〉 =
qp, where q ∈ C, |q| < 1. Let us put xi = eξ,ξix, yi = eξ,ξiy for i = 1, . . . , n. We
claim that {x1, . . . , xn, y1, . . . , yn} is a linearly independent set of a Hilbert space
Xe. Namely, for i, j = 1, . . . , n we have

〈xi, xj〉 = eξ,ξi〈x, x〉eξj ,ξ = eξ,ξipeξj,ξ = δi,je

and analogously 〈yi, yj〉 = δi,je. Also, the condition 〈x, y〉 = qp implies that

〈xi, yj〉 = eξ,ξi〈x, y〉eξj ,ξ = eξ,ξiqpeξj ,ξ = qδi,je.

From this we deduce that xi, yi ∈ Xe and it holds that

(xi, xj) = (yi, yj) = δi,j , (xi, yj) = qδi,j (1)

for i, j = 1, . . . , n. Let us now suppose that
∑n

i=1 αixi +
∑n

i=1 βiyi = 0 for some
αi, βi ∈ C. Multiplying this equality on its right-hand side by xi and then by yi

we get (by using (1)) αi + βiq̄ = 0 and αiq + βi = 0 from which it follows that
αi(1 − |q|2) = 0, i = 1, . . . , n. Hence, αi = 0 and thus βi = 0, i = 1, . . . , n.
Therefore, {x1, . . . , xn, y1, . . . , yn} is a linearly independent set in Xe. Hence, to
avoid the trivial case pW

n
q (A) = ∅, the dimension of the Hilbert space Xe must be

greater than or equal to 2n.
So, in what follows we shall assume that dimK(H) X = k ≥ 2n.
Remark 2. Observe that when n = 1 the condition 〈x, x〉 = 〈y, y〉 = e1,

〈x, y〉 = qe1 is equivalent to the fact that x and y are unit vectors of Hilbert space
Xe1 such that (x, y) = q. Moreover, tr〈Ax, y〉 = (Ax, y), so the set pW

1
q (A) is the

q-numerical range Wq(A|Xe1) of an operator A|Xe1 ∈ B(Xe1).
Remark 3. The condition 〈x, x〉 = 〈y, y〉 = p obviously implies 〈x−px, x−px〉 =

〈y − py, y − py〉 = 0, i.e., x = px and y = py, so we have 〈Ax, y〉 = p〈Ax, y〉p.
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Furthermore, for every η ⊥ Hn we get 〈Ax, y〉η = p〈Ax, y〉pη = 0. Therefore,
〈Ax, y〉 can be regarded as an operator acting on the n-dimensional space Hn.

Next we show that pW
n
q (A) is non-empty.

Lemma 1. For any q ∈ C with |q| ≤ 1 there exist x, y ∈ X such that

〈x, x〉 = 〈y, y〉 = p, 〈x, y〉 = qp.

Proof. Let {u1, . . . , u2n} be an orthonormal set of the Hilbert space Xe. We
define vi = qui +

√
1− |q|2un+i for i = 1, . . . , n. Then we get

(vi, vj) =
(
qui +

√
1− |q|2un+i, quj +

√
1− |q|2un+j

)
= qq(ui, uj) + q

√
1− |q|2(ui, un+j) +

√
1− |q|2q(un+i, uj)

+(1− |q|2)(un+i, un+j)
= |q|2δi,j + (1− |q|2)δi,j = δi,j

for i, j = 1, . . . , n. Also, we have

(ui, vj) =
(
ui, quj +

√
1− |q|2un+j

)
= q(ui, uj) +

√
1− |q|2(ui, un+j) = qδi,j

for i, j = 1, . . . , n. Let us put xi = eξi,ξui, yi = eξi,ξvi for i = 1, . . . , n. Thus we
obtain

〈xi, xj〉 = eξi,ξ〈ui, uj〉eξ,ξj = eξi,ξ(ui, uj)eeξ,ξj = δi,jei

and analogously 〈yi, yj〉 = δi,jei for i, j = 1, . . . , n. Moreover,

〈xi, yj〉 = eξi,ξ〈ui, vj〉eξ,ξj = eξi,ξ(ui, vj)eeξ,ξj = qδi,jei

for i, j = 1, . . . , n. Then x = x1 + · · ·+xn and y = y1 + · · ·+ yn are desired vectors.
✷

Thus we have the following
Corollary 1. The set pW

n
q (A) is non-empty for all A ∈ B(X).

Remark 4. The definition of the set pW
n
q (A) does not depend on the choice of

the rank n projection p ∈ K(H). Indeed, if p′ ∈ K(H) is an arbitrary n-dimensional
projection and if {ξ1, . . . , ξn} and {η1, . . . , ηn} are orthonormal bases for the ranges
of p and p′ respectively, then similarly as in the proof of Proposition 2.5 of [15], it
can be shown that the map Φ :p Wn

q (A) →p′ Wn
q (A) defined by

Φ(tr〈Ax, y〉) = tr
〈
A

( n∑
i=1

eηi,ξix

)
,

n∑
i=1

eηi,ξiy

〉

is a bijection.
So, in the sequel we shall write Wn

q (A) instead of pW
n
q (A).

In the following lemma we collect some basic properties of Wn
q (A) which are

obvious consequences of Definition 1.



A generalized q-numerical range 35

Lemma 2. Let A,B ∈ B(X). Then we have the following properties :

(a) Wn
q (U∗AU) = Wn

q (A) whenever U ∈ B(X) is unitary.

(b) Wn
q (αA + βI) = αWn

q (A) + βnq for all α, β ∈ C.

(c) Wn
q (A + B) ⊆ Wn

q (A) + Wn
q (B).

(d) Wn
q (A∗) = Wn

q (A) :=
{
tr〈Ax, y〉 : x, y ∈ X, 〈x, x〉 = 〈y, y〉 = p, 〈x, y〉 = qp

}
for 0 ≤ q ≤ 1.

(e) Wn
µq(A) = µWn

q (A) for µ ∈ C, |µ| = 1.

In the sequel we denote by {zi} an orthonormal basis of the Hilbert space Xe.
Let Ym, 1 ≤ m ≤ 2n, be an m-dimensional subspace of Xe spanned by vectors
z1, . . . , zm.

In our next theorem we give an alternative description of the set Wn
q (A).

Theorem 1. Let A be an operator in B(X). Then

Wn
q (A) = {tr((Cq ⊕ 0k−2n)U∗A|XeU) : U : Xe → Xe is unitary},

where Cq : Y2n → Y2n is a linear operator given by its action on the basis
{z1, . . . , z2n} :

Cqzi = qzi, i = 1, . . . , n,

Cqzn+i =
√

1− |q|2zi, i = 1, . . . , n.

Proof. Given a unitary operator U : Xe → Xe, we define

xi = eξi,ξUzi

yi = qeξi,ξUzi +
√

1− |q|2eξi,ξUzn+i

for i = 1, . . . , n. Since {Uz1, . . . , Uz2n} is an orthonormal set in Xe, arguing as in
the proof of Lemma 1 we obtain that 〈xi, xj〉 = 〈yi, yj〉 = δi,jei, 〈xi, yj〉 = qδi,jei

for all i, j = 1, . . . , n. Let us put x = x1 + · · ·+ xn and y = y1 + · · ·+ yn. Then we
have 〈x, x〉 = 〈y, y〉 = p, 〈x, y〉 = qp. Also, it holds that

eξ,ξix = eξ,ξi(x1 + · · ·+ xn) = eξ,ξixi = eξ,ξieξi,ξUzi = eUzi = Uzi, (2)

eξ,ξiy = eξ,ξi(y1 + · · · + yn) = eξ,ξiyi

= eξ,ξi

(
qeξi,ξUzi +

√
1− |q|2eξi,ξUzn+i

)
= qeUzi +

√
1− |q|2eUzn+i = qUzi +

√
1− |q|2Uzn+i (3)

for i = 1, . . . , n. In particular, eξ,ξix, eξ,ξiy ∈ Xe, so we get

〈Aeξ,ξix, eξ,ξiy〉 = (Aeξ,ξix, eξ,ξiy)e.
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On the other hand, we have

〈Aeξ,ξix, eξ,ξiy〉 = eξ,ξi〈Ax, y〉eξi,ξ = eξ,ξieξi,ξi〈Ax, y〉eξi,ξieξi,ξ

= eξ,ξi〈Aeix, eiy〉eξi,ξ = eξ,ξi(Aeix, eiy)eieξi,ξ

= (Aeix, eiy)e.

Therefore,
(Aeξ,ξix, eξ,ξiy) = (Aeix, eiy) (4)

for i = 1, . . . , n. Notice that

C∗
q zi = qzi +

√
1− |q|2zn+i, i = 1, . . . , n,

C∗
q zi = 0, i = n + 1, . . . , 2n,

so by (2), (3) and (4) we obtain that

tr((Cq ⊕ 0k−2n)U∗A|XeU) =
n∑

i=1

(U∗A|XeUzi, C
∗
q zi) =

n∑
i=1

(A|XeUzi, UC∗
q zi)

=
n∑

i=1

(
A|XeUzi, U

(
qzi +

√
1− |q|2zn+i

))

= q

n∑
i=1

(A|XeUzi, Uzi) +
n∑

i=1

(
A|XeUzi,

√
1− |q|2Uzn+i

)

= q

n∑
i=1

(Aeξ,ξix, eξ,ξix) +
n∑

i=1

(Aeξ,ξix, eξ,ξiy − qeξ,ξix)

=
n∑

i=1

(Aeξ,ξix, eξ,ξiy) =
n∑

i=1

(Aeix, eiy) = tr
( n∑

i=1

(Aeix, eiy)ei

)

= tr
( n∑

i=1

〈Aeix, eiy〉
)

= tr
( n∑

i=1

ei〈Ax, y〉ei

)
= tr(p〈Ax, y〉p)

= tr〈Ax, y〉.

Conversely, let x, y ∈ X satisfy 〈x, x〉 = 〈y, y〉 = p and 〈x, y〉 = qp. Suppose
first that |q| < 1. Define a linear operator U : Y2n → Xe by its action on the basis
{z1, . . . , z2n}:

Uzi = eξ,ξix,

Uzn+i =
1√

1− |q|2 (eξ,ξiy − qeξ,ξix)

for i = 1, . . . , n. It is easy to check that the operator U is a well-defined isometry.
Namely, for i, j = 1, . . . , n we have

〈Uzi, Uzj〉 = eξ,ξi〈x, x〉eξj ,ξ = eξ,ξipeξj ,ξ = δi,je,
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which implies Uzi ∈ Xe and (Uzi, Uzj) = δi,j . Also, for i, j = 1, . . . , n it holds that

〈Uzn+i, Uzn+j〉 =
1

1− |q|2 〈eξ,ξiy − qeξ,ξix, eξ,ξjy − qeξ,ξjx〉

=
1

1− |q|2
(
eξ,ξi〈y, y〉eξj ,ξ − qeξ,ξi〈y, x〉eξj ,ξ − qeξ,ξi〈x, y〉eξj ,ξ

+|q|2eξ,ξi〈x, x〉eξj ,ξ

)
=

1
1− |q|2

(
eξ,ξipeξj ,ξ − qqeξ,ξipeξj,ξ − qqeξ,ξipeξj ,ξ + |q|2eξ,ξipeξj ,ξ

)
=

1
1− |q|2 δi,j(e− |q|2e− |q|2e + |q|2e) = δi,je,

so Uzn+i ∈ Xe and (Uzn+i, Uzn+j) = δi,j . Furthermore,

〈Uzi, Uzn+j〉 =
1√

1− |q|2 eξ,ξi〈x, y − qx〉eξj ,ξ =
1√

1− |q|2 eξ,ξi(〈x, y〉 − q〈x, x〉)eξj ,ξ

=
1√

1− |q|2 eξ,ξi(qp− qp)eξj ,ξ = 0

for i, j = 1, . . . , n. Hence, (Uzi, Uzn+j) = 0 for i, j = 1, . . . , n. Therefore, U is
an isometry and can be extended to a unitary operator U : Xe → Xe. Finally,
since (2), (3) and (4) are also valid, the same calculation as before shows that
tr((Cq ⊕ 0k−2n)U∗A|XeU) = tr〈Ax, y〉.

Now, suppose that |q| = 1. Then we have C∗
q zi = qzi for i = 1, . . . , n and

C∗
q zi = 0 for i = n + 1, . . . , 2n. Define a linear operator U : Yn → Xe on the

orthonormal basis {z1, . . . , zn} by putting Uzi = eξ,ξix for i = 1, . . . , n. It is
clear that U is a well-defined isometry and can be extended to a unitary operator
U : Xe → Xe. Let us put xi = eix, yi = eiy for i = 1, . . . , n. Thus we have
〈xi, xi〉 = ei〈x, x〉ei = eipei = ei and analogously 〈yi, yi〉 = ei for i = 1, . . . , n.
Moreover, 〈xi, yi〉 = ei〈x, y〉ei = eiqpei = qei for i = 1, . . . , n. So we deduce that
xi, yi are unit vectors of the Hilbert space Xei such that (xi, yi) = q, i = 1, . . . , n.
Also, since |(xi, yi)| = |q| = 1 = |(xi, xi)| 12 · |(yi, yi)| 12 , it follows that yi = αixi for
some αi ∈ C, i = 1, . . . , n. But, q = (xi, yi) = (xi, αixi) = αi(xi, xi) = αi from
which it follows that y = py = y1 + · · · + yn = q(x1 + · · · + xn) = qpx = qx. Thus
we get

tr((Cq ⊕ 0k−2n)U∗A|XeU) =
n∑

i=1

(U∗A|XeUzi, C
∗
q zi) =

n∑
i=1

(A|XeUzi, U(qzi))

=
n∑

i=1

(Aeξ,ξix, qeξ,ξix) =
n∑

i=1

(Aeξ,ξix, eξ,ξiy)

= (4) =
n∑

i=1

(Aeix, eiy)

= tr〈Ax, y〉,
which completes the proof. ✷
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Observe that Theorem 1 can be reformulated in
Corollary 2. Let A be an operator in B(X). Then

Wn
q (A) = WC(A|Xe),

where (
qIn

√
1− |q|2In

0n 0n

)
⊕ 0k−2n

is the matrix representation of C ∈ B(Xe) with respect to some fixed orthonormal
basis of Xe.

Finally, we discuss the case when X is a full (left) Hilbert C∗-module over a
C∗-subalgebra A of B(H) which contains K(H). The associated ideal submodule
XK(H) is defined by

XK(H) = [{ax : a ∈ K(H), x ∈ X}]−.

Clearly, XK(H) can be regarded as a Hilbert K(H)-module. Furthermore, XK(H)

is a full Hilbert C∗-module over K(H), since X is a full Hilbert A-module ([2,
Proposition 1.3]). After applying Hewitt-Cohen factorization ([2, Proposition 1.2
and Proposition 1.3]) we also have

XK(H) = {ax : a ∈ K(H), x ∈ X} = {x ∈ X : 〈x, x〉 ∈ K(H)}.

We assume that 2n ≤ dimK(H) XK(H) ≤ ∞.
Let A ∈ B(X) be an arbitrary operator. Observe that XK(H) is invariant for

A and also (A|XK(H))∗ = A∗|XK(H), so A|XK(H) ∈ B(XK(H)). Furthermore, the
map α : B(X) → B(XK(H)), α(T ) = T |XK(H), is a well-defined injective morphism
of C∗-algebras ([2, Theorem 1.12]). Hence, its restriction α|C∗(A) : C∗(A) →
C∗(A|XK(H)) is an isomorphism of C∗-algebras.

Given a fixed rank n projection p ∈ K(H) we can define the set Wn
q (A) as it

was done before in Definition 1. It is obvious that Wn
q (A) = Wn

q (A|XK(H)) and all
our results remain true for the set Wn

q (A).

3. Some properties of WCq
(A)

From now on we suppose that H is a Hilbert space of dimension 2 ≤ k ≤ ∞. Denote
by {ei} a fixed orthonormal basis of H . For q ∈ C, |q| ≤ 1, and n ∈ N, 2n ≤ k, let
us fix an operator C̃q ∈ B(H) of the form Cq ⊕ 0k−2n where(

qIn

√
1− |q|2In

0n 0n

)

is the matrix representation of Cq with respect to the basis {e1, . . . , e2n}.
In this section we study some properties of the set WCq

(A) for a Hilbert space
operator A ∈ B(H).

First, observe that this set can also be described in the following way.



A generalized q-numerical range 39

Lemma 3. For A ∈ B(H) we have

WCq
(A) = {

n∑
i=1

(Axi|yi) : (xi), (yi) are orthonormal sequences in H,

(xi|yj) = qδi,j , i, j = 1, . . . , n}.

Proof. Given t ∈ WCq
(A) there is a unitary U ∈ B(H) such that t = tr(C̃qU

∗AU).

Let us put xi = Uei, yi = UC̃∗
q ei, i, j = 1, . . . , n. Then we have t =

∑n
i=1(Axi|yi)

where (xi|xj) = (yi|yj) = δi,j , (xi|yj) = qδi,j . Conversely, suppose that t =∑n
i=1(Axi|yi) where (xi|xj) = (yi|yj) = δi,j , (xi|yj) = qδi,j . If |q| < 1 define

Uei = xi, Uen+i = 1√
1−|q|2 (yi − qxi), i = 1, . . . , n. In the case |q| = 1 let us put

Uei = xi, i = 1, . . . , n. Then U is a well-defined isometry on the subspace of H and
can be extended to a unitary operator U ∈ B(H). Thereby, t = tr(C̃qU

∗AU). ✷

In what follows we list some known results on the set WCq
(A).

Corollary 3. If dimH < ∞ and A ∈ B(H), then

(a) WCq
(A) is a compact set,

(b) WCq
(A) is star-shaped with respect to star-center 1

knqtrA,

(c) WCq
(A) = {λ} if and only if A = µI such that µnq = λ.

Proof. Since WCq
(A) is a continuous image of the compact set of all unitary

operators in B(H), it must be a compact set, so (a) follows. Statement (b) is a
consequence of Theorem 4 in [3]. Statement (c) follows from Theorem 2.5 in [8]
since C̃q is not a scalar matrix. ✷

Remark 5. It is easy to see that statement (c) from the above corollary holds
in the infinite dimensional case as well. Indeed, one direction is trivial. To prove
the other, assume that WCq

(A) = {λ}. For arbitrary ei, ej, i �= j, denote by
Pi,j ∈ B(H) the orthogonal projection onto the li,j-dimensional subspace Mi,j of H
spanned by {e1, . . . , e2n, ei, ej}. Then we have

WCq⊕0li,j−2n
((Pi,jAPi,j)|Mi,j) ⊆ WCq

(A) = {λ},

so by Theorem 2.5 in [8] it follows that Pi,jAPi,j = µi,jPi,j where µi,jnq = λ. From
this we get

(Aei|ej) = (Pi,jAPi,jei|ej) = (µi,jPi,jei|ej) = µi,j(ei|ej) = 0

and
(Aei|ei) = (Pi,jAPi,jei|ei) = µi,j = (Pi,jAPi,jej |ej) = (Aej |ej),

so we deduce that all µi,j are equal and A = µI where µ = µi,j.
Also, the infinite dimensional analogue of statement (b) is a consequence of

Jones’ result [6] (see also [3]):
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Corollary 4. If dimH = ∞ and A ∈ B(H), then the closure of the set WCq
(A)

is star-shaped with respect to the set nqWe(A), where We(A) denotes the essential
numerical range of A (i.e., the set of all complex numbers of the form ϕ(A) where
ϕ runs over all states of B(H) vanishing on compact operators in B(H)).

We do not know whether WCq
(A) is always a convex set. Our next results give

sufficient conditions for its convexity.
Corollary 5. Let dimH < ∞ and let A ∈ B(H). Then WCq

(A) is a convex
set if one of the following conditions holds.

(a) There exist α, β ∈ C with α �= 0 such that αA + βI is hermitian, i.e., A is a
normal operator and the eigenvalues of A are collinear on the complex plane.

(b) There exists α ∈ C such that A−αI is unitarily similar to M = [Mij ]1≤i,j≤m

in block form, where Mii are square matrices and Mij = 0 if i �= j + 1. In
this case WCq

(A) is a circular disc on the complex plane centered at αnq.

(c) There exists α ∈ C such that A− αI has rank one.

Proof. Statement (a) is a slight extension of the result of [20], using the fact
that WCq

(αA + βI) = αWCq
(A) + βnq. Statement (b) follows by [11, Theorem 2.1

and Corollary 2.2] and statement (c) by [18, Theorem 2]. ✷

Corollary 6. Let dimH = ∞ and let A ∈ B(H). Then WCq
(A) is a convex

set if one of the following conditions holds.

(a) A is hermitian.

(b) There exists α ∈ C such that A− αI has rank one.

Proof. Suppose that any of the conditions (a) or (b) holds. Let us take arbitrary
t, s ∈ WCq

(A), 0 ≤ λ ≤ 1. Then we have t = tr(C̃qU
∗AU), s = tr(C̃qV

∗AV ) for
some unitary operators U, V ∈ B(H). Denote by K the l-dimensional subspace of
H spanned by vectors e1, . . . , e2n, Ue1, . . . , Ue2n, V e1, . . . , V e2n. Let P ∈ B(H) be
the orthogonal projection from H onto K. Then we have t ∈ WCq⊕0l−2n

(PAP |K)
and s ∈ WCq⊕0l−2n

(PAP |K). However, by Corollary 5 WCq⊕0l−2n
(PAP |K) is con-

vex. Thus, we have λt + (1− λ)s ∈ WCq⊕0l−2n
(PAP |K) ⊆ WCq

(A). ✷

It is known (see (4.1) of [9]) that for a matrix A ∈ Mn(C), unitarily similar to
A1 ⊕A2, it holds that

WC(A) = ∪
{
WC1(A1) + WC2(A2) :

(
C1 X
Y C2

)
∈ U(C) for some X,Y

}

where U(C) denotes the unitary similarity orbit of C ∈ Mn(C); i.e., U(C) =
{U∗CU : U ∈ Mn(C) is unitary}.

Since Cq is unitarily similar to Dq ⊕ · · · ⊕Dq︸ ︷︷ ︸
ntimes

, where Dq =
(
q

√
1− |q|2

0 0

)
, it
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follows that

WCq
(A)=∪

{
Wq(A1) + · · ·+ Wq(An) :




A1 . . .
...

. . .
An

. . .


 ∈ U(A)

}
(5)

where Ai is a 2× 2 matrix and Wq(Ai) = WDq (Ai), i = 1, . . . , n.
Using this expression we can easily obtain some well-known results on the q-

numerical range of an operator on a Hilbert space for the set WCq
(A).

In what follows Int(S) will stand for the topological interior of S ⊆ C.
Theorem 2. Let dimH < ∞ and let A ∈ B(H). Let α1, . . . , αk be the

eigenvalues of A. Then

{q(αj1 + · · ·+ αjn) : j1, . . . , jn ∈ {1, . . . , k} are mutually different} ⊆ WCq
(A).

If A is not a scalar operator and |q| < 1, then

{q(αj1 + · · · + αjn) : j1, . . . , jn ∈ {1, . . . , k} are mutually different}⊆ Int(WCq
(A)).

Proof. For every choice αj1 , . . . , αjn of eigenvalues of A there exists a unitary
operator U ∈ B(H) such that the operator U∗AU is in the lower triangular form


A1

...
. . .

An

. . .




where Ai (i = 1, . . . , n) are 2 × 2 matrices with one diagonal entry equal to αji .
Using Theorem 2.7 of [10] and statement (5) it holds that

qαj1 + · · ·+ qαjn ∈ Wq(A1) + · · ·+ Wq(An) ⊆ WCq
(A).

Suppose now that A is not a scalar operator and |q| < 1. Then at least one of
Ai is not a scalar operator. Namely, if at least two eigenvalues of A are different,
then some of Ai, say A1, can be chosen to be the operator with different diagonal
entries. On the other hand, if all eigenvalues of A are equal, then A is not normal.
Then by Lemma 1 of [13] A1 can be chosen to be a non-scalar operator. So, in both
cases Theorem 2.7 of [10] implies

qαj1 + · · ·+ qαjn ∈ Int(Wq(A1)) + Wq(A2) + · · · + Wq(An)
⊆ Int(Wq(A1) + · · · + Wq(An)) ⊆ Int(WCq

(A)).

✷

Our next result extends the classical result of an inclusion relation for q-numerical
ranges for different q (see [10, Theorem 2.5]).
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Theorem 3. Suppose q1, q2 ∈ C satisfy |q2| ≤ |q1| ≤ 1. Then for A ∈ B(H)
we have

q2WCq1
(A) ⊆ q1WCq2

(A).

Moreover, if A = µI ∈ B(H) for some µ ∈ C, then

q2WCq1
(A) = q1WCq2

(A) = {µnq1q2}.

If A ∈ B(H) is not a scalar operator and |q2| < |q1| < 1, then

q2WCq1
(A) ⊆ Int(q1WCq2

(A)).

Proof. First, observe that in the case of the finite dimensional space H the
proof is a direct consequence of Theorem 2.5 of [10] and statement (5). The
infinite dimensional case is reduced to the finite dimensional one. Namely, for
t = tr(C̃q1U

∗AU) ∈ WCq1
(A) we have t ∈ WCq1⊕0l−2n

(PAP |K) where P : H → K

is the orthogonal projection onto the l-dimensional subspace K of H spanned by
e1, . . . , e2n, Ue1, . . . , Ue2n. Then we get

q2t ∈ q2WCq1⊕0l−2n
(PAP |K) ⊆ q1WCq2⊕0l−2n

(PAP |K) ⊆ q1WCq2
(A).

If A is not a scalar operator and |q2| < |q1| < 1, then the projection P can be chosen
such that neither PAP is a scalar operator. So, we have

q2t ∈ q2WCq1⊕0l−2n
(PAP |K) ⊆ Int(q1WCq2⊕0l−2n

(PAP |K)) ⊆ Int(q1WCq2
(A)).

✷

Theorem 4. Let dimH < ∞ and let A ∈ B(H). If |q| < 1 and A is not a
scalar operator, then the boundary of WCq

(A) is a smooth curve.

Proof. Let t be a boundary point of WCq
(A). Then we have t = tr(C̃qU

∗AU)
for some unitary U ∈ B(H). If t is a non-differentiable boundary point of WCq

(A),

then, as in the proof of Theorem 2.1 of [8], we conclude that C̃q and B = U∗AU

commute. Hence, there exists unitary V ∈ B(H) such that both V C̃qV
∗ and V BV ∗

are in the lower triangular form. Now,

t = tr(V C̃qV
∗V BV ∗) = q(αj1 + · · ·+ αjn)

for some αj1 , . . . , αjn from the spectrum of A. So, by Theorem 2 t ∈ Int(WCq
(A))

which contradicts the fact that t is a boundary point of WCq
(A). ✷

4. The set WC0
(A)

Observe that the roles of C and A in the definition of WC(A) are symmetric, i.e.,
WC(A) = WA(C). Also, note that for q = 0 the operator C0 satisfies condition (e)
in Theorem 2.1 of [11]. So, as a consequence of the equivalence of the conditions
(e) in Theorem 2.1 of [11] and (g) in Corollary 2.2 of [11] we get the following
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Corollary 7. If dimH < ∞, then WC0
(A) is a circular disc on the complex

plane centered at the origin for all A ∈ B(H).
The convexity of WC0

(A) in the case of the infinite dimensional space H can
be obtained by reducing to the finite dimensional case, as it was done in Corol-
lary 6. Furthermore, if P ∈ B(H) stands for the orthogonal projection onto the
subspace K of H spanned by {e1, . . . , e2n}, then by the above corollary we have
0 ∈ WC0(PAP |K). However, WC0(PAP |K) ⊆ WC0

(A), so 0 ∈ WC0
(A). Also, it

is obvious that the set WC0
(A) is circular, i.e., µWC0

(A) = WC0
(A) for all µ ∈ C

with |µ| = 1 (see Lemma 3). From all of this we have
Corollary 8. If dimH = ∞, then WC0

(A) is an open or closed circular disc
on the complex plane centered at the origin for all A ∈ B(H).

In what follows we will identify the radius of WC0
(A) for hermitian A acting on

the finite dimensional Hilbert space H . The proof of our theorem is based on the
result of Mirsky [14, Theorem 1] (see also [17, Corollary 5] or [16]).

Theorem 5. Let dimH < ∞. If A ∈ B(H) is hermitian with eigenvalues
α1 ≤ · · · ≤ αk, then WC0

(A) is a circular disc with the center at the origin and
radius r = 1

2 (αk + αk−1 + · · ·+ αk−n+1 − α1 − α2 − · · · − αn).
Proof. By Corollary 7 WC0

(A) is a circular disc centered at the origin. It
remains to identify its radius. Let us take any t ∈ WC0

(A). By statement (5)
t = t1 + · · ·+ tn for some ti ∈ W0(Ai) where

B =




A1 . . .
...

. . .
An

. . .


 ∈ U(A).

Denote by βi and γi the eigenvalues of Ai and let us suppose that βi ≥ γi, i =
1, . . . , n. According to Theorem 1 of [14], we have |ti| ≤ 1

2 (βi −γi) for i = 1, . . . , n.
Since B is unitarily similar to the diagonal operator with the first 2n diagonal
entries β1, γ1, . . . , βn, γn, it follows by Corollary 2 of [4] that

β1 + · · ·+βn ≤ αk +αk−1 + · · ·+αk−n+1 and γ1 + · · ·+γn ≥ α1 + · · ·+αn.

Hence,

|t| ≤ 1
2

n∑
i=1

(βi − γi) ≤ 1
2
(αk + αk−1 + · · ·+ αk−n+1 − α1 − α2 − · · · − αn) = r.

To complete the proof it is enough to show that r ∈ WC0
(A). Observe that A is

unitarily similar to some diagonal operator A1 ⊕ · · · ⊕An ⊕D where

Ai =
(
αk−i+1 0

0 αi

)
.

Again, applying Theorem 1 of [14], we get ti = 1
2 (αk−i+1 − αi) ∈ W0(Ai). By (5)

it obviously follows that r = t1 + · · ·+ tn ∈ WC0
(A). ✷
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his valuable suggestions and helpful advice.



44 R. Rajić
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