A generalized *q*-numerical range

Rajna Rajić*

Abstract. For a given $q \in \mathbf{C}$ with $|q| \leq 1$, we study the *C*-numerical range of a Hilbert space operator where *C* is an operator of the form

$$\left(\begin{array}{cc} qI_n & \sqrt{1-|q|^2}I_n \\ 0_n & 0_n \end{array}\right) \oplus 0.$$

Some known results on the q-numerical range are extended to this set.

Key words: C^* -algebra, Hilbert C^* -module, adjointable operator, C-numerical range of an operator, q-numerical range of an operator

AMS subject classifications: 47A12, 46L08

Received February 8, 2005 Accepted April 20, 2005

1. Introduction

Throughout this paper H will denote a complex Hilbert space with an inner product $(\cdot | \cdot)$. The algebra of all bounded linear operators on H and the ideal of all compact operators on H will be denoted by B(H) and K(H), respectively.

The q-numerical range of $A \in B(H)$ is, by definition, the set

$$W_q(A) = \{ (Ax|y) : (x|x) = (y|y) = 1, (x|y) = q \}$$

where $q \in \mathbf{C}$, $|q| \leq 1$. When q = 1, this set reduces to the classical numerical range. The q-numerical range is a useful tool for studying matrices and operators and it has been investigated extensively (see [10], [12] or [18]).

For a fixed trace class operator $C \in B(H)$, the *C*-numerical range of $A \in B(H)$, denoted by $W_C(A)$, is defined as the set of all complex numbers of the form $\operatorname{tr}(CU^*AU)$, where U ranges over all unitary operators in B(H). In the case of the finite dimensional space H, the set $W_C(A)$ was introduced by M. Goldberg and E. G. Straus [5] and it is a further generalization of the classical numerical range. It is also a generalization of the *q*-numerical range of a Hilbert space operator which can be obtained when C is chosen to be rank one operator of the form

$$egin{pmatrix} q & \sqrt{1-|q|^2} \ 0 & 0 \end{pmatrix} \oplus 0$$

^{*}Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia, e-mail: rajna.rajic@zg.htnet.hr

The C-numerical range is well-studied in the case of some special classes of operators such as normal, block-shift or rank one operators, but less is known for general C. For general properties of the C-numerical range the reader is referred to [3], [6], [8], [9], [11] or [20].

The aim of this paper is to study the C-numerical range of a Hilbert space operator for $C = C_q \oplus 0$ where

$$C_q = \begin{pmatrix} qI_n & \sqrt{1 - |q|^2}I_n \\ 0_n & 0_n \end{pmatrix}$$

and I_n denotes the identity operator on the *n*-dimensional subspace of *H*. Since $W_{C_q \oplus 0}(A)$ is a natural generalization of the *q*-numerical range, it is not surprising that some good results on the *q*-numerical range can be extended to this set. This is done in Section 3. Section 4 is devoted to the set $W_{C_0 \oplus 0}(A)$.

It is interesting to note that the concept of the q-numerical range can also be considered in a more general context than the Hilbert space. In Section 2 we introduce it in the context of Hilbert C^* -modules over a C^* -subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{H})$ containing $\mathcal{K}(\mathcal{H})$. It turns out that such a set can be interpreted as the $C_q \oplus 0$ numerical range of some Hilbert space operator. Thus, it was the motivation for introducing the C-numerical range for such particular C.

2. The set $W_q^n(A)$

In this section we introduce the concept of the q-numerical range in the context of Hilbert C^* -modules.

Recall that a (left) Hilbert C^* -module X over a C^* -algebra \mathcal{A} is a left \mathcal{A} -module X equipped with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle$ on $X \times X$ which is linear over \mathcal{A} in the first and conjugate-linear in the second variable, such that X is a Banach space with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. X is said to be a full Hilbert \mathcal{A} -module if the closure of the linear span of the set $\{\langle x, y \rangle : x, y \in X\}$ coincides with \mathcal{A} . By B(X) we denote the C^* -algebra of all adjointable operators on X. (The basic theory of Hilbert C^* -modules can be found in [7] and [19].)

Although our results are proved for a Hilbert C^* -module over an arbitrary C^* -subalgebra \mathcal{A} of B(H) containing K(H), for technical simplicity we first consider the case of a Hilbert C^* -module over the C^* -algebra K(H).

Hence, in the sequel X will denote a full left Hilbert C^* -module over the C^* -algebra K(H). One significant property of such modules is presence of an orthonormal basis ([1, Theorem 2]). (An orthonormal basis for X is by definition an orthogonal system (x_{λ}) that generates a dense submodule of X such that x_{λ} are basic vectors in the sense that $\langle x_{\lambda}, x_{\lambda} \rangle$ are orthogonal projections in K(H) of rank 1). The orthogonal dimension of X (i.e., the cardinal number of any of its orthonormal bases) will be designated by $\dim_{K(H)} X$. Furthermore, X contains a Hilbert space X_e with respect to the inner product $(\cdot, \cdot) = \operatorname{tr}(\langle \cdot, \cdot \rangle)$ where 'tr' means the trace. More precisely, for a fixed orthogonal projection e in K(H) of rank 1, X_e is given as the set of all ex, $x \in X$. Also, for all $x, y \in X_e$ we obtain that $\langle x, y \rangle = (x, y)e$ ([1, Remark 4(c)]). It is known that X and the Hilbert space X_e have the same dimension ([1, Remark 4(e)]). Moreover, X_e is an invariant subspace for each A

in B(X) and the map $A \mapsto A|X_e$ establishes an isomorphism between C^* -algebras B(X) and $B(X_e)$ where $B(X_e)$ denotes the algebra of all bounded operators on X_e ([1, Remark 4(b), Theorem 5]).

Before stating the results we establish some more notations as follows. First, a positive integer n is fixed and it is supposed that H has dimension greater than or equal to n. Then let us fix an n-dimensional orthogonal projection p in K(H). H_n will designate the n-dimensional range of p. We now choose an orthonormal basis $\{\xi_1, \ldots, \xi_n\}$ for H_n which is to be held fixed for the rest of this section. For $\xi, \eta \in H, e_{\xi,\eta}$ in B(H) is defined by $e_{\xi,\eta}(\nu) = (\nu|\eta)\xi$. From now on we denote $e_i = e_{\xi_i,\xi_i}$ for $i = 1, \ldots, n$. Evidently, $p = e_1 + \cdots + e_n$. In the rest of the section let us also fix a unit vector ξ in H and denote by e the orthogonal projection $e_{\xi,\xi}$ to the one-dimensional subspace spanned by ξ .

Finally, we denote by S^- and [S] the topological closure and the linear span of a set S, respectively.

Definition 1. For any complex number q with $|q| \leq 1$ and $A \in B(X)$ we define the set

$${}_{p}W_{q}^{n}(A) = \{ \operatorname{tr}\langle Ax, y \rangle : \, x, y \in X, \, \langle x, x \rangle = \langle y, y \rangle = p, \langle x, y \rangle = qp \}.$$

Remark 1. Suppose that vectors $x, y \in X$ satisfy $\langle x, x \rangle = \langle y, y \rangle = p$, $\langle x, y \rangle = qp$, where $q \in \mathbf{C}$, |q| < 1. Let us put $x_i = e_{\xi,\xi_i}x$, $y_i = e_{\xi,\xi_i}y$ for i = 1, ..., n. We claim that $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ is a linearly independent set of a Hilbert space X_e . Namely, for i, j = 1, ..., n we have

$$\langle x_i, x_j \rangle = e_{\xi, \xi_i} \langle x, x \rangle e_{\xi_i, \xi} = e_{\xi, \xi_i} p e_{\xi_i, \xi} = \delta_{i,j} e_{\xi_i, \xi}$$

and analogously $\langle y_i, y_j \rangle = \delta_{i,j}e$. Also, the condition $\langle x, y \rangle = qp$ implies that

$$\langle x_i, y_j \rangle = e_{\xi, \xi_i} \langle x, y \rangle e_{\xi_j, \xi} = e_{\xi, \xi_i} qp e_{\xi_j, \xi} = q \delta_{i, j} e.$$

From this we deduce that $x_i, y_i \in X_e$ and it holds that

$$(x_i, x_j) = (y_i, y_j) = \delta_{i,j}, \ (x_i, y_j) = q\delta_{i,j}$$
 (1)

for i, j = 1, ..., n. Let us now suppose that $\sum_{i=1}^{n} \alpha_i x_i + \sum_{i=1}^{n} \beta_i y_i = 0$ for some $\alpha_i, \beta_i \in \mathbf{C}$. Multiplying this equality on its right-hand side by x_i and then by y_i we get (by using (1)) $\alpha_i + \beta_i \bar{q} = 0$ and $\alpha_i q + \beta_i = 0$ from which it follows that $\alpha_i (1 - |q|^2) = 0, i = 1, ..., n$. Hence, $\alpha_i = 0$ and thus $\beta_i = 0, i = 1, ..., n$. Therefore, $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ is a linearly independent set in X_e . Hence, to avoid the trivial case ${}_{p}W_{q}^{n}(A) = \emptyset$, the dimension of the Hilbert space X_e must be greater than or equal to 2n.

So, in what follows we shall assume that $\dim_{K(H)} X = k \ge 2n$.

Remark 2. Observe that when n = 1 the condition $\langle x, x \rangle = \langle y, y \rangle = e_1$, $\langle x, y \rangle = qe_1$ is equivalent to the fact that x and y are unit vectors of Hilbert space X_{e_1} such that (x, y) = q. Moreover, $\operatorname{tr}\langle Ax, y \rangle = (Ax, y)$, so the set ${}_{p}W_{q}^{1}(A)$ is the q-numerical range $W_{q}(A|X_{e_1})$ of an operator $A|X_{e_1} \in B(X_{e_1})$.

Remark 3. The condition $\langle x, x \rangle = \langle y, y \rangle = p$ obviously implies $\langle x-px, x-px \rangle = \langle y - py, y - py \rangle = 0$, i.e., x = px and y = py, so we have $\langle Ax, y \rangle = p \langle Ax, y \rangle p$.

Furthermore, for every $\eta \perp H_n$ we get $\langle Ax, y \rangle \eta = p \langle Ax, y \rangle p \eta = 0$. Therefore, $\langle Ax, y \rangle$ can be regarded as an operator acting on the n-dimensional space H_n .

Next we show that ${}_{p}W_{q}^{n}(A)$ is non-empty.

Lemma 1. For any $q \in \mathbf{C}$ with $|q| \leq 1$ there exist $x, y \in X$ such that

 $\langle x, x \rangle = \langle y, y \rangle = p, \qquad \langle x, y \rangle = qp.$

Proof. Let $\{u_1, \ldots, u_{2n}\}$ be an orthonormal set of the Hilbert space X_e . We define $v_i = \overline{q}u_i + \sqrt{1 - |q|^2}u_{n+i}$ for $i = 1, \ldots, n$. Then we get

$$\begin{aligned} (v_i, v_j) &= \left(\overline{q} u_i + \sqrt{1 - |q|^2} u_{n+i}, \overline{q} u_j + \sqrt{1 - |q|^2} u_{n+j} \right) \\ &= \overline{q} q(u_i, u_j) + \overline{q} \sqrt{1 - |q|^2} (u_i, u_{n+j}) + \sqrt{1 - |q|^2} q(u_{n+i}, u_j) \\ &+ (1 - |q|^2) (u_{n+i}, u_{n+j}) \\ &= |q|^2 \delta_{i,j} + (1 - |q|^2) \delta_{i,j} = \delta_{i,j} \end{aligned}$$

for $i, j = 1, \ldots, n$. Also, we have

$$(u_i, v_j) = \left(u_i, \overline{q}u_j + \sqrt{1 - |q|^2}u_{n+j}\right) = q(u_i, u_j) + \sqrt{1 - |q|^2}(u_i, u_{n+j}) = q\delta_{i,j}$$

for i, j = 1, ..., n. Let us put $x_i = e_{\xi_i, \xi} u_i$, $y_i = e_{\xi_i, \xi} v_i$ for i = 1, ..., n. Thus we obtain

$$\langle x_i, x_j \rangle = e_{\xi_i, \xi} \langle u_i, u_j \rangle e_{\xi, \xi_j} = e_{\xi_i, \xi} (u_i, u_j) e_{\xi, \xi_j} = \delta_{i, j} e_i$$

and analogously $\langle y_i, y_j \rangle = \delta_{i,j} e_i$ for $i, j = 1, \ldots, n$. Moreover,

$$\langle x_i, y_j \rangle = e_{\xi_i, \xi} \langle u_i, v_j \rangle e_{\xi, \xi_j} = e_{\xi_i, \xi} (u_i, v_j) e_{\xi, \xi_j} = q \delta_{i, j} e_i$$

for i, j = 1, ..., n. Then $x = x_1 + \dots + x_n$ and $y = y_1 + \dots + y_n$ are desired vectors.

Thus we have the following

Corollary 1. The set ${}_{p}W^{n}_{q}(A)$ is non-empty for all $A \in B(X)$.

Remark 4. The definition of the set ${}_{p}W_{q}^{n}(A)$ does not depend on the choice of the rank n projection $p \in K(H)$. Indeed, if $p' \in K(H)$ is an arbitrary n-dimensional projection and if $\{\xi_{1}, \ldots, \xi_{n}\}$ and $\{\eta_{1}, \ldots, \eta_{n}\}$ are orthonormal bases for the ranges of p and p' respectively, then similarly as in the proof of Proposition 2.5 of [15], it can be shown that the map $\Phi :_{p} W_{q}^{n}(A) \to_{p'} W_{q}^{n}(A)$ defined by

$$\Phi(\operatorname{tr}\langle Ax, y\rangle) = \operatorname{tr}\left\langle A\left(\sum_{i=1}^{n} e_{\eta_i,\xi_i}x\right), \sum_{i=1}^{n} e_{\eta_i,\xi_i}y\right\rangle$$

is a bijection.

So, in the sequel we shall write $W_q^n(A)$ instead of ${}_pW_q^n(A)$.

In the following lemma we collect some basic properties of $W_q^n(A)$ which are obvious consequences of *Definition 1*.

Lemma 2. Let $A, B \in B(X)$. Then we have the following properties:

- (a) $W_q^n(U^*AU) = W_q^n(A)$ whenever $U \in B(X)$ is unitary.
- (b) $W_a^n(\alpha A + \beta I) = \alpha W_a^n(A) + \beta nq$ for all $\alpha, \beta \in \mathbf{C}$.
- (c) $W_q^n(A+B) \subseteq W_q^n(A) + W_q^n(B).$
- (d) $W_q^n(A^*) = \overline{W_q^n(A)} := \left\{ \overline{\operatorname{tr}\langle Ax, y \rangle} : x, y \in X, \langle x, x \rangle = \langle y, y \rangle = p, \langle x, y \rangle = qp \right\}$ for $0 \le q \le 1$.
- (e) $W_{\mu q}^{n}(A) = \mu W_{q}^{n}(A)$ for $\mu \in \mathbf{C}, \ |\mu| = 1.$

In the sequel we denote by $\{z_i\}$ an orthonormal basis of the Hilbert space X_e . Let Y_m , $1 \leq m \leq 2n$, be an *m*-dimensional subspace of X_e spanned by vectors z_1, \ldots, z_m .

In our next theorem we give an alternative description of the set $W_q^n(A)$. **Theorem 1.** Let A be an operator in B(X). Then

$$W_q^n(A) = \{ \operatorname{tr}((C_q \oplus 0_{k-2n})U^*A | X_e U) : U : X_e \to X_e \text{ is unitary} \},\$$

where $C_q: Y_{2n} \to Y_{2n}$ is a linear operator given by its action on the basis $\{z_1, \ldots, z_{2n}\}$:

$$C_q z_i = q z_i, \qquad i = 1, \dots, n,$$

 $C_q z_{n+i} = \sqrt{1 - |q|^2} z_i, \ i = 1, \dots, n.$

Proof. Given a unitary operator $U: X_e \to X_e$, we define

$$\begin{aligned} x_i &= e_{\xi_i,\xi} U z_i \\ y_i &= \overline{q} e_{\xi_i,\xi} U z_i + \sqrt{1 - |q|^2} e_{\xi_i,\xi} U z_{n+i} \end{aligned}$$

for i = 1, ..., n. Since $\{Uz_1, ..., Uz_{2n}\}$ is an orthonormal set in X_e , arguing as in the proof of Lemma 1 we obtain that $\langle x_i, x_j \rangle = \langle y_i, y_j \rangle = \delta_{i,j}e_i, \langle x_i, y_j \rangle = q\delta_{i,j}e_i$ for all i, j = 1, ..., n. Let us put $x = x_1 + \cdots + x_n$ and $y = y_1 + \cdots + y_n$. Then we have $\langle x, x \rangle = \langle y, y \rangle = p, \langle x, y \rangle = qp$. Also, it holds that

$$e_{\xi,\xi_i}x = e_{\xi,\xi_i}(x_1 + \dots + x_n) = e_{\xi,\xi_i}x_i = e_{\xi,\xi_i}e_{\xi_i,\xi}Uz_i = eUz_i = Uz_i,$$
(2)

$$e_{\xi,\xi_{i}}y = e_{\xi,\xi_{i}}(y_{1} + \dots + y_{n}) = e_{\xi,\xi_{i}}y_{i}$$

$$= e_{\xi,\xi_{i}}\left(\overline{q}e_{\xi_{i},\xi}Uz_{i} + \sqrt{1 - |q|^{2}}e_{\xi_{i},\xi}Uz_{n+i}\right)$$

$$= \overline{q}eUz_{i} + \sqrt{1 - |q|^{2}}eUz_{n+i} = \overline{q}Uz_{i} + \sqrt{1 - |q|^{2}}Uz_{n+i}$$
(3)

for i = 1, ..., n. In particular, $e_{\xi,\xi_i} x, e_{\xi,\xi_i} y \in X_e$, so we get

$$\langle Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y \rangle = (Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y)e.$$

On the other hand, we have

$$\begin{aligned} \langle Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y \rangle &= e_{\xi,\xi_i} \langle Ax, y \rangle e_{\xi_i,\xi} = e_{\xi,\xi_i} e_{\xi_i,\xi_i} \langle Ax, y \rangle e_{\xi_i,\xi_i} e_{\xi_i,\xi} \\ &= e_{\xi,\xi_i} \langle Ae_ix, e_iy \rangle e_{\xi_i,\xi} = e_{\xi,\xi_i} (Ae_ix, e_iy) e_i e_{\xi_i,\xi} \\ &= (Ae_ix, e_iy) e. \end{aligned}$$

Therefore,

$$(Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y) = (Ae_ix, e_iy) \tag{4}$$

for $i = 1, \ldots, n$. Notice that

$$C_{q}^{*}z_{i} = \overline{q}z_{i} + \sqrt{1 - |q|^{2}}z_{n+i}, \quad i = 1, \dots, n,$$

$$C_{q}^{*}z_{i} = 0, \qquad \qquad i = n + 1, \dots, 2n,$$

so by (2), (3) and (4) we obtain that

$$\begin{aligned} \operatorname{tr}((C_q \oplus 0_{k-2n})U^*A|X_eU) &= \sum_{i=1}^n (U^*A|X_eUz_i, C_q^*z_i) = \sum_{i=1}^n (A|X_eUz_i, UC_q^*z_i) \\ &= \sum_{i=1}^n \left(A|X_eUz_i, U\left(\overline{q}z_i + \sqrt{1 - |q|^2}z_{n+i}\right)\right) \\ &= q\sum_{i=1}^n (A|X_eUz_i, Uz_i) + \sum_{i=1}^n \left(A|X_eUz_i, \sqrt{1 - |q|^2}Uz_{n+i}\right) \\ &= q\sum_{i=1}^n (Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}x) + \sum_{i=1}^n (Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y - \overline{q}e_{\xi,\xi_i}x) \\ &= \sum_{i=1}^n (Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y) = \sum_{i=1}^n (Ae_ix, e_iy) = \operatorname{tr}\left(\sum_{i=1}^n (Ae_ix, e_iy)e_i\right) \\ &= \operatorname{tr}\left(\sum_{i=1}^n \langle Ae_ix, e_iy \rangle\right) = \operatorname{tr}\left(\sum_{i=1}^n e_i \langle Ax, y \rangle e_i\right) = \operatorname{tr}(p\langle Ax, y\rangle p) \\ &= \operatorname{tr}\langle Ax, y \rangle. \end{aligned}$$

Conversely, let $x, y \in X$ satisfy $\langle x, x \rangle = \langle y, y \rangle = p$ and $\langle x, y \rangle = qp$. Suppose first that |q| < 1. Define a linear operator $U : Y_{2n} \to X_e$ by its action on the basis $\{z_1, \ldots, z_{2n}\}$:

$$Uz_i = e_{\xi,\xi_i}x,$$

$$Uz_{n+i} = \frac{1}{\sqrt{1-|q|^2}}(e_{\xi,\xi_i}y - \overline{q}e_{\xi,\xi_i}x)$$

for i = 1, ..., n. It is easy to check that the operator U is a well-defined isometry. Namely, for i, j = 1, ..., n we have

$$\langle Uz_i, Uz_j \rangle = e_{\xi,\xi_i} \langle x, x \rangle e_{\xi_j,\xi} = e_{\xi,\xi_i} p e_{\xi_j,\xi} = \delta_{i,j} e_{\xi_j,\xi}$$

which implies $Uz_i \in X_e$ and $(Uz_i, Uz_j) = \delta_{i,j}$. Also, for i, j = 1, ..., n it holds that

$$\begin{aligned} \langle Uz_{n+i}, Uz_{n+j} \rangle &= \frac{1}{1 - |q|^2} \langle e_{\xi,\xi_i} y - \overline{q} e_{\xi,\xi_i} x, e_{\xi,\xi_j} y - \overline{q} e_{\xi,\xi_j} x \rangle \\ &= \frac{1}{1 - |q|^2} \left(e_{\xi,\xi_i} \langle y, y \rangle e_{\xi_j,\xi} - q e_{\xi,\xi_i} \langle y, x \rangle e_{\xi_j,\xi} - \overline{q} e_{\xi,\xi_i} \langle x, y \rangle e_{\xi_j,\xi} \right. \\ &\quad + |q|^2 e_{\xi,\xi_i} \langle x, x \rangle e_{\xi_j,\xi}) \\ &= \frac{1}{1 - |q|^2} \left(e_{\xi,\xi_i} p e_{\xi_j,\xi} - q \overline{q} e_{\xi,\xi_i} p e_{\xi_j,\xi} - \overline{q} q e_{\xi,\xi_i} p e_{\xi_j,\xi} + |q|^2 e_{\xi,\xi_i} p e_{\xi_j,\xi} \right) \\ &= \frac{1}{1 - |q|^2} \delta_{i,j} (e - |q|^2 e - |q|^2 e + |q|^2 e) = \delta_{i,j} e, \end{aligned}$$

so $Uz_{n+i} \in X_e$ and $(Uz_{n+i}, Uz_{n+j}) = \delta_{i,j}$. Furthermore,

$$\begin{aligned} \langle Uz_i, Uz_{n+j} \rangle &= \frac{1}{\sqrt{1 - |q|^2}} e_{\xi,\xi_i} \langle x, y - \overline{q}x \rangle e_{\xi_j,\xi} = \frac{1}{\sqrt{1 - |q|^2}} e_{\xi,\xi_i} (\langle x, y \rangle - q \langle x, x \rangle) e_{\xi_j,\xi} \\ &= \frac{1}{\sqrt{1 - |q|^2}} e_{\xi,\xi_i} (qp - qp) e_{\xi_j,\xi} = 0 \end{aligned}$$

for i, j = 1, ..., n. Hence, $(Uz_i, Uz_{n+j}) = 0$ for i, j = 1, ..., n. Therefore, U is an isometry and can be extended to a unitary operator $U : X_e \to X_e$. Finally, since (2), (3) and (4) are also valid, the same calculation as before shows that $\operatorname{tr}((C_q \oplus 0_{k-2n})U^*A|X_eU) = \operatorname{tr}\langle Ax, y \rangle$.

Now, suppose that |q| = 1. Then we have $C_q^* z_i = \overline{q} z_i$ for $i = 1, \ldots, n$ and $C_q^* z_i = 0$ for $i = n + 1, \ldots, 2n$. Define a linear operator $U : Y_n \to X_e$ on the orthonormal basis $\{z_1, \ldots, z_n\}$ by putting $Uz_i = e_{\xi,\xi_i} x$ for $i = 1, \ldots, n$. It is clear that U is a well-defined isometry and can be extended to a unitary operator $U : X_e \to X_e$. Let us put $x_i = e_i x, y_i = e_i y$ for $i = 1, \ldots, n$. Thus we have $\langle x_i, x_i \rangle = e_i \langle x, x \rangle e_i = e_i p e_i = e_i$ and analogously $\langle y_i, y_i \rangle = e_i$ for $i = 1, \ldots, n$. Moreover, $\langle x_i, y_i \rangle = e_i \langle x, y \rangle e_i = e_i q p e_i = q e_i$ for $i = 1, \ldots, n$. So we deduce that x_i, y_i are unit vectors of the Hilbert space X_{e_i} such that $(x_i, y_i) = q, i = 1, \ldots, n$. Also, since $|(x_i, y_i)| = |q| = 1 = |(x_i, x_i)|^{\frac{1}{2}} \cdot |(y_i, y_i)|^{\frac{1}{2}}$, it follows that $y_i = \alpha_i x_i$ for some $\alpha_i \in \mathbf{C}, i = 1, \ldots, n$. But, $q = (x_i, y_i) = (x_i, \alpha_i x_i) = \overline{\alpha_i}(x_i, x_i) = \overline{\alpha_i}$ from which it follows that $y = py = y_1 + \cdots + y_n = \overline{q}(x_1 + \cdots + x_n) = \overline{q}px = \overline{q}x$. Thus we get

$$tr((C_q \oplus 0_{k-2n})U^*A|X_eU) = \sum_{i=1}^n (U^*A|X_eUz_i, C_q^*z_i) = \sum_{i=1}^n (A|X_eUz_i, U(\overline{q}z_i))$$
$$= \sum_{i=1}^n (Ae_{\xi,\xi_i}x, \overline{q}e_{\xi,\xi_i}x) = \sum_{i=1}^n (Ae_{\xi,\xi_i}x, e_{\xi,\xi_i}y)$$
$$= (4) = \sum_{i=1}^n (Ae_ix, e_iy)$$
$$= tr\langle Ax, y \rangle,$$

which completes the proof.

Observe that *Theorem 1* can be reformulated in Corollary 2. Let A be an operator in B(X). Then

$$W_a^n(A) = W_C(A|X_e),$$

where

$$\begin{pmatrix} qI_n \ \sqrt{1-|q|^2}I_n \\ 0_n \ 0_n \end{pmatrix} \oplus 0_{k-2n}$$

is the matrix representation of $C \in B(X_e)$ with respect to some fixed orthonormal basis of X_e .

Finally, we discuss the case when X is a full (left) Hilbert C^* -module over a C^* -subalgebra \mathcal{A} of B(H) which contains K(H). The associated ideal submodule $X_{K(H)}$ is defined by

$$X_{K(H)} = [\{ax : a \in K(H), x \in X\}]^{-}.$$

Clearly, $X_{K(H)}$ can be regarded as a Hilbert K(H)-module. Furthermore, $X_{K(H)}$ is a full Hilbert C^* -module over K(H), since X is a full Hilbert \mathcal{A} -module ([2, Proposition 1.3]). After applying Hewitt-Cohen factorization ([2, Proposition 1.2] and Proposition 1.3]) we also have

$$X_{K(H)} = \{ax : a \in K(H), x \in X\} = \{x \in X : \langle x, x \rangle \in K(H)\}.$$

We assume that $2n \leq \dim_{K(H)} X_{K(H)} \leq \infty$.

Let $A \in B(X)$ be an arbitrary operator. Observe that $X_{K(H)}$ is invariant for A and also $(A|X_{K(H)})^* = A^*|X_{K(H)}$, so $A|X_{K(H)} \in B(X_{K(H)})$. Furthermore, the map $\alpha : B(X) \to B(X_{K(H)}), \alpha(T) = T|X_{K(H)}$, is a well-defined injective morphism of C^* -algebras ([2, Theorem 1.12]). Hence, its restriction $\alpha|C^*(A) : C^*(A) \to C^*(A|X_{K(H)})$ is an isomorphism of C^* -algebras.

Given a fixed rank *n* projection $p \in K(H)$ we can define the set $W_q^n(A)$ as it was done before in *Definition 1*. It is obvious that $W_q^n(A) = W_q^n(A|X_{K(H)})$ and all our results remain true for the set $W_q^n(A)$.

3. Some properties of $W_{\tilde{C}_{\sigma}}(A)$

From now on we suppose that H is a Hilbert space of dimension $2 \le k \le \infty$. Denote by $\{e_i\}$ a fixed orthonormal basis of H. For $q \in \mathbb{C}$, $|q| \le 1$, and $n \in \mathbb{N}$, $2n \le k$, let us fix an operator $\widetilde{C}_q \in B(H)$ of the form $C_q \oplus 0_{k-2n}$ where

$$\left(\begin{array}{cc} qI_n \ \sqrt{1-|q|^2}I_n \\ 0_n \ 0_n \end{array}\right)$$

is the matrix representation of C_q with respect to the basis $\{e_1, \ldots, e_{2n}\}$.

In this section we study some properties of the set $W_{\widetilde{C}_q}(A)$ for a Hilbert space operator $A \in B(H)$.

First, observe that this set can also be described in the following way.

Lemma 3. For $A \in B(H)$ we have

$$W_{\widetilde{C}_q}(A) = \{\sum_{i=1}^n (Ax_i|y_i) : (x_i), (y_i) \text{ are orthonormal sequences in } H, (x_i|y_j) = q\delta_{i,j}, i, j = 1, \dots, n\}.$$

Proof. Given $t \in W_{\widetilde{C}_q}(A)$ there is a unitary $U \in B(H)$ such that $t = \operatorname{tr}(\widetilde{C}_q U^* A U)$. Let us put $x_i = Ue_i, y_i = U\widetilde{C}_q^*e_i, i, j = 1, \ldots, n$. Then we have $t = \sum_{i=1}^n (Ax_i|y_i)$ where $(x_i|x_j) = (y_i|y_j) = \delta_{i,j}, (x_i|y_j) = q\delta_{i,j}$. Conversely, suppose that $t = \sum_{i=1}^n (Ax_i|y_i)$ where $(x_i|x_j) = (y_i|y_j) = \delta_{i,j}, (x_i|y_j) = q\delta_{i,j}$. If |q| < 1 define $Ue_i = x_i, Ue_{n+i} = \frac{1}{\sqrt{1-|q|^2}}(y_i - \overline{q}x_i), i = 1, \ldots, n$. In the case |q| = 1 let us put $Ue_i = x_i, i = 1, \ldots, n$. Then U is a well-defined isometry on the subspace of H and can be extended to a unitary operator $U \in B(H)$. Thereby, $t = \operatorname{tr}(\widetilde{C}_q U^* A U)$. \Box

In what follows we list some known results on the set $W_{\widetilde{C}_q}(A)$.

Corollary 3. If dim $H < \infty$ and $A \in B(H)$, then

- (a) $W_{\widetilde{C}_a}(A)$ is a compact set,
- (b) $W_{\widetilde{C}_a}(A)$ is star-shaped with respect to star-center $\frac{1}{k}nqtrA$,
- (c) $W_{\widetilde{C}_a}(A) = \{\lambda\}$ if and only if $A = \mu I$ such that $\mu nq = \lambda$.

Proof. Since $W_{\widetilde{C}_q}(A)$ is a continuous image of the compact set of all unitary operators in B(H), it must be a compact set, so (a) follows. Statement (b) is a consequence of Theorem 4 in [3]. Statement (c) follows from Theorem 2.5 in [8] since \widetilde{C}_q is not a scalar matrix.

Remark 5. It is easy to see that statement (c) from the above corollary holds in the infinite dimensional case as well. Indeed, one direction is trivial. To prove the other, assume that $W_{\tilde{C}_q}(A) = \{\lambda\}$. For arbitrary $e_i, e_j, i \neq j$, denote by $P_{i,j} \in B(H)$ the orthogonal projection onto the $l_{i,j}$ -dimensional subspace $M_{i,j}$ of H spanned by $\{e_1, \ldots, e_{2n}, e_i, e_j\}$. Then we have

$$W_{C_q \oplus 0_{l_{i,j}-2n}}((P_{i,j}AP_{i,j})|M_{i,j}) \subseteq W_{\widetilde{C}_a}(A) = \{\lambda\},\$$

so by Theorem 2.5 in [8] it follows that $P_{i,j}AP_{i,j} = \mu_{i,j}P_{i,j}$ where $\mu_{i,j}nq = \lambda$. From this we get

$$(Ae_i|e_j) = (P_{i,j}AP_{i,j}e_i|e_j) = (\mu_{i,j}P_{i,j}e_i|e_j) = \mu_{i,j}(e_i|e_j) = 0$$

and

$$(Ae_i|e_i) = (P_{i,j}AP_{i,j}e_i|e_i) = \mu_{i,j} = (P_{i,j}AP_{i,j}e_j|e_j) = (Ae_j|e_j),$$

so we deduce that all $\mu_{i,j}$ are equal and $A = \mu I$ where $\mu = \mu_{i,j}$.

Also, the infinite dimensional analogue of statement (b) is a consequence of Jones' result [6] (see also [3]):

R. Rajić

Corollary 4. If dim $H = \infty$ and $A \in B(H)$, then the closure of the set $W_{\widetilde{C}_q}(A)$ is star-shaped with respect to the set $nqW_e(A)$, where $W_e(A)$ denotes the essential numerical range of A (i.e., the set of all complex numbers of the form $\varphi(A)$ where φ runs over all states of B(H) vanishing on compact operators in B(H)).

We do not know whether $W_{\widetilde{C}_q}(A)$ is always a convex set. Our next results give sufficient conditions for its convexity.

Corollary 5. Let dim $H < \infty$ and let $A \in B(H)$. Then $W_{\widetilde{C}_q}(A)$ is a convex set if one of the following conditions holds.

- (a) There exist $\alpha, \beta \in \mathbf{C}$ with $\alpha \neq 0$ such that $\alpha A + \beta I$ is hermitian, i.e., A is a normal operator and the eigenvalues of A are collinear on the complex plane.
- (b) There exists $\alpha \in \mathbf{C}$ such that $A \alpha I$ is unitarily similar to $M = [M_{ij}]_{1 \leq i,j \leq m}$ in block form, where M_{ii} are square matrices and $M_{ij} = 0$ if $i \neq j + 1$. In this case $W_{\widetilde{C}_a}(A)$ is a circular disc on the complex plane centered at αnq .
- (c) There exists $\alpha \in \mathbf{C}$ such that $A \alpha I$ has rank one.

Proof. Statement (a) is a slight extension of the result of [20], using the fact that $W_{\tilde{C}_q}(\alpha A + \beta I) = \alpha W_{\tilde{C}_q}(A) + \beta nq$. Statement (b) follows by [11, Theorem 2.1 and Corollary 2.2] and statement (c) by [18, Theorem 2].

Corollary 6. Let dim $H = \infty$ and let $A \in B(H)$. Then $W_{\widetilde{C}_q}(A)$ is a convex set if one of the following conditions holds.

- (a) A is hermitian.
- (b) There exists $\alpha \in \mathbf{C}$ such that $A \alpha I$ has rank one.

Proof. Suppose that any of the conditions (a) or (b) holds. Let us take arbitrary $t, s \in W_{\widetilde{C}_q}(A), 0 \leq \lambda \leq 1$. Then we have $t = \operatorname{tr}(\widetilde{C}_q U^*AU), s = \operatorname{tr}(\widetilde{C}_q V^*AV)$ for some unitary operators $U, V \in B(H)$. Denote by K the *l*-dimensional subspace of H spanned by vectors $e_1, \ldots, e_{2n}, Ue_1, \ldots, Ue_{2n}, Ve_1, \ldots, Ve_{2n}$. Let $P \in B(H)$ be the orthogonal projection from H onto K. Then we have $t \in W_{C_q \oplus 0_{l-2n}}(PAP|K)$ and $s \in W_{C_q \oplus 0_{l-2n}}(PAP|K)$. However, by Corollary $5 W_{C_q \oplus 0_{l-2n}}(PAP|K)$ is convex. Thus, we have $\lambda t + (1 - \lambda)s \in W_{C_q \oplus 0_{l-2n}}(PAP|K) \subseteq W_{\widetilde{C}_q}(A)$.

It is known (see (4.1) of [9]) that for a matrix $A \in M_n(\mathbf{C})$, unitarily similar to $A_1 \oplus A_2$, it holds that

$$W_C(A) = \cup \left\{ W_{C_1}(A_1) + W_{C_2}(A_2) : \begin{pmatrix} C_1 & X \\ Y & C_2 \end{pmatrix} \in \mathcal{U}(C) \text{ for some } X, Y \right\}$$

where $\mathcal{U}(C)$ denotes the unitary similarity orbit of $C \in M_n(\mathbf{C})$; i.e., $\mathcal{U}(C) = \{U^*CU : U \in M_n(\mathbf{C}) \text{ is unitary}\}.$

Since
$$C_q$$
 is unitarily similar to $\underbrace{D_q \oplus \cdots \oplus D_q}_{n \text{ times}}$, where $D_q = \begin{pmatrix} q \sqrt{1 - |q|^2} \\ 0 & 0 \end{pmatrix}$, it

follows that

$$W_{\widetilde{C}_q}(A) = \cup \left\{ W_q(A_1) + \dots + W_q(A_n) : \begin{pmatrix} A_1 \dots \\ \vdots & \ddots \\ & A_n \\ & & \ddots \end{pmatrix} \in \mathcal{U}(A) \right\} \quad (5)$$

where A_i is a 2 × 2 matrix and $W_q(A_i) = W_{D_q}(A_i), i = 1, ..., n$.

Using this expression we can easily obtain some well-known results on the q-numerical range of an operator on a Hilbert space for the set $W_{\tilde{C}_a}(A)$.

In what follows Int(S) will stand for the topological interior of $S \subseteq \mathbf{C}$.

Theorem 2. Let dim $H < \infty$ and let $A \in B(H)$. Let $\alpha_1, \ldots, \alpha_k$ be the eigenvalues of A. Then

$$\{q(\alpha_{j_1} + \dots + \alpha_{j_n}) : j_1, \dots, j_n \in \{1, \dots, k\} \text{ are mutually different}\} \subseteq W_{\widetilde{C}_n}(A)$$

If A is not a scalar operator and |q| < 1, then

 $\{q(\alpha_{j_1} + \dots + \alpha_{j_n}) : j_1, \dots, j_n \in \{1, \dots, k\} \text{ are mutually different}\} \subseteq \operatorname{Int}(W_{\widetilde{C}_q}(A)).$

Proof. For every choice $\alpha_{j_1}, \ldots, \alpha_{j_n}$ of eigenvalues of A there exists a unitary operator $U \in B(H)$ such that the operator U^*AU is in the lower triangular form

$$\begin{pmatrix} A_1 & & & \\ \vdots & \ddots & \\ & & A_n & \\ & & & \ddots \end{pmatrix}$$

where A_i (i = 1, ..., n) are 2×2 matrices with one diagonal entry equal to α_{j_i} . Using Theorem 2.7 of [10] and statement (5) it holds that

$$q\alpha_{j_1} + \dots + q\alpha_{j_n} \in W_q(A_1) + \dots + W_q(A_n) \subseteq W_{\widetilde{C}_q}(A).$$

Suppose now that A is not a scalar operator and |q| < 1. Then at least one of A_i is not a scalar operator. Namely, if at least two eigenvalues of A are different, then some of A_i , say A_1 , can be chosen to be the operator with different diagonal entries. On the other hand, if all eigenvalues of A are equal, then A is not normal. Then by Lemma 1 of [13] A_1 can be chosen to be a non-scalar operator. So, in both cases Theorem 2.7 of [10] implies

$$q\alpha_{j_1} + \dots + q\alpha_{j_n} \in \operatorname{Int}(W_q(A_1)) + W_q(A_2) + \dots + W_q(A_n)$$
$$\subseteq \operatorname{Int}(W_q(A_1) + \dots + W_q(A_n)) \subseteq \operatorname{Int}(W_{\widetilde{C}_q}(A)).$$

Our next result extends the classical result of an inclusion relation for q-numerical ranges for different q (see [10, Theorem 2.5]).

Theorem 3. Suppose $q_1, q_2 \in \mathbb{C}$ satisfy $|q_2| \leq |q_1| \leq 1$. Then for $A \in B(H)$ we have

$$q_2 W_{\widetilde{C}_{q_1}}(A) \subseteq q_1 W_{\widetilde{C}_{q_2}}(A).$$

Moreover, if $A = \mu I \in B(H)$ for some $\mu \in \mathbf{C}$, then

$$q_2 W_{\widetilde{C}_{q_1}}(A) = q_1 W_{\widetilde{C}_{q_2}}(A) = \{\mu n q_1 q_2\}.$$

If $A \in B(H)$ is not a scalar operator and $|q_2| < |q_1| < 1$, then

$$q_2 W_{\widetilde{C}_{q_1}}(A) \subseteq \operatorname{Int}(q_1 W_{\widetilde{C}_{q_2}}(A))$$

Proof. First, observe that in the case of the finite dimensional space H the proof is a direct consequence of Theorem 2.5 of [10] and statement (5). The infinite dimensional case is reduced to the finite dimensional one. Namely, for $t = \operatorname{tr}(\widetilde{C}_{q_1}U^*AU) \in W_{\widetilde{C}_{q_1}}(A)$ we have $t \in W_{C_{q_1}\oplus 0_{l-2n}}(PAP|K)$ where $P: H \to K$ is the orthogonal projection onto the *l*-dimensional subspace K of H spanned by $e_1, \ldots, e_{2n}, Ue_1, \ldots, Ue_{2n}$. Then we get

$$q_2 t \in q_2 W_{C_{q_1} \oplus 0_{l-2n}}(PAP|K) \subseteq q_1 W_{C_{q_2} \oplus 0_{l-2n}}(PAP|K) \subseteq q_1 W_{\widetilde{C}_{q_2}}(A).$$

If A is not a scalar operator and $|q_2| < |q_1| < 1$, then the projection P can be chosen such that neither PAP is a scalar operator. So, we have

$$q_2 t \in q_2 W_{C_{q_1} \oplus 0_{l-2n}}(PAP|K) \subseteq \operatorname{Int}(q_1 W_{C_{q_2} \oplus 0_{l-2n}}(PAP|K)) \subseteq \operatorname{Int}(q_1 W_{\widetilde{C}_{q_2}}(A)).$$

Theorem 4. Let dim $H < \infty$ and let $A \in B(H)$. If |q| < 1 and A is not a scalar operator, then the boundary of $W_{\widetilde{C}_a}(A)$ is a smooth curve.

Proof. Let t be a boundary point of $W_{\widetilde{C}_q}(A)$. Then we have $t = \operatorname{tr}(\widetilde{C}_q U^* A U)$ for some unitary $U \in B(H)$. If t is a non-differentiable boundary point of $W_{\widetilde{C}_q}(A)$, then, as in the proof of Theorem 2.1 of [8], we conclude that \widetilde{C}_q and $B = U^* A U$ commute. Hence, there exists unitary $V \in B(H)$ such that both $V\widetilde{C}_q V^*$ and VBV^* are in the lower triangular form. Now,

$$t = \operatorname{tr}(VC_qV^*VBV^*) = q(\alpha_{j_1} + \dots + \alpha_{j_n})$$

for some $\alpha_{j_1}, \ldots, \alpha_{j_n}$ from the spectrum of A. So, by Theorem 2 $t \in \text{Int}(W_{\widetilde{C}_q}(A))$ which contradicts the fact that t is a boundary point of $W_{\widetilde{C}_n}(A)$. \Box

4. The set $W_{\widetilde{C}_0}(A)$

Observe that the roles of C and A in the definition of $W_C(A)$ are symmetric, i.e., $W_C(A) = W_A(C)$. Also, note that for q = 0 the operator C_0 satisfies condition (e) in Theorem 2.1 of [11]. So, as a consequence of the equivalence of the conditions (e) in Theorem 2.1 of [11] and (g) in Corollary 2.2 of [11] we get the following

Corollary 7. If dim $H < \infty$, then $W_{\widetilde{C}_0}(A)$ is a circular disc on the complex plane centered at the origin for all $A \in B(H)$.

The convexity of $W_{\widetilde{C}_0}(A)$ in the case of the infinite dimensional space H can be obtained by reducing to the finite dimensional case, as it was done in Corollary 6. Furthermore, if $P \in B(H)$ stands for the orthogonal projection onto the subspace K of H spanned by $\{e_1, \ldots, e_{2n}\}$, then by the above corollary we have $0 \in W_{C_0}(PAP|K)$. However, $W_{C_0}(PAP|K) \subseteq W_{\widetilde{C}_0}(A)$, so $0 \in W_{\widetilde{C}_0}(A)$. Also, it is obvious that the set $W_{\widetilde{C}_0}(A)$ is circular, i.e., $\mu W_{\widetilde{C}_0}(A) = W_{\widetilde{C}_0}(A)$ for all $\mu \in \mathbb{C}$ with $|\mu| = 1$ (see Lemma 3). From all of this we have

Corollary 8. If dim $H = \infty$, then $W_{\widetilde{C}_{\Omega}}(A)$ is an open or closed circular disc on the complex plane centered at the origin for all $A \in B(H)$.

In what follows we will identify the radius of $W_{\widetilde{C}_0}(A)$ for hermitian A acting on the finite dimensional Hilbert space H. The proof of our theorem is based on the result of Mirsky [14, Theorem 1] (see also [17, Corollary 5] or [16]).

Theorem 5. Let dim $H < \infty$. If $A \in B(H)$ is hermitian with eigenvalues $\alpha_1 \leq \cdots \leq \alpha_k$, then $W_{\widetilde{C}_0}(A)$ is a circular disc with the center at the origin and radius $r = \frac{1}{2}(\alpha_k + \alpha_{k-1} + \dots + \alpha_{k-n+1} - \alpha_1 - \alpha_2 - \dots - \alpha_n).$

Proof. By Corollary 7 $W_{\widetilde{C}_0}(A)$ is a circular disc centered at the origin. It remains to identify its radius. Let us take any $t \in W_{\widetilde{C}_0}(A)$. By statement (5) $t = t_1 + \cdots + t_n$ for some $t_i \in W_0(A_i)$ where

$$B = \begin{pmatrix} A_1 \dots & \\ \vdots & \ddots & \\ & A_n & \\ & & \ddots \end{pmatrix} \in \mathcal{U}(A).$$

Denote by β_i and γ_i the eigenvalues of A_i and let us suppose that $\beta_i \geq \gamma_i$, i =1,..., n. According to Theorem 1 of [14], we have $|t_i| \leq \frac{1}{2}(\beta_i - \gamma_i)$ for i = 1, ..., n. Since B is unitarily similar to the diagonal operator with the first 2n diagonal entries $\beta_1, \gamma_1, \ldots, \beta_n, \gamma_n$, it follows by Corollary 2 of [4] that

 $\beta_1 + \dots + \beta_n \le \alpha_k + \alpha_{k-1} + \dots + \alpha_{k-n+1}$ and $\gamma_1 + \dots + \gamma_n \ge \alpha_1 + \dots + \alpha_n$. Hence.

$$|t| \le \frac{1}{2} \sum_{i=1}^{n} (\beta_i - \gamma_i) \le \frac{1}{2} (\alpha_k + \alpha_{k-1} + \dots + \alpha_{k-n+1} - \alpha_1 - \alpha_2 - \dots - \alpha_n) = r.$$

To complete the proof it is enough to show that $r \in W_{\widetilde{C}_0}(A)$. Observe that A is unitarily similar to some diagonal operator $A_1 \oplus \cdots \oplus A_n \oplus D$ where

$$A_i = \begin{pmatrix} \alpha_{k-i+1} & 0\\ 0 & \alpha_i \end{pmatrix}.$$

Again, applying Theorem 1 of [14], we get $t_i = \frac{1}{2}(\alpha_{k-i+1} - \alpha_i) \in W_0(A_i)$. By (5) it obviously follows that $r = t_1 + \cdots + t_n \in W_{\widetilde{C}_0}(A)$.

Acknowledgement. The author would like to thank Professor Damir Bakić for his valuable suggestions and helpful advice.

R. Rajić

References

- D. BAKIĆ, B. GULJAŠ, Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. 68(2002), 249–269.
- [2] D. BAKIĆ, B. GULJAŠ, On a class of module maps of Hilbert C^{*}-modules, Mathematical Communications 7(2002), 177–192.
- [3] W. S. CHEUNG, N. K. TSING, The C-numerical range of matrices is starshaped, Linear and Multilinear Algebra 41(1996), 245–250.
- [4] P. A. FILLMORE, J. P. WILLIAMS, Some convexity theorems for matrices, Glasgow Math. J. 12(1971), 110–117.
- [5] M. GOLDBERG, E. G. STRAUS, Elementary inclusion relations for generalized numerical ranges, Linear Algebra Appl. 18(1977), 1–24.
- [6] M. S. JONES, A note on the shape of the generalized C-numerical range, Linear and Multilinear Algebra 31(1992), 81–84.
- [7] C. LANCE, *Hilbert C*-modules*, London Math. Soc. Lecture Note Series 210, Cambridge University Press, Cambridge, 1995.
- [8] C. K. LI, The C-convex matrices, Linear and Multilinear Algebra 21(1987), 303–312.
- [9] C. K. LI, C-numerical ranges and C-numerical radii, Linear and Multilinear Algebra 37(1994), 51–82.
- [10] C. K. LI, P. P. MEHTA, L. RODMAN, A generalized numerical range: the range of a constrained sesquilinear form, Linear and Multilinear Algebra 37(1994), 25–49.
- [11] C. K. LI, N. K. TSING, Matrices with circular symmetry on their unitary orbits and C-numerical ranges, Proc. Amer. Math. Soc. 111(1991), 19–28.
- [12] M. MARCUS, P. ANDRESEN, Constrained extrema of bilinear functionals, Monatsh. Math. 84(1977), 219–235.
- [13] M. MARCUS, M. SANDY, Conditions for the generalized numerical range to be real, Linear Algebra Appl. 71(1985), 219–239.
- [14] L. MIRSKY, Inequalities for normal and hermitian matrices, Duke Math. J. 24(1957), 591–599.
- [15] R. RAJIĆ, On the algebra range of an operator on a Hilbert C^{*}-module over compact operators, Proc. Amer. Math. Soc. 131(2003), 3043–3051.
- [16] E. L. STOLOV, On Hausdorff set of matrices, Izv. Vyssh. Ucebn. Zaved. Mat. 10(1979), 98–100.
- [17] N. K. TSING, Diameter and minimal width of the numerical range, Linear and Multilinear Algebra 14(1983), 179–185.

- [18] N. K. TSING, The constrained bilinear form and the C-numerical range, Linear Algebra Appl. 56(1984), 195–206.
- [19] N. E. WEGGE-OLSEN, K-theory and C*-algebras a friendly approach, Oxford University Press, Oxford, 1993.
- [20] R. WESTWICK, A theorem on numerical range, Linear and Multilinear Algebra 2(1975), 311–315.