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Abstract. Let D be a finite and simple digraph with vertex set V (D), and let f : V(D) —
{~=1,1} be a two-valued function. If £ > 1 is an integer and }° _r—, f(2) > k for each
v € V(D), where N~ [v] consists of v and all vertices of D from which arcs go into v,
then f is a signed k-dominating function on D. A set {fi, f2,..., fa} of distinct signed
k-dominating functions on D with the property that Z‘Z:l fi(x) < k for each z € V(D),
is called a signed (k, k)-dominating family (of functions) on D. The maximum number of
functions in a signed (k, k)-dominating family on D is the signed (k, k)-domatic number on
D, denoted by d%(D).

In this paper, we initiate the study of the signed (k, k)-domatic number of digraphs, and
we present different bounds on d%(D). Some of our results are extensions of well-known
properties of the signed domatic number ds(D) = di(D) of digraphs D as well as the
signed (k, k)-domatic number d%(G) of graphs G.

AMS subject classifications: 05C20, 05C69, 05C45
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1. Terminology and introduction

In this paper, D is a finite and simple digraph with vertex set V(D) and arc set A(D).
The integers n(D) = |V(D)| and m(D) = |A(D)| are the order and the size of the
digraph D, respectively. We write dj;(v) = d* (v) for the outdegree of a vertex v and
dp(v) = d~ (v) for its indegree. The minimum and mazimum indegree are 6~ (D) and
A~(D). The sets Nt(v) = {z|(v,z) € A(D)} and N~ (v) = {x|(z,v) € A(D)}
are called the outset and inset of the vertex v. Likewise, Nt[v] = N*(v) U {v}
and N~ [v] = N~ (v) U {v}. If X C V(D), then D[X] is the subdigraph induced
by X. For an arc (x,y) € A(D), the vertex y is an outer neighbor of x and x is
an inner neighbor of y. For a real-valued function f : V(D) — R the weight of
fisw(f) = > ev(py f(v), and for § € V(D), we define f(S) = >, f(v), so
w(f) = f(V(D)). Consult [3] and [4] for notation and terminology which are not
defined here.
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If £ > 1 is an integer, then the signed k-dominating function is defined as a
function f : V(D) — {—1,1} such that f(N"[v]) = >, cn-py (@) = k for every
v € V(D). The signed k-domination number for a digraph D is

Yrs(D) = min{w(f) | f is a signed k-dominating function of D}.

A ~s(D)-function is a signed k-dominating function on D of weight vig(D). As
the assumption 0~ (D) > k — 1 is necessary, we always assume that when we discuss
Yks(D), all digraphs involved satisfy 6= (D) > k — 1 and thus n(D) > k.

The signed k-domination number of digraphs was introduced by Atapour, Ha-
jypory, Sheikholeslami and Volkmann [1]. When k£ = 1, the signed k-domination
number vgs(D) is the usual signed domination number vs(D), which was intro-
duced by Zelinka in [13] and has been studied by several authors (see for instance
[5] and [10]).

A set {f1, fa,..., fa} of distinct signed k-dominating functions on D with the
property that 27:1 fi(v) <k for each v € V (D), is called a signed (k, k)-dominating
family on D. The maximum number of functions in a signed (k, k)-dominating family
on D is the signed (k,k)-domatic number of D, denoted by d%(D). When k = 1,
the signed (k, k)-domatic number of a digraph D is the usual signed domatic number
ds(D), which was introduced by Sheikholeslami and Volkmann [7] and has also been
studied in [10].

In this paper, we initiate the study of the signed (k, k)-domatic number of di-
graphs, and we present different bounds on d’g(D). Some of our results are extensions
of well-known properties of the signed domatic number dgs(D) = d§ (D) of digraphs
(see for example [7]) as well as the signed (k, k)-domatic number dg(G) of graphs G
(see for example [6, 8, 9, 11]).

Our first proposition shows that the signed (k, k)-domatic number d% (D) is well-
defined for every digraph D with 6= (D) > k — 1.

Proposition 1. The signed domatic number d’g(D) 1s well-defined for each digraph
D with 6~ (D) > k — 1.

Proof. Let k& > 1 be an integer, and let 6~ (D) > k — 1. Since the function f :
V(D) — {-1,1} with f(v) =1 for each v € V(D) is a signed k-dominating function
on D, the family {f} is a signed (k, k)-dominating family on D. Therefore, the set
of signed k-dominating functions on D is non-empty and there exists the maximum
of their cardinalities, which is the signed (k, k)-domatic number of D. O

2. Properties of the signed (k, k)-domatic number

In this section we present basic properties of the signed (k, k)-domatic number and
find some sharp bounds for this parameter.

Theorem 1. If D is a digraph with = (D) > k — 1, then
d%(D) <67 (D) + 1.

Moreover, if di(D) = §=(D) + 1, then for each function of any signed (k,k)-
dominating family {f1, fa,..., fa} on D and for all vertices v of indegree 6~ (D),

> zen- fi(@) =k and S, filx) =k for every x € N~ [u].
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Proof. Let {fi, fo,..., fa} be a signed (k, k)-dominating family on D such that
d = d%(D). If v € V(G) is a vertex of minimum indegree 6~ (D), then it follows that

:zd:k iZf,

=1
d
= Z > filw)
eEN—[v] i=1
< Z k=k(6 (D) +1),
€N~ [v]

and this implies the desired upper bound on the signed (k, k)-domatic number.

If d% (D) = 6= (D) +1, then the two inequalities occurring in the inequality chain
above become equalities. Therefore, for all vertices v of indegree 6~ (D), we observe
that 3, c -y fi(z) =k for 1 <i<dand Z?:l fi(z) =k for every z € N~ [v]. O
Theorem 2. Let D be an r-regular digraph of order n such that r > 1 and ged(n,r+
1) =1, and let k be a positive integer. Then d%(D) < 6~ (D) = r.

Proof. Suppose to the contrary that d%(D) > 6= (D). Then by Theorem 1, d%(D)
= 6 (D) + 1. Let f belong to a signed (k, k)-dominating family on D of order
67 (D) + 1. By Theorem 1, we have >, . n-(, f(z) = k for every v € V(D). This
implies that

nk= Y > fl@)= Y r+Dfx)=0+1) > f@)=(+Dw(f).
veV(D) z€N—[v] z€V (D) z€V (D)

Since w(f) is an integer and ged(n,r + 1) = 1, the number r + 1 is a divisor of k. It
follows from k < 67 (D) + 1 =r+1that k =7+ 1. Thus > .y, f(z) =7 +1
for every v € V(D). Since f(z) <1 for each z € V(D), we deduce that f(v) =1 for
each v € V(D). Hence f is the only element of the signed (k, k)-dominating family
on D which is a contradiction. This completes the proof. O

Theorem 3. If D is a digraph of order n with 6~ (D) > k — 1, then
Yrs(D) - d%(D) < k- n.

Moreover, if ys(D) - d%(D) = k - n, then for each signed (k,k)-dominating family
{f1, fay.--, fa} on D with d = d%(D), each function f; is a ys(D)-function and
E?:1 fi(z) =k for each x € V(D).
Proof. If {f1, fo,..., fa} is a signed (k,k)-dominating family on D such that d
= d%(D), then the definitions imply

d d
d-ys(D) = Z'YkS(D) <) fiw)

i=1 zeV (D)

d
= > Y filw< > k=k-n

zeV (D) i=1 €V (D)
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If v5(D) - d%(D) = k - n, then the two inequalities occurring in the inequal-
ity chain above become equalities. Hence vrs(D) = >_ ey (p) fi(x) for each i €
{1,2,...,d}, and thus each function f; is a vy,s(D)-function. In addition, we see
that 2?21 fi(z) = k for each z € V(D). O

The special case k = 1 in Theorems 1 and 3 can be found in [7].

Theorem 4. If v is a vertez of a digraph D such that d~(v) is odd and k is odd or
d—(v) is even and k is even, then

k

d5(D) < Pl

(d=(v) +1).

Proof. Let {f1, fa,..., fa} be a signed (k,k)-dominating family on D such that
d = d&(D). Assume first that d~(v) and k are odd. The definition yields to
> zen- fi(x) = k for each i € {1,2,...,d}. On the left-hand side of this in-
equality a sum of an even number of odd summands occurs. Therefore, it is an even
number, and as k is odd, we obtain }_ -, fi(z) = k+1for eachi € {1,2,...,d}.
It follows that

k(d( = > k> Y Zfl

weN[] €N~ [v] i=1
72 Z fz
=1 zeN—

d
ZIH—I =d(k+1),

and this leads to the desired bound. Assume next that d~(v) and k are even integers.
Note that 3 o n-(, fi(#) = k for each i € {1,2,...,d}. On the left-hand side of this
inequality a sum of an odd number of odd summands occurs. Therefore, it is an odd
number, and as k is even, we obtain ZzeN*[v} filx) > k+1foreachi € {1,2,...,d}.
Now the desired bound follows as above, and the proof is complete.

The next result is an immediate consequence of Theorem 4.

Corollary 1. If D is a digraph such that 6~ (D) and k are odd or 5= (D) and k are
even, then
k

k
ds (D)*k:—i—l

(5~ (D) + 1).

For special digraphs D we will improve the upper bound on d&(D) given in
Theorem 1.

Corollary 2. Let k > 1 be an integer. If D is a digraph such that 6~ (D) = k + 2t
for an integer t > 1, then
d%(D) <67 (D) — 1.
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Proof. Since k and (D) are of the same parity, Corollary 1 implies that

k k
k(DY< —— (6~ (D) +1) = —— o2 +1 2
ds( )—k+1(6 (D)+1) k+1(k+ t+1)<k+2t
and therefore d%(D) < k+2t—1=§"(D) — 1. O

Theorem 5. If D is a digraph such that k is odd and d’g(D) is even or k is even
and d%(D) is odd, then
a5(D) < "2 (D) + 1)

Proof. Let {fi, fo,..., fa} be a signed (k, k)-dominating family on D such that
d = d%(D). Assume first that k is odd and d is even. If x € V(D) is an arbitrary
vertex, then Zle fi(x) < k. On the left-hand side of this inequality a sum of an
even number of odd summands occurs. Therefore, it is an even number, and as k
is odd, we obtain 2?21 fi(z) < k—1 for each z € V(G). If v is a vertex with
d=(v) =0~ (D), then it follows that

d

dk=) k<) fil=)

i=1 i=1 €N~ [v]
d

Zfi(fﬁ)

z€N~[v] =1

> (k-1

zEN~[v]

(0~ (D) +1)(k = 1),

IN

and this yields to the desired bound. Assume secondly that k is even and d is odd.
If z € V(G) is an arbitrary vertex, then 3%, fi(z) < k. On the left-hand side of
this inequality a sum of an odd number of odd summands occurs. Therefore, it is
an odd number, and as k is even, we obtain 2?21 fi(z) <k —1 for each z € V(G).
Now the desired bound follows as above, and the proof is complete. O

According to Proposition 1, d’g(D) is a positive integer. If we suppose in the
case k = 1 that dg(D) = d}(D) is an even integer, then Theorem 5 leads to the
contradiction dg(D) < 0. Consequently, we obtain the next known result.

Corollary 3 (Sheikholeslami, Volkmann [7]). The signed domatic number dg(D) is
an odd integer.

Theorem 6. Let k > 2 be an integer, and let D be a digraph with 6~ (D) > k — 1.
Then d%(D) = 1 if and only if for every vertex v € V(D) the set N [v] contains a
vertex x such that d—(x) < k.
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Proof. Assume that N [v] contains a vertex z such that d~(z) < k for every vertex
v € V(D), and let f be a signed k-dominating function on D. If d~(v) < k, then
it follows that f(v) = 1. If d~(z) < k for a vertex x € N*(v), then we observe
f(v) =1 too. Hence f(v) =1 for each v € V(D) and thus d%(D) = 1.

Conversely, assume that d% (D) = 1. If D contains a vertex w such that d~(z) >
k+1 for each z € N*[w], then the functions f; : V(D) — {—1,1} such that f;(z) =1
for each z € V(D) and fo(w) = —1 and fo(x) = 1 for each x € V(D) \ {w} are
signed k-dominating functions on D such that fi(x)+ fa(z) < 2 < k for each vertex
x € V(D). Thus {f1, f2} is a signed (k, k)-dominating family on D, a contradiction
to d%(D) = 1. This completes the proof. O

Theorem 7. If D is a digraph with 6~ (D) > k + 1, then d’fg(D) > k.

Proof. Let {uj,ug,...,ux} C V(D) be a subset of k vertices. The hypothesis
0~ (D) > k+1 implies that the functions f; : V(D) — {—1,1} such that f;(u;) = —1
and f;(x) = 1 for each vertex z € V(D) \ {u;} are signed k-dominating functions
on D for i € {1,2,...,k}. Since fi(z) + fa(z) + ... + fru(zx) < k for each vertex
x € V(D), we observe that {fi, f2,..., fr} is a signed (k, k)-dominating family on
D, and Theorem 7 is proved. O

Theorem 8. Let k > 1 be an integer, and let D be a (k+1)-reqular digraph of order
n. If n # 0 (mod(k + 2)), then d%(D) = k.

Proof. Since D is (k + 1)-regular, we have d*(z) = d~(z) = k + 1 for each vertex
x € V(D). Let f be an arbitrary signed k-dominating function on D. If we define
the sets P = {v € V(D) | f(v) = 1} and M = {v € V(D) | f(v) = —1}, then we
firstly show that

(1)

|P| > WMW :

k+2

Because of >, -, f(z) > k for each vertex y € V(D), the (k + 1)-regularity of
D implies that each vertex u € P has at most one inner neighbor in M and each
vertex v € M has exactly k + 1 inner neighbors in P. Therefore, the subdigraph
D[M] contains no arc, and since d* (v) = k+1, each vertex v € M has exactly k+ 1
outer neighbors in P. Altogether, we obtain

[P| = [M|(k+1) = (n—[P])(k+1),

and immediately this leads to (1).

Now let {f1, f2,...,fa} be a signed (k,k)-dominating family on D with d =
d%(D). Since 2?21 fi(u) <k for every vertex u € V(D), each of these sums contains
at least [(d—k)/2] summands of value -1 (note that Theorem 7 implies that d > k).
Using this and inequality (1), we see that the sum

d d
Z Zfl(x):z Z fi(z) (2)

€V (D) i=1 i=1 zeV (D)
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contains at least n[(d— k)/2] summands of value -1 and at least d[n(k+1)/(k+2)]
summands of value 1. As the sum (2) consists of exactly dn summands, we deduce

that
[15] a[PD] c "

It follows from the hypothesis n # 0 (mod(k + 2)) that
[n(k + 1)—‘ - n(k+1)

k+2 k+2 '

and thus (3) leads to
n(d—k) dn(k+1)
2 k+2
A simple calculation shows that this inequality implies d < k+ 2 and so d < k + 1.
If we suppose that d = k 4 1, then we observe that d and k are of different parity.
Applying Theorem 5, we obtain the contradiction

< dn.

k—1
k+1=d< T(k+2) <k+1
Therefore, d < k, and Theorem 7 yields to the desired result d = k. O

On the one hand, Theorem 8 demonstrates that the bound in Theorem 7 is
sharp, on the other hand, the following example shows that Theorem 8 is not valid
in general when n =0 (mod(k + 2)).

Let v1,v2,...,vg42 be the vertex set of the complete digraph D = K} ,. We
define the functions f; : V(D) — {—1,1} such that f;(v;) = —1 and fi(z) =1
for each vertex x € V(D) \ {v;} and each i € {1,2,...,k + 2}. Then we observe
that f; is a signed k-dominating function on K7, for each i € {1,2,...,k+2} and
Zfif i(x) = k for each vertex x € V(K}_,). Therefore, {fi, fo,..., frya} is a
signed (k, k)-dominating family on D and thus d%(Kj,,) > k + 2. Using Theorem
1, we obtain d% (K} ,) =k + 2.

Theorem 9. Let k > 1 be an integer. If D is a (k + 2)-regular digraph, then
d%(D) = k.
Proof. Let f be an arbitrary signed k-dominating function on D. If we define the

sets P={v e V(D)|f(v) =1} and M = {v € V(D) | f(v) = —1}, then we obtain
analogously to the proof of Theorem 8 the inequality

P> M2 (1)

Now let {f1, fa2,...,fa} be a signed (k,k)-dominating family on D such that d
= dk(D). Since E?Zl filu) < k for every vertex u € V(D), each of these sums
contains at least [(d — k)/2] summands of value -1. Using this and inequality (4),
we see that the sum

d d
Z Zfl(x):z Z fi(z) ()

eV (D) i=1 i=1 zeV (D)
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contains at least n[(d —k)/2] summands of value -1 and at least d[n(k+2)/(k+3)]
summands of value 1. As the sum (5) consists of exactly dn summands, we deduce
that gk (h+2)

— n(k +

- 2| <dn.
n[ 5 —‘—Fd[ k+3—‘_dn (6)

In view of Corollary 2, we deduce that d < k+ 1. If we suppose that d = k+ 1, then
inequality (6) leads to

n(k+1)(k+2)

— 2 < (k+1
Frs o S Ebm

and we obtain the contradiction

b+ Dk+2) _
k+3 -

Therefore, d < k, and Theorem 7 yields to the desired result d = d%(D) = k. O
Theorem 9 also demonstrates that the bound in Theorem 7 is sharp.
Theorem 10. If D is a digraph of order n with §— (D) > k — 1, then
d%(D) 4+ s (D) < kn 4 1.
Proof. According to Theorem 3, we deduce that

kn
d’;(D

d%(D) + yrs(D) < d§(D) + : (7)

~—

By Proposition 1 and Theorem 1, we have 1 < d&(D) < n. Using the fact that

the function g(z) = = + kn/x is decreasing for 1 < z < vkn and increasing for
Vkn <z <mn, inequality (7) leads to

k
d%(D) +ys(D) < max{l + kn,n+ n} =kn+ 1.
n

O

Corollary 4 (Sheikholeslami, Volkmann [7]). If D is a digraph of order n, then
ds(D) +’75(D) <n+1.

If k>2and 6~ (D) > k+ 1, then we can improve Theorem 10 considerably.
Theorem 11. If D is a digraph of order n with §— (D) > k + 1, then
d%(D) +vks(D) < k + n.

Proof. By Theorems 1 and 7, we have k < d%(D) < n. Using inequality (7) and the

fact that the function g(z) = x4+ kn/x is decreasing for k < 2 < vkn and increasing
for vVkn < x < n, we obtain

k k
d%(D) 4 ks (D) < max{k+ ?n,TLJr n} = k+n.
n
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3. Signed (k, k)-domatic number of graphs

The signed k-dominating function of a graph G is defined in [12] as a function
[ V(G) — {-=1,1} such that }° .y, f(z) = k for all v € V(G). The sum
> zev(c) f(2) is the weight w(f) of f. The minimum of weights w(f), taken over
all signed k-dominating functions f on G is called the signed k-domination number
of G, denoted by v,s(G). The special case k = 1 was defined and investigated in [2].

A set {f1, fa,..., fa} of distinct signed k-dominating functions on G with the
property that Zle fi(v) <k for each v € V(G), is called a signed (k, k)-dominating
family on G. The maximum number of functions in a signed (k, k)-dominating family
on G is the signed (k, k)-domatic number of G, denoted by d%(G). This parameter
was introduced by Sheikholeslami and Volkmann in [6]. In the case k = 1, we write
ds(G) instead of d§(G).

The associated digraph D(G) of a graph G is the digraph obtained from G when
each edge e of G is replaced by two oppositely oriented arcs with the same ends as e.
Since N [v] = Ne[v] for each vertex v € V(G) = V(D(G)), the following useful
Proposition is valid.

Proposition 2. If D(G) is the associated digraph of a graph G, then vxs(D(G))
= vs(GQ) and d5(D(Q)) = d&(G).

There are a lot of interesting applications of Proposition 2, as for example the
following results. Using Corollary 3, we obtain the first one.

Corollary 5 (Volkmann, Zelinka [11] 2005). The signed domatic number ds(G) of
a graph G is an odd integer.

Since §7(D(G)) = 6(G), the next result follows from Proposition 2 and Theo-
rem 1.

Corollary 6 (Sheikholeslami, Volkmann [6] 2010). If G is a graph with minimum
degree 6(G) > k — 1, then
d%(G) < 6(G) + 1.

The case k =1 in Corollary 6 can be found in [11].

Corollary 7 (Volkmann [8] 2009). Let G be a graph, and let v be a vertex of odd
degree dg(v) = 2t + 1 with an integer t > 0. Then ds(G) < t+ 1 when t is even and
ds(G) <t when t is odd.

Proof. Since dp, g, (v) = dg(v) = 2t + 1, it follows from Proposition 2 and Theo-
rem 4 that

ds(G) =ds(D(@)) < dp(e(v) +1 _de(v) +1

=t+ 1.
= 5 +

Applying Corollary 5, we obtain the desired result. O

In view of Proposition 2 and Theorem 10, we immediately obtain the next result.
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Corollary 8 (Volkmann [9] 2011). If G is a graph of order n, then

75(G> + ds(G) <n+1.

Theorem 9 and Proposition 2 lead to our last corollary.

Corollary 9. If G is a (k + 2)-regular graph, then d%(G) = k.
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