On some properties of the Lyapunov equation for damped systems

Ninoslav Truhar* and Krešimir Veselić†

Abstract. We consider a damped linear vibrational system whose dampers depend linearly on the viscosity parameter v. We show that the trace of the corresponding Lyapunov solution can be represented as a rational function of v whose poles are the eigenvalues of a certain skew-symmetric matrix. This makes it possible to derive an asymptotic expansion of the solution in the neighborhood of zero (small damping).

Key words: Damped-vibration, Lyapunov equation, optimization of dampers’ viscosities

AMS subject classifications: 70J10, 34D20, 34C10, 78M50

Received April 6, 2004 Accepted October 2, 2004

1. Introduction

We consider a damped linear vibrational system

$$M\ddot{x} + C\dot{x} + Kx = 0 \quad (1)$$

where the matrices M, C, K (mass, damping, stiffness) are symmetric, M, K are positive definite and C is positive semidefinite. If internal damping is neglected, C has often a small rank as it describes a few dampers built in to calm down dangerous vibrations. Often C has the form

$$C = vC_0$$

where v is variable viscosity and C_0 describes the geometry of a damper. C_0 will have rank 1, 2 or 3 according to whether the damper can exhibit linear, planar or spatial displacements.

An example is the so-called n-mass oscillator or oscillator ladder (Figure 1) where

*A part of this work was written while the first author was a visiting researcher in the Lehrgebiet Mathematische Physik, Fernuniversität, Hagen
†Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31000 Osijek, Croatia, e-mail: ntruhar@mathos.hr
‡Lehrgebiet Mathematische Physik, Fernuniversität Hagen, 58084 Hagen, Germany, e-mail: kresimir.veselic@fernuni-hagen.de
$M = \text{diag}(m_1, m_2, \ldots, m_n)$ \hfill (2)

$K = \begin{bmatrix}
 k_1 & -k_1 & 0 & \cdots & 0 \\
 -k_1 & k_1 + k_2 & -k_2 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 0 & \cdots & -k_n-2 & k_n-2 + k_{n-1} & -k_{n-1} \\
 0 & \cdots & 0 & -k_{n-1} & k_{n-1} + k_n
\end{bmatrix}$, \hfill (3)

$C = ve_1e_1^T + v(e_3 - e_2)(e_3 - e_2)^T$. \hfill (4)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig}
\caption{The n-mass oscillator with two dampers}
\end{figure}

Here $m_i > 0$ are the masses, $k_i > 0$ the spring constants or stiffnesses, e_i is the i-th canonical basis vector, and v is the viscosity of the damper applied on the i-th mass.

After the substitution
\begin{align}
y_1 &= \Omega \Phi^{-1}x, \\
y_2 &= \Phi^{-1} \dot{x},
\end{align}

where
\begin{align}
K \Phi &= M \Phi \Omega^2, \\
\Phi^T M \Phi &= I
\end{align}

is the eigenreduction of the symmetric positive definite matrix pair K, M, the system (1) goes over into

\begin{align}
\dot{y} &= Ay, \\
y &= \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \\
A &= \begin{bmatrix} 0 & \Omega \\ -\Omega & -D \end{bmatrix}, \\
D &= \Phi^T C \Phi.
\end{align}

Then
\begin{align}
E &= \frac{1}{2} \int_0^\infty (\dot{x}^T M \dot{x} + \dot{x}^T K x) \, dt = \int_0^\infty \|y\|^2 \, dt = \int_0^\infty \|e^{A t} y_0\|^2 \, dt, \\
\end{align}

where y_0 is the initial data. Thus,

$$E \equiv E(y_0) = y_0^T X y_0,$$
where
\[X = \int_0^\infty e^{A^T_0 t} e^{A_0 t} dt \] (11)
solves the Lyapunov equation
\[A^T X + XA = -I . \] (12)

Our penalty function is obtained by averaging \(E \) over all initial data with the equal energy, that is, we form
\[\bar{E} = \int_{\|y_0\|=1} y_0^T X y_0 d\sigma \] (13)
where \(d\sigma \) is a probability measure on the unit sphere in \(\mathbb{R}^{2n} \). Since by the map
\[X \mapsto \int_{\|y_0\|=1} y_0^T X y_0 d\sigma \]
is given a linear functional on the space of the symmetric matrices, by the Riesz theorem there exists a symmetric matrix \(Z \) such that
\[X \mapsto \int_{\|y_0\|=1} y_0^T X y_0 d\sigma = \text{Tr}(ZX) , \text{ for all symmetric matrices } X . \]

Let \(y \in \mathbb{R}^{2n} \) be arbitrary. Set \(X = yy^T \). Then
\[0 \leq \int_{\|y_0\|=1} y_0^T X y_0 d\sigma = \text{Tr}(ZX) = \text{Tr}(Zy y^T) = \text{Tr}(y^T Zy) , \]
hence \(Z \) is always positive semi-definite.

For any given measure there is a unique positive semidefinite matrix \(Z \) such that
\[\bar{E} = \text{Tr}(ZX) . \] (14)

For the measure \(\sigma \) generated by the Lebesgue measure (i.e. the usual surface measure) on \(\mathbb{R}^{2n} \), we obtain \(Z = \frac{1}{2n} I \). For the convenience of the reader, we give a sketch of the proof:

Recall,
\[Z_{ij} = \int_S y_i y_j \sigma(dy) . \]

Using Minkowski formula (see [2]) one can easily see that
\[Z_{ij} = \int_S y_i y_j \sigma(dy) = \frac{1}{2\varepsilon} \lim_{\varepsilon \to 0} \int_S y_i y_j \sigma(dy) , \]
here \(S \) denotes the unit sphere in \(\mathbb{R}^{2n} \) and \(d(y, S) \) is a corresponding distance.
Obviously, $Z_{ij} = 0$ for $i \neq j$ and $Z_{ii} = Z_{jj}$, for $i, j \in \{1, 2, \ldots, 2n\}$. Since

$$Z_{11} + Z_{11} + \ldots + Z_{2n2n} = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \text{vol} \left(y \in \mathbb{R}^{2n} : d(y, S) \leq \varepsilon \right) = 1,$$

it follows $Z = \frac{1}{2n}I$. More details about the structure of the matrix Z one can be found in [4].

We have shown that

$$\int_{||y_0||=1} y_0^T X y_0 \, d\sigma = \min \quad (15)$$

is equivalent to

$$Tr(ZX) = \min . \quad (16)$$

where Z is a symmetric positive semidefinite matrix which may be normalized to have a unit trace.

If one is interested in damping a certain part of the spectrum of the matrix A (which is very important in applications), then the matrix Z will have a special structure. For example, let $\sigma = \sigma_1 \times \sigma_2 \times \sigma_1 \times \sigma_2$, where σ_1 is a measure on the frequency subspace determined by $\omega \leq \omega_{\text{max}} \equiv \omega_s$ generated by the Lebesgue measure, that is, σ_1 is a measure on the frequency subspace which corresponds to eigenfrequencies (defined by (7)) $\omega_1, \ldots, \omega_s$ and σ_2 is a Dirac measure on the complement. Then we obtain that the corresponding matrix Z has the form

$$Z_s = Z = \frac{1}{2s} \begin{bmatrix} I_s & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & I_s & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad (17)$$

where I_s is the identity matrix of the dimension s which is defined by $\omega_{\text{max}} = \omega_s$. Here $\omega_{\text{max}} = \omega_s$ is a critical frequency with the property that the eigenfrequencies from (7) greater than ω_s are not dangerous. Hence, we damp first s eigenfrequencies. The construction of Z from (17) is a generalization of the simplest case $Z = \frac{1}{2n}I$.

In [7] a simple solution of problem (14) has been presented for A from (9) and $\text{rank}(C) = 1$. In particular,

$$Tr(ZX(v)) = \text{const} + \frac{a}{v} + bv, \quad a, b > 0, \quad (18)$$

which made it possible to find the minimum by a simple formula explicitly. The case $\text{rank}(C) > 1$ seems to be essentially more difficult to handle.

The main result of this paper is the explicit formula:

$$X(v) = \frac{\Psi^{-1}}{v} - \Psi_0 - v\hat{\Psi}_1 + v \sum_{i=1}^s \frac{\lambda_i (\lambda_i \Phi_i - v\Upsilon_i)}{\lambda_i^2 + v^2}. \quad (19)$$

where $\Psi_{-1}, \Psi_0, \hat{\Psi}_1, \Phi_i$ and Υ_i are $m \times m$ matrices and λ_i are eigenvalues of the pencil (A_0, D) where A_0 and D are matrices which correspond to the linear operators

$$X \mapsto -A_0X + XA_0,$$

$$X \mapsto DX + XD,$$
respectively. Thus, technically, we have turned viscosity into the spectral parameter.

Further, we have obtained a simple formula for Ψ_{-1} in (19). This matrix is responsible for the behavior of the solution $X(v)$ in the neighborhood of zero (small damping):

$$\Psi_{-1} = \begin{bmatrix} D_\Delta & 0 \\ 0 & D_\Delta \end{bmatrix},$$

where

$$D_\Delta = (\text{diag}(D))^{-1}. \tag{21}$$

We will use the following notation: matrices written in simple Roman fonts, M, D or K for example will have n^2 entries. Matrices written in mathematical bold fonts, A, B will have m^2 entries, where $m = 2n$ (that is, A, B are matrices defined on the $2n$-dimensional phase space). Finally, matrices written in Blackboard bold fonts \mathbb{A}, or \mathbb{D} will have more than m^2 entries.

2. The main result

As we have said in the Introduction, our aim is to obtain the solution X of the Lyapunov equation

$$A(v)^T X + XA(v) = -I,$$

where Z is defined by (17) and I is an $m \times m$ identity matrix.

From (9) it follows that $A(v)$ can be written as

$$A(v) \equiv A_0 - vD,$$

where $A_0 = \begin{bmatrix} \Omega_1 & 0 & \cdots & 0 \\ 0 & \Omega_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Omega_n \end{bmatrix}, \quad \Omega_i = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & 0 \end{bmatrix} \tag{22}$$

and

$$D = D_0 D_0^T,$$

where

$$D_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ d_{11} & d_{12} & \cdots & d_{1r} \\ 0 & 0 & \cdots & 0 \\ d_{21} & d_{22} & \cdots & d_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ d_{n1} & d_{n2} & \cdots & d_{nr} \end{bmatrix}, \tag{3}$$

d_{ij} are entries of the matrix

$$D_0 = P \begin{bmatrix} 0 \\ L_C \end{bmatrix}, \quad C_0 = L_C L_C^T,$$

and P is the “perfect shuffling” permutation.

Now, we proceed with solving equation (1). As it is well known, Lyapunov equation (1) is equivalent to (3, Theorem 12.3.1))

$$(I \otimes (A_0 - vD)^T + (A_0 - vD)^T \otimes I) \cdot \text{vec}(X) = -\text{vec}(I), \tag{4}$$
N. Truhar and K. Veselić

where \(L \otimes T \) denotes the Kronecker product of \(L \) and \(T \), and \(\text{vec}(I) \) is the vector formed by "stacking" the columns of \(I \) into one long vector.

Further, we will need the following two \(m^2 \times m^2 \) matrices defined by

\[
A_0 = I \otimes A_0^T + A_0^T \otimes I, \quad D = I \otimes D_0 D_0^T + D_0 D_0^T \otimes I. \tag{5}
\]

It is easy to show that

\[
D = D F D F^T, \quad \text{where} \quad D_F = [I \otimes D_0 \ D_0 \otimes I]. \tag{6}
\]

Now, using (6) and (5) it follows that solution \(\text{vec}(X) \) of equation (4) can be written as

\[
\text{vec}(X) = -(A_0 - v D_F D_F^T)^{-1} \text{vec}(I). \tag{7}
\]

Obviously, there exists a unitary matrix \(U \) such that

\[
U^T A_0 U = \begin{bmatrix} 0 & \tilde{A}_0 \end{bmatrix}, \tag{8}
\]

where \(A_0 \) is the skew-symmetric matrix, corresponds with the linear operator defined in (5) and \(\tilde{A}_0 \) is a non-singular block diagonal matrix defined by

\[
\tilde{A}_0 = \text{diag}(\Xi_1, \ldots, \Xi_{m_2}) \quad \text{where} \quad \Xi_i = \begin{bmatrix} 0 & -\mu_i \\ \mu_i & 0 \end{bmatrix} \tag{9}
\]

where \(\pm i \mu_i, \ i = 1, \ldots, m_2 \) are non-zero eigenvalues of matrix \(A_0 \), that is, \(0 \neq \mu_i = (\pm \omega_i) - (\pm \omega_j) \) for \(i, j = 1, \ldots, n \) (see [3, Corollary 12.2.2]). Note that \(m_2 = (m^2 - m)/2 \). Set

\[
\begin{bmatrix} D_1 \\ D_2 \end{bmatrix} = U^T D_F, \tag{10}
\]

where \(D_F \) is defined in (6).

Now,

\[
\tilde{A}_0 - v D_F D_F^T = U \begin{bmatrix} 0 & -v \begin{bmatrix} D_1 D_1^T & D_1 D_2^T \\ D_2 D_1^T & D_2 D_2^T \end{bmatrix} \end{bmatrix} U^T. \tag{11}
\]

Taking

\[
G = \begin{bmatrix} I \\ -D_2 D_2^T (D_1 D_1^T)^{-1} I \end{bmatrix} \tag{12}
\]

we obtain

\[
\tilde{A}_0 - v D_F D_F^T = U G^{-1} \begin{bmatrix} -v D_1 D_1^T \\ \tilde{A} \end{bmatrix} G^{-T} U^T, \tag{13}
\]

where

\[
\tilde{A} = \tilde{A}_0 - v D_2 (I - D_1^T (D_1 D_1^T)^{-1} D_1) D_2^T. \tag{14}
\]

Note that we can write

\[
D_2(I - D_1^T (D_1 D_1^T)^{-1} D_1) D_2^T = FF^T. \tag{15}
\]
Further, we have to find the inverse of \(\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_0 - v \tilde{\mathbf{F}} \tilde{\mathbf{F}}^T \). This is obtained by using the Sherman-Morrison-Woodbury formula ([1, (2.1.4), p.51]), that is,

\[
(\tilde{\mathbf{A}}_0 - v \tilde{\mathbf{F}} \tilde{\mathbf{F}}^T)^{-1} = \tilde{\mathbf{A}}_0^{-1} + v \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \left(I - v \tilde{\mathbf{F}} \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \right)^{-1} \tilde{\mathbf{F}}^T \tilde{\mathbf{A}}_0^{-1}.
\]

(16)

The inverse of \(I - v \tilde{\mathbf{F}} \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \) remains to be found. Let

\[
\Lambda = \text{diag} \left(\begin{bmatrix} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \lambda_2 \\ -\lambda_2 & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & \lambda_s \\ -\lambda_s & 0 \end{bmatrix} \right),
\]

(17)

where \(\pm i\lambda_1, \pm i\lambda_2, \ldots, \pm i\lambda_s \) are non-vanishing finite eigenvalues of the problem

\[
(\mathbf{A}_0 - \lambda \mathbf{D}) \text{vec}(\mathbf{Y}) = 0.
\]

(18)

Since \(\mathbf{F}^T \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \) is skew-symmetric, then there exists an orthogonal matrix \(\mathbf{U}_S \) of order \(2(r-1)m \) such that

\[
\mathbf{U}_S^T \mathbf{F}^T \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \mathbf{U}_S = \begin{bmatrix} 0 & 0 \\ 0 & \Gamma \end{bmatrix},
\]

(19)

where \(\Gamma = \Lambda^{-1} \).

Using (13), (16), (19) and (7) it follows

\[
\text{vec}(\mathbf{X}) = -\mathbf{U} \mathbf{G}^T \begin{bmatrix} \Delta_1 \\ \Delta_2 \end{bmatrix} \mathbf{G} \mathbf{U}^T \text{vec}(\mathbf{I}),
\]

(20)

where

\[
\Delta_1 = -\left(\mathbf{D} \mathbf{D}^T \right)^{-1} v, \quad \Delta_2 = \tilde{\mathbf{A}}_0^{-1} + v \tilde{\mathbf{A}}_0^{-1} \mathbf{F} \mathbf{U}_S \left[I \begin{bmatrix} 0 \\ (I - v \Gamma)^{-1} \end{bmatrix} \right] \mathbf{U}^T \mathbf{F} \tilde{\mathbf{A}}_0^{-1}.
\]

(21)

Since \(\Gamma \) is block diagonal we have

\[
(I - v \Gamma)^{-1} = \text{diag} \left(\frac{1}{\lambda_i^2 + v^2} \begin{bmatrix} \lambda_i^2 - v \lambda_i \\ v \lambda_i \lambda_i \end{bmatrix}, \ldots, \frac{1}{\lambda_s^2 + v^2} \begin{bmatrix} \lambda_s^2 - v \lambda_s \\ v \lambda_s \lambda_s \end{bmatrix} \right).
\]

(22)

Using (21) and (20) it follows

\[
\text{vec}(\mathbf{X}) = \left(\mathbf{V}_{-1} - \mathbf{V}_0 - v \tilde{\mathbf{V}}_1 + v \sum_{i=1}^s \frac{\lambda_i (\lambda_i \mathbf{W}_1 - v \mathbf{Z}_1)}{\lambda_i^2 + v^2} \right) \text{vec}(\mathbf{I}),
\]

(23)

where matrices \(\mathbf{V}_{-1}, \mathbf{V}_0, \tilde{\mathbf{V}}_1, \mathbf{W}_1 \) and \(\mathbf{Z}_1 \) are constructed using (12), (21) and (20).

By "reshaping" vectors in (23) back into \(m \times m \) matrices we obtain the solution of equation (1)

\[
\mathbf{X} = \frac{\Psi_{-1}}{v} - \mathbf{V}_0 - v \tilde{\mathbf{V}}_1 + v \sum_{i=1}^s \frac{\lambda_i (\lambda_i \Phi_1 - v \Upsilon_1)}{\lambda_i^2 + v^2}.
\]

(24)
If one is interested in deriving an optimal damping, then according to (14) one has to minimize the function \(f(v) = \text{tr}(ZX(v)) \), where

\[
\text{tr}(ZX(v)) = \text{vec}(Z)^T \text{vec}(X) = -\text{vec}(Z)^T (A_0 - vI \mathbb{D}_F \mathbb{D}_F^T)^{-1} \text{vec}(I).
\]

(25)

This gives

\[
\text{Tr}(ZX) = \frac{X_{-1}}{v} - X_0 - v\tilde{X}_1 + v \sum_{i=1}^s \lambda_i \left(\frac{\lambda_i X_i}{\lambda_i^2 + v^2} - vY_i \right),
\]

(26)

where

\[
X_{-1} = \text{vec}(Z)^T V_{-1} \text{vec}(I), \\
X_0 = \text{vec}(Z)^T V_0 \text{vec}(I), \\
\tilde{X}_1 = \text{vec}(Z)^T \tilde{V}_{-1} \text{vec}(I),
\]

and

\[
X_i = \text{vec}(Z)^T \mathbb{W}_i \text{vec}(I), \quad Y_i = \text{vec}(Z)^T \mathbb{Z}_i \text{vec}(I).
\]

(28)

Note that the function \(\text{Tr}(ZX) \) from (26) is a generalization of the function \(\text{Tr}(X) \) defined in (18).

Remark 1. In the case when \(Z \) is a diagonal matrix, the function \(\text{Tr}(ZX) \) from (26) has the following simpler form:

\[
\text{Tr}(ZX) = \frac{X_{-1}}{v} - v\tilde{X}_1 + v \sum_{i=1}^s \lambda_i^2 \frac{X_i}{\lambda_i^2 + v^2}.
\]

(26)

Finally, we derive an explicit formula for the matrix \(\Psi_{-1} \). Let \(U_0 \) be that part of \(U \) corresponding to the null-space of \(\mathbb{A}_0 \). From (23) it follows that

\[
\text{vec}(\Psi_{-1}) = V_{-1} \text{vec}(I) \equiv -U_0(I \mathbb{D}_1 \mathbb{D}_1^T)^{-1} U_0^T \text{vec}(I).
\]

(29)

It is easily seen that the \(i \)-th column of the matrix \(U_0 \) can be written as \(\text{vec}(O_i) \), where \(O_i \) is a block-diagonal matrix and

\[
O_{2i-1} = \text{diag}(0, \ldots, 0, O_{ii}, 0, \ldots, 0) \\
O_{2i} = \text{diag}(0, \ldots, 0, \tilde{O}_{ii}, 0, \ldots, 0)
\]

where \(O_{ii} \) and \(\tilde{O}_{ii} \) are "orthogonal" solutions of

\[
-\Omega_i O_{ij} + O_{ij} \Omega_j = 0 \quad i, j = 1, \ldots, n,
\]

(30)

that is

\[
O_{ii} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \text{and} \quad \tilde{O}_{ii} = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix}.
\]

(31)

Let \(\langle A, B \rangle = \text{Tr}(A^T B) \) be the usual Frobenius scalar product. Then, we can write the \((p, q) \)-th element of \(U_0^T \mathbb{D}_F \mathbb{D}_F^T U_0 \) as

\[
(U_0)_{(p)}^T \mathbb{D}_F \mathbb{D}_F^T (U_0)_{(q)} = \langle \mathbb{D}_{pq} O_p + O_p \mathbb{D}_{pq}, O_q \rangle \quad p, q = 1, \ldots, m,
\]

(32)
where $D_{pq} = (D_{pq})$ and

$$D_{pq} = \begin{bmatrix} 0 & 0 \\ 0 & D_{(p:)}^{-1}D_{(q:)} \end{bmatrix}. \quad (33)$$

The orthonormality property

$$\langle O_p, O_q \rangle = \delta_{pq},$$

implies

$$(U_0^T D F U_0^T)^{-1} = \text{diag}(1/(D)_{22}, 1/(D)_{22}, \ldots, 1/(D)_{nm}, 1/(D)_{nm}). \quad (34)$$

Using the fact that $U_0 U_0^T \text{vec}(I) = \text{vec}(I)$, from (29) it follows that

$$\Psi^{-1} = \text{diag} \left(\frac{1}{D_{22}}, \frac{1}{D_{22}}, \ldots, \frac{1}{D_{nm}}, \frac{1}{D_{nm}} \right). \quad (35)$$

After applying a perfect shuffle permutation we have

$$\Psi^{-1} = \begin{bmatrix} D_\Delta & 0 \\ 0 & D_\Delta \end{bmatrix}, \quad (36)$$

where

$$D_\Delta = (\text{diag}(D))^{-1}. \quad (37)$$

The explicitness of the obtained formulas is attractive for possible numerical computation. Our first attempts to perform this task did not succeed due to unexpected complexity problems. We will come back to this issue in our future research.

References

