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Original scientific paper 
Dynamical systems contain nonlinear relations which are difficult to 
model with conventional techniques. Hence, efficient nonlinear models 
are needed for system analysis, optimization, simulation and diagnosis of 
nonlinear systems. In recent years, computational-intelligence techniques 
such as neural networks, fuzzy logic and combined neuro-fuzzy systems 
algorithms have become very effective tools in the field of structural 
identification. The problem of the identification consists of choosing an 
identification model and adjusting the parameters in an way that the 
response of the model approximates the response of the real system to the 
same input. This paper investigates the identification of a nonlinear 
system by Digital Recurrent Neural Network (DRNN). A dynamic 
backpropagation algorithm is employed to adapt weights and biases of the 
DRNN. Mathematical model based on experimental data is developed. 
Results of simulations show that the application of the DRN for the 
identification of complex nonlinear structural behaviour gives satisfactory 
results. 
 

Identifikacija nelinearnog strukturnog ponašanja pomoću digitalne 
povratne neuronske mreže 

Izvornoznanstveni članak 
Dinamički sustavi sadrže nelinearne veze koje se teško modeliraju 
konvencionalnim tehnikama. Nelinearni modeli su neophodni za analizu 
sustava, optimizaciju, simulaciju i dijagnostiku nelinearnih sustava. 
Prethodnih godina, tehnike računalne inteligencije kao što su neuralne 
mreže, fuzzy logika i kombinirani neuro-fuzzy sustavi postaju efikasni 
alati u identifikaciji nelinearnih objekata. Problem identifikacije se sastoji 
od izbora identifikacijskog modela i prilagođavanja parametara tako da 
odziv modela aproksimira odziv realnog sustava za isti ulaz.Ovaj rad 
proučava identifikaciju nelinearnih sustava pomoću digitalne povratne 
neuronske mreže. Dinamički algoritam s propagacijom pogreške unazad 
se primjenjuje za adaptaciju težina i pragova osjetljivosti DRNN. 
Matematički model se razvija na bazi eksperimentalnih podataka. 
Rezultati simulacija pokazuju da primjena DRN u identifikaciji 
kompleksnog nelinearnog strukturnog ponašanja daje zadovoljavajuće 
rezultate. 
 

 

1. Introduction 
 
Nonlinear system identification and prediction is a 
complex task. On the other hand, all processes in nature 
are nonlinear. In many processes, nonlinearities are not 
prominent, so their behaviour can be described by 
simple linear models. In the linear systems theory there 
exist a large number of methods that can be applied for 
obtaining the linear model of processes. In contrast, 
nonlinear models must be selected when strong 
nonlinearities are present. 
Neural network modelling and identification from 
experimental data are effective tools for approximation 
of uncertain nonlinear dynamic systems. Neural 

networks can be classified into two major categories: 
feedforward and recurrent. Most publications in 
nonlinear system identification use feedforward 
networks, for example multilayer perceptrons [1]. 
Furthermore, feedforward neural networks have been 
applied successfully to a variety of classification 
problems [2] and for the development of the time 
prediction models [3]. The main drawback of these 
neural networks is that the weight updating does not 
utilize any information on the local data structure and 
the function approximation is sensitive to the training 
data [4]. The feedforward neural networks trained with 
a standard back-propagation algorithm can be used for 
the identification of nonlinear dynamic systems [5].
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Symbols/Oznake 
 

( )my k  
- output of the model 
- izlaz modela 

η   - update rate  
- brzina učenja 

( )u k  - input of the model 
- ulaz modela en  

- maximum lag of the error 
- maksimalno kašnjenje pogreške 

k  
- time instant 
- vremenski korak Hn  

- number of hidden nodes 
- broj neurona u nevidljivom sloju 

un  
- maximum lag of the input 
- maksimalno kašnjenje ulaza   

yn  - maximum lag of the output 
- maksimalno kašnjenje izlaza  Greek letters/Grčka slova 

mf  
- unknown nonlinear function 
- nepoznata nelinearna funkcija ( )kϕ  

- regression vector 
- regresijski vektor 

( )e k  
- prediction error  
- pogreška predviđanja θ  

- parameter vector 
- vektor parametara 

 
Neural network-based metamodels have been applied 
for determining the dynamic characteristic parameters 
of structures from field measurement data [6]. 
Conventional back-propagation is used to train the 
neural network. However, the conventional back-
propagation algorithm has the problems of local minima 
and slow rate of convergence.  
An improvement to the back-propagation algorithm 
based on the use of an independent, adaptive learning 
rate parameter for each weight with adaptable nonlinear 
function is presented in [7]. Adaptive time delay neural 
network structures have been proposed with satisfactory 
modelling accuracy [8]. The dynamic neural networks 
have been applied to functional approximation and 
nonlinear system identification [9-11]. Predictions of 
the structural behaviour by fuzzy neural network 
methodology [12] and dynamic fuzzy wavelet neural 
network [13] have been considered. The NARMAX- 
(nonlinear autoregressive moving average with 
exogenous inputs) approach is used for mapping the 
input–output relationship. 
System identification plays a key role in active control 
of civil infrastructures. Because of their wide 
applicability, system identification methods have been 
studied in civil engineering for various purposes [14]. 
The main contribution and originality of this paper is to 
develop a DRNN identification model for time-varying 
behaviour prediction of civil engineering structures. 
Dynamic backpropagation algorithm is used to adapt 
weights and biases. The paper considered the 
application of DRNN to predict the radial displacement 
of an arch dam. Dam deformation modelling is very 
important for its safety monitoring. Radial displacement 
in any point of the dam body is a nonlinear function of 
hydrostatic pressure, temperature and other unexpected 
unknown causes. In dam engineering, soft computing 
models have been developed for the prediction of dam 
displacements [15-18]. In this paper, recurrent neural 
network approach is used for nonlinear system 
identification. Recurrent networks have been shown 

more efficient than feedforward neural networks in 
terms of the number of neurons required to model a 
dynamic system [19,20]. Models with recurrent 
networks are shown to have the capability of capturing 
various system nonlinearities, [21,22]. 

2. Identification of nonlinear dynamic 
systems 

Different methods have been developed in the literature 
for nonlinear system identification that use a 
parameterized model. The parameters are updated to 
minimize an output identification error. 

( ) ( )( ),m my k f k= ϕ θ   (1) 

Since mf  can have a variety of forms, the identification 
of nonlinear systems becomes a much more complex 
task than for linear systems, where the key difficulty is 
to determine the system order [23]. 
Depending on the choice of the regressors in ( )kϕ , 
different models can be derived: 
NFIR (Nonlinear Finite Impulse Response) model: 

( ) ( ) ( ) ( )( )1 , 2 ,..., uk u k u k u k n− − −ϕ =  
NARX (Nonlinear AutoRegressive with eXogenous 
inputs) model: 

( ) ( ) ( ) ( )(
( ) ( ) ( ))

1 , 2 ,..., ,

1 , 2 ,...,

u

y

k u k u k u k n

y k y k y k n

− − −

− − −

ϕ =
 

NARMAX (Nonlinear AutoRegressive Moving Average 
with eXogenous inputs) model: 

( ) ( ) ( ) ( )(
( ) ( ) ( )
( ) ( ) ( ))

1 , 2 ,..., ,

1 , 2 ,..., ,

1 , 2 ,...,

u

y

e

k u k u k u k n

y k y k y k n

e k e k e k n

− − −

− − −

− − −
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NOE (Nonlinear Output Error) model: 
( ) ( ) ( ) ( )(

( ) ( ) ( ))
1 , 2 ,..., ,

1 , 2 ,...,

u

m m m y

k u k u k u k n

y k y k y k n

− − −

− − −

ϕ =
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Figure 1. The general block schema of the NOE model 

Slika 1. Općenita blok shema NOE modela 

 
 

NBJ (Nonlinear Box-Jenkins) model: uses all four 
regressor types.  
In this paper, NOE model (Figure 1) is used for 
representation of nonlinear systems. 

3. DRN neural network for nonlinear 
system identification 

 
Figure 2 depicts a typical configuration of a DRN. The 
output of the network is feedback to its input. This is a 
realization of the NOE model. The output of the 
network is a function not only of the weights, biases and 
network input, but also of the outputs of the network at 
previous points in time. Dynamic backpropagation 
algorithm can be used to adapt weights and biases [24]. 
DRN network is composed of a nonlinear hidden layer 
and a linear output layer. The inputs ( )1u k − , ( )2u k −

,…, ( )uu k n−  are multiplied by weights 
ijuω , while 

outputs ( )1my k − , ( )2my k − ,…, ( )m yy k n−  are 

multiplied by weights 
ijyω  and summed at each hidden 

node. Then the summed signal at a node activates a 
nonlinear function. The hidden neurons activation 
function is the hyperbolic tangent sigmoid function. In 
Figure 2, iω  represents the weight that connects the 
node i in the hidden layer and the output node; ib  
represents the biased weight for i-th hidden neuron and 
b  is a biased weight for the output neuron.  
The output of the network is: 

( )
1

Hn

m i i
i

y k b
=

= ω ν +∑   (2) 

where: 
i i

i i

n n

i n n

e e
e e

−

−

−
ν =

+
  (3)

( ) ( )
1 1

yu

ij mij

nn

i u m y i
j j

n u k j y k j b
= =

= − ω + − ω +∑ ∑  (3) 

The difference between the output of the system ( )y k

and the output of the network ( )my k is called the 
prediction error: 

( ) ( ) ( )me k y k y k= −   (4) 
This error is used to adjust the weights and biases in the 
network via the minimization of the following function: 

  (5) 
Using the gradient descent, the weight and bias updating 
rules can be described as: 

( ) ( )1
ij ij

ij

u u
u

k k εω ω η
ω
∂

+ = −
∂

 (6) 

( ) ( )1
mij mij

mij

y y
y

k k εω ω η
ω
∂

+ = −
∂

 (7) 

( ) ( )1i i
i

b k b k
b
εη ∂

+ = −
∂

  (8) 

( ) ( )1b k b k
b
εη ∂

+ = −
∂

  (9) 
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where the superscript e  indicates an explicit derivative, 
not accounting for indirect effects through time. 

The terms 
ij

m

u

y
ω
∂
∂

, 
ij

m

y
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ω
∂
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,  m

i

y
b

∂
∂

 and my
b

∂
∂

 must be 

propagated forward through time [24]. 

( ) ( ) 21
2 my k y kε = −  
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Figure 2. Digital Recurrent Neural Network 

Slika 2. Digitalna povratna neuronska mreža 

4. Simulation results 
 
The main aim of this study is to construct an efficient 
DRNN model to predict the radial displacement at the 
crest of an arch dam. One arch dam after 30 years of 
operation, is shown in Figure 3. It is a double curvature 
arch dam, 66 m high, with 221.4 m long crest. The 
minimum, normal and maximum operating levels are 
254, 282 and 283 m above sea level (asl), respectively. 
The total capacity of reservoir is 6 352.7 10 m⋅ × . The 
displacement of point V1 at block 8 is predicted with 
the proposed method. A data set includes 783 data 
samples. The available set of data was divided into two 
subsets as training and test sets. Five-day measurements 
from January 2000 to December 2008 are used to train, 
and data from January 2009 to December 2010 are used 
to test the DRNN model. 

The behaviour of nonlinear dynamic system with two 
inputs and one output is considered. The model input 
vector is defined by: 

( ) ( ) ( ) ( )( )1 21 , 1 , 1mk u k u k y k− − −ϕ =  

where 1u  is water level, 2
2
365

ju π
=  is the season varying 

between 0 and 2π , j represents the number of days 
since January 1st. 
MATLAB Neural Network Toolbox has been applied 
for the implementation of the digital recurrent network 
network. Different DRNN models were constructed and 
tested in order to determine the optimum number of 
neurons in the hidden layer. The two-layer network with 
a tan-sigmoid transfer function at the hidden layer and a 
linear transfer function at the output layer was used. 
Optimal network size was selected as the one which 
obtained in maximum correlation coefficient for the 
training and test sets, Table 1. 

 
Figure 3. Upstream face of dam and cross-section through block 8 

Slika 3. Uzvodno lice brane i poprečni presjek bloka 8 
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Table 1. Correlation coefficient for the training and test sets 

Tablica 1.Korelacijski koeficijenti za skupove podataka za 
učenje i testiranje 

DRNN-structure 
/ DRNN 
struktura 

3-20-1 3-24-1 3-27-1 3-30-1 

Training / Učenje 0.889 0.936 0.974 0.966 
Test / Testiranje 0.877 0.943 0.972 0.965 
 
Based on Table 1, it was concluded that the optimal 
number of hidden neurons is 27. The total number of the 
parameters of DRN network is 136. In the learning 
process, the weights (108) as well as the biases (28) of 
the neural network were adaptively adjusted. Parameters 
of the DRN are given in Table 2. The inputs ( )1 1u k − , 

( )2 1u k −  are multiplied by weights 
( )1 1iuω  and 

( )1 2iuω , 

respectively. 
Figure 4 presents the measured and DRNN computed 
values in training and test sets. 

5. Conclusion 
 
Dynamical systems contain nonlinear relations which 
are difficult to model with conventional techniques. In 
this paper, a DRNN has been successfully applied to 
unknown nonlinear system identification and modelling. 
A real-data set was used to demonstrate the 
effectiveness of the proposed approach. Comparing the 
modelled values by DRNN with the experimental data 
indicates that the soft computing model provides 
accurate results. Designing a neural network model, the 
main problem is how to determine an optimal 
architecture of the network and how to achieve an 
optimal fine tuning of its parameters.  The number of 
DRNN inputs is determined by the number of time lags. 
The determination of the values of time lags is an open 
issue. Large time lags result in better prediction of the 
DRNN.  
 

Table 2. Parameters of the DRN network 

Tablica 2. Parametri DRN mreže 

i ( )1 1iuω  
( )1 2iuω  

1miyω  iω  ib  

1 0.4278 1.0918 1.5638 −0.385 3.1645 
2 0.1029 −2.0117 −0.8312 −0.5376 −1.056 
3 0.0104 −1.1102 0.4498 0.8453 0.4556 
4 0.1729 −0.9834 −0.837 −1.6245 −2.674 
5 −1.7569 0.2158 −1.379 −0.5386 1.4897 
6 0.2006 −1.0001 0.7629 2.2895 2.4756 
7 −0.2252 −0.4567 1.2987 −2.5739 1.7865 
8 1.5782 1.2298 −0.9927 1.1086 −3.4392 
9 −0.0011 0.0012 −1.1557 −0.0731 −1.3629 

10 0.0303 −0.2001 0.6623 −0.9328 2.5528 
11 −0.9741 0.9978 −1.2984 2.3289 0.3695 
12 0.0005 −0.3789 0.5309 −1.4473 −1.7547 
13 −0.2301 −1.0602 −0.1287 −0.2459 0.2428 
14 0.8002 −0.0015 0.9291 0.7843 −0.761 
15 1.3829 −0.5009 2.5289 −1.2904 −2.2331 
16 0.5389 0.0091 −0.3897 3.1068 −1.1278 
17 −0.2946 −1.4916 1.1982 −0.0762 1.8804 
18 0.2943 0.8856 −0.8856 0.9178 0.4379 
19 −0.5204 0.0203 −0.2901 −0.9924 −3.6644 
20 0.8463 0.3825 0.6781 −0.7827 1.8575 
21 −0.6634 −0.1768 1.2754 −1.0045 −1.4672 
22 −0.4639 0.3579 0.9783 0.3901 −1.4741 
23 0.1156 −1.6381 −0.3495 2.2678 0.4829 
24 0.2474 −0.3589 −0.2983 −1.1338 0.6616 
25 0.9178 −0.2493 −0.9506 −0.7071 −3.3939 
26 −0.0017 0.2537 1.4887 −2.2448 1.6728 
27 0.4567 −1.3587 −0.9508 0.3491 −1.3785 

 

 
Figure 4. The measured and modelled values in training and test sets 

Slika 4. Mjerene i modelirane vrijednosti za učenje i testiranje 
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However, large un and yn  also result in large number of 
parameters (weights and biases) that need to be adapted. 
In the considered dam study, satisfactory results were 
obtained for 1 2 1u u yn n n= = = . 
The main limitation of the methodology presented here 
is that it does not directly consider mechanical 
properties and possible damage. Additional analysis in 
the form of statical and dynamical tests, computational 
mechanical modelling and inverse analysis are required. 
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